JPH0342726B2 - - Google Patents

Info

Publication number
JPH0342726B2
JPH0342726B2 JP58179352A JP17935283A JPH0342726B2 JP H0342726 B2 JPH0342726 B2 JP H0342726B2 JP 58179352 A JP58179352 A JP 58179352A JP 17935283 A JP17935283 A JP 17935283A JP H0342726 B2 JPH0342726 B2 JP H0342726B2
Authority
JP
Japan
Prior art keywords
terminal
operational amplifier
switch
capacitor
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58179352A
Other languages
Japanese (ja)
Other versions
JPS6072407A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP58179352A priority Critical patent/JPS6072407A/en
Publication of JPS6072407A publication Critical patent/JPS6072407A/en
Publication of JPH0342726B2 publication Critical patent/JPH0342726B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Amplifiers (AREA)

Description

【発明の詳細な説明】 (技術分野) 本発明は低直流オフセツト電圧を得ることがで
きる演算増幅器による交流増幅回路に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to an AC amplification circuit using an operational amplifier that can obtain a low DC offset voltage.

(従来技術) 従来この種交流増幅回路を第1図に示す。第1
図において1は信号入力端子でキヤパシタC11
介して演算増幅器OPの非反転入力端子に接続さ
れ、また非反転入力端子は抵抗R11を介して信号
接地に接続され、2は信号出力端子で演算増幅器
OPの出力端子に接続されるとともに、抵抗R12
介して演算増幅器OPの反転入力端子に接続され、
また、反転入力端子は抵抗R13を介して信号接地
に接続される。
(Prior Art) A conventional AC amplifier circuit of this type is shown in FIG. 1st
In the figure, 1 is a signal input terminal connected to the non-inverting input terminal of the operational amplifier OP via a capacitor C 11 , the non-inverting input terminal is connected to signal ground via a resistor R 11 , and 2 is a signal output terminal. operational amplifier
is connected to the output terminal of OP and to the inverting input terminal of operational amplifier OP via resistor R12 ,
The inverting input terminal is also connected to signal ground via resistor R13 .

このように構成された交流増幅回路に対し、普
通は直流電圧が重畳された交流電圧信号が信号入
力端子1に印加され、キヤパシタC11によつて信
号入力端子1における直流電圧成分は阻止され、
演算増幅器OPの非反転入力端子には新たな直流
電圧として、抵抗R11によつて信号接地の電位が
与えられるようになつているので、信号入力端子
1の電圧信号成分のうちの交流電圧成分のみが演
算増幅器OPの非反転入力端子に到達する。その
結果、演算増幅器OPと抵抗R12およびR13によつ
て構成される負帰還形増幅回路は、実現しようと
する交流増幅器の電圧利得に対して、演算増幅器
OPの開放電圧利得が極めて大きい場合、抵抗R12
とR13の比によつて定まる電圧利得をもつた交流
増幅回路として動作する。
For an AC amplifier circuit configured in this way, normally an AC voltage signal on which a DC voltage is superimposed is applied to the signal input terminal 1, and the DC voltage component at the signal input terminal 1 is blocked by the capacitor C11 .
Since the signal ground potential is applied to the non-inverting input terminal of the operational amplifier OP as a new DC voltage through the resistor R11 , the AC voltage component of the voltage signal component at the signal input terminal 1 is only reaches the non-inverting input terminal of the operational amplifier OP. As a result, the negative feedback amplifier circuit composed of the operational amplifier OP and resistors R12 and R13 has
If the open circuit voltage gain of OP is extremely large, resistor R 12
It operates as an AC amplifier circuit with a voltage gain determined by the ratio of R13 and R13 .

しかし、この交流増幅回路を音声帯域のような
比較的低い周波数領域で使用する場合、キヤパシ
タC11と抵抗R11によつて定まるCR積を大きくし
ないと増幅度において周波数特性を生じるが、一
方、周波数特性を無視できる程度の特性を得るた
めのCR積をもつたキヤパシタと抵抗を集積回路
内に実現することは、それらの寸法や素子値の安
定度の点で著るしく困難である。
However, when this AC amplifier circuit is used in a relatively low frequency region such as the audio band, unless the CR product determined by the capacitor C11 and the resistor R11 is increased, a frequency characteristic will occur in the amplification degree. It is extremely difficult to implement a capacitor and a resistor with a CR product in an integrated circuit to obtain characteristics with negligible frequency characteristics in terms of their dimensions and stability of element values.

また、実際の演算増幅器OPには入力直流オフ
セツト電圧が存在し、その結果出力端子2におけ
る直流電圧は抵抗R12およびR13によつて構成さ
れる負帰還作用によつて、入力直流オフセツト電
圧を増幅度倍した値になり信号接地の電位からシ
フトする。
In addition, an input DC offset voltage exists in the actual operational amplifier OP, and as a result, the DC voltage at the output terminal 2 is reduced by the input DC offset voltage due to the negative feedback effect constituted by resistors R12 and R13 . The value is multiplied by the amplification factor and shifted from the signal ground potential.

一般に、演算増幅器OPの電源電圧は、信号接
地の電位に対し正および負の、絶対値の等しい2
電源によつて与えられるが、出力端子2の直流電
圧が信号接地の電位からシフトすると、交流電圧
信号のみを情報量として処理する場合、出力端子
2から直流阻止回路を介して交流信号をとりださ
ねばならない。また、出力端子2における交流信
号が比較的大きな電圧振幅をもつ場合、信号接地
の電位からみて、出力端子2の直流電圧がシフト
した方向の半周期の波形が残る半周期の波形と比
較して歪みやすくなり、更に大きな電圧振幅とな
つていわゆるリミツタ増幅回路として動作する場
合、出力端子2における交流電圧信号のデユーテ
イレシオが50%からずれてくるため、処理方法に
よつては使用できなくなるといういくつかの欠点
があつた。
In general, the power supply voltage of the operational amplifier OP is equal to two positive and negative voltages with respect to the signal ground potential.
When the DC voltage at output terminal 2 shifts from the potential of the signal ground, which is given by the power supply, when processing only AC voltage signals as information, the AC signal is extracted from output terminal 2 via a DC blocking circuit. I have to. In addition, when the AC signal at output terminal 2 has a relatively large voltage amplitude, the half-cycle waveform in the direction in which the DC voltage at output terminal 2 is shifted is compared to the remaining half-cycle waveform when viewed from the potential of the signal ground. When the circuit becomes susceptible to distortion and has a larger voltage amplitude and operates as a so-called limiter amplifier circuit, the duty ratio of the AC voltage signal at output terminal 2 deviates from 50%, which may make it unusable depending on the processing method. There were some shortcomings.

(発明の目的) 本発明は、このような従来の欠点を除去したも
ので集積回路における、低い出力直流オフセツト
電圧をもつた交流増幅回路を提供することにあ
る。以下本発明を一実施例により詳細に説明す
る。
OBJECTS OF THE INVENTION The object of the present invention is to provide an AC amplifier circuit in an integrated circuit having a low output DC offset voltage, which eliminates these conventional drawbacks. The present invention will be explained in detail below using one example.

(発明の構成) 第2図は本発明交流増幅回路の一実施例を示す
回路図である。図において1は信号入力端子であ
つて、キヤパシタC3の片端子に接続され、その
他端子は演算増幅器OP1の非反転入力端子に接続
されかつ、クロツクφ2で開閉の制御されるスイ
ツチS5の片端子と、クロツクφ2と位相反転の関
係にあるクロツク2で開閉の制御されるスイツ
チS6の片端子に接続され、スイツチS5の他端子は
クロツク2で開閉の制御されるスイツチS7の片
端子とキヤパシタC4の片端子に接続され、スイ
ツチS6の他端子はクロツク2で開閉の制御され
るスイツチS8の片端子とキヤパシタC5の片端子
に接続され、スイツチS7,S8およびキヤパシタ
C4,C5の他端子はすべて信号接地に接続される。
(Structure of the Invention) FIG. 2 is a circuit diagram showing an embodiment of the AC amplifier circuit of the present invention. In the figure, 1 is a signal input terminal, which is connected to one terminal of a capacitor C3 , and the other terminal is connected to a non-inverting input terminal of an operational amplifier OP1 , and a switch S5 whose opening/closing is controlled by a clock φ2. One terminal of switch S 6 is connected to one terminal of switch S 6 whose opening/closing is controlled by clock 2 which has a phase inversion relationship with clock φ 2 , and the other terminal of switch S 5 is connected to one terminal of switch S 6 whose opening/closing is controlled by clock 2 . One terminal of switch S 7 is connected to one terminal of capacitor C 4 , and the other terminal of switch S 6 is connected to one terminal of switch S 8 whose opening/closing is controlled by clock 2 and one terminal of capacitor C 5 . , S 8 and capacitor
All other terminals of C 4 and C 5 are connected to signal ground.

演算増幅器OP1の出力端子は本回路の信号出力
端子2であり、抵抗R1を介して演算増幅器OP1
反転入力端子に接続され、かつクロツクφ1で開
閉の制御されるスイツチS1を介して、クロツク
φ1と位相反転の関係にあるクロツク1で開閉の
制御されるスイツチS2の片端子とキヤパシタC1
に接続され、キヤパシタC1の他端子はクロツク
φ1で開閉の制御されるスイツチS3の片端子と、
クロツクφ1で開閉の制御されるスイツチS4の片
端子に接続され、スイツチS4の他端子はキヤパシ
タC2の片端子と、演算増幅器OP2の非反転入力端
子に接続され、スイツチS2,S3およびキヤパシタ
C2の他端子はすべて信号接地に接続される。
The output terminal of the operational amplifier OP 1 is the signal output terminal 2 of this circuit, and is connected to the inverting input terminal of the operational amplifier OP 1 via the resistor R 1 , and is connected to the switch S 1 whose opening/closing is controlled by the clock φ 1 . One terminal of switch S2 whose opening/closing is controlled by clock 1 , which has a phase inversion relationship with clock φ1 , and capacitor C1
The other terminal of capacitor C 1 is connected to one terminal of switch S 3 whose opening/closing is controlled by clock φ 1 ,
It is connected to one terminal of switch S 4 whose opening/closing is controlled by clock φ 1 , and the other terminal of switch S 4 is connected to one terminal of capacitor C 2 and the non-inverting input terminal of operational amplifier OP 2 . , S 3 and capacitor
All other terminals of C 2 are connected to signal ground.

演算増幅器OP2の反転入力端子は出力端子に接
続され、かつ抵抗R2を介して演算増幅器OP1の反
転入力端子に接続される。
The inverting input terminal of the operational amplifier OP 2 is connected to the output terminal and via the resistor R 2 to the inverting input terminal of the operational amplifier OP 1 .

次に、この回路の動作を説明する。 Next, the operation of this circuit will be explained.

入力回路における信号入力端子1からの入力信
号のうち直流信号成分はキヤパシタC3によつて
阻止され、さらにスイツチS5,S6,S7,S8、キヤ
パシタC4,C5で構成されるスイツチト・キヤパ
シタによつて、演算増幅器OP1の非反転入力端子
における直流電位を信号接地の電位に等しくす
る。またスイツチトキヤパシタの等価抵抗値は、
キヤパシタC4,C5の容量値を等しくC4(フアラツ
ド)とし、クロツクφ22の周期をT1(秒)と
すれば近似的に(T1/2C4)オームとなり、キヤ
パシタC3の容量値をC3(フアラド)とすると、信
号入力端子1から演算増幅器OP1の非反転入力端
子までの電圧伝達周波数特性は、一次高域通過関
数となり、その3dBダウン周波数は近似的に
(C4/C3)・(πT1-1ヘルツであり、この周波数を、 使用する信号周波数帯域の下限値よりも十分低く
しておけば信号レベルの損失をもたらさない。
The DC signal component of the input signal from the signal input terminal 1 in the input circuit is blocked by the capacitor C3 , and is further composed of switches S5 , S6 , S7 , S8 , and capacitors C4 and C5. The switched capacitor makes the DC potential at the non-inverting input terminal of operational amplifier OP 1 equal to the potential of signal ground. In addition, the equivalent resistance value of the switch capacitor is
If the capacitance values of capacitors C 4 and C 5 are equal to C 4 (farad) and the period of clocks φ 2 and 2 is T 1 (seconds), approximately (T 1 /2C 4 ) ohm is obtained, and capacitor C 3 If the capacitance value of is C 3 (farad), the voltage transfer frequency characteristic from signal input terminal 1 to the non-inverting input terminal of operational amplifier OP 1 becomes a first-order high-pass function, and its 3 dB down frequency is approximately ( C 4 /C 3 )·(πT 1 ) -1 Hertz, and if this frequency is kept sufficiently lower than the lower limit of the signal frequency band used, no signal level loss will occur.

次に、このようにして得られた交流電圧信号を
本発明交流増幅回路で増幅し、かつ出力信号とし
て直流オフセツト電圧の小さい信号を得るために
は直流において電圧全帰還をかける回路構成にす
ればよい。
Next, in order to amplify the AC voltage signal obtained in this way with the AC amplifier circuit of the present invention and obtain a signal with a small DC offset voltage as an output signal, a circuit configuration in which full voltage feedback is applied to the DC current is used. good.

即ち、スイツチS1,S2,S3,S4、キヤパシタ
C1で構成されるスイツチトキヤパシタはキヤパ
シタC1の容量値をC1(フアラド)とし、クロツク
φ11の周期をT2(秒)とすれば近似的に
(T2/C1)オームの値をもつ等価抵抗となり、キ
ヤパシタC2の容量値をC2(フアラド)とすると、
信号出力端子2から演算増幅器OP2の非反転入力
端子までの電圧伝達周波数特性は、一次低域通過
関数となり、その3dBダウン周波数は近似的に
(C1/C2)・(2πT2-1ヘルツであり、この周波数を
使 用する信号周波数帯域の下限値よりも十分低くし
ておけば信号出力端子2における信号のうちの交
流電圧成分は減衰して、演算増幅器OP2の出力端
子には現われず、一方直流電圧成分はそのまま現
われることになる。
That is, switches S 1 , S 2 , S 3 , S 4 , capacitors
The switch capacitor composed of C 1 is approximately (T 2 /C 1 ) if the capacitance value of capacitor C 1 is C 1 (farad) and the period of clock φ 1,1 is T 2 (seconds). The equivalent resistance has a value of ohm, and if the capacitance value of capacitor C 2 is C 2 (farad), then
The voltage transfer frequency characteristic from the signal output terminal 2 to the non-inverting input terminal of the operational amplifier OP 2 is a first-order low-pass function, and its 3 dB down frequency is approximately (C 1 /C 2 )・(2πT 2 ) - 1 hertz, and if this frequency is set sufficiently lower than the lower limit of the signal frequency band used, the AC voltage component of the signal at signal output terminal 2 will be attenuated, and the output terminal of operational amplifier OP 2 will be On the other hand, the DC voltage component will appear as is.

その結果、演算増幅器OP2の出力信号成分は、
信号出力端子2の直流電圧と等しい直流電圧のみ
となり、抵抗R1,R2の抵抗値をそれぞれR1,R2
(オーム)とし、さらに(1+R1/R2)の値をK
とすると信号入力端子1から信号出力端子2まで
の電圧伝達特性は使用周波数帯域においてほぼK
倍の電圧利得をもつ交流増幅回路となる。
As a result, the output signal component of operational amplifier OP 2 is
There is only a DC voltage equal to the DC voltage of signal output terminal 2, and the resistance values of resistors R 1 and R 2 are respectively R 1 and R 2
(ohm), and then set the value of (1+R 1 /R 2 ) to K
Then, the voltage transfer characteristic from signal input terminal 1 to signal output terminal 2 is approximately K in the frequency band used.
It becomes an AC amplifier circuit with twice the voltage gain.

また第1図における演算増幅器OPの入力換算
直流オフセツト電圧をVps1(ボルト)、第2図にお
ける演算増幅器OP1,OP2の入力換算オフセツト
電圧をそれぞれVps2(ボルト)、Vps2(ボルト)と
し、さらに第1図、第2図の交流増幅回路におい
て等しくK倍の電圧利得をもつよう設計したもの
と仮定すると第1図の場合、出力端子2において
K・Vps1(ボルト)の直流オフセツト電圧を発生
するが、第2図の場合、出力端子2においては
{Vps2−K/(1+K)×Vps3}(ボルト)となり
Kが1に比べて非常に大きくなると、2つの演算
増幅器OP1、OP2の入力換算オフセツト電圧の
差、即ち(Vps2−Vps3)(ボルト)に近似される。
In addition, the input-referred DC offset voltage of operational amplifier OP in Fig. 1 is V ps1 (volt), and the input-referred offset voltage of operational amplifiers OP 1 and OP 2 in Fig. 2 are V ps2 (volt) and V ps2 (volt), respectively. Further, assuming that the AC amplifier circuits in Figures 1 and 2 are designed to have an equal voltage gain of K times, in the case of Figure 1, the DC offset of K·V ps1 (volts) at output terminal 2 is However, in the case of Figure 2, at output terminal 2, {V ps2 -K/(1+K)×V ps3 } (volts), and if K becomes very large compared to 1, the two operational amplifiers OP 1 , OP2 is approximated as the difference between the input-referred offset voltages of OP2, that is, (V ps2 - V ps3 ) (volts).

したがつて、集積回路内の演算増幅器の入力換
算オフセツト電圧は10ミリボルト程度であるのが
普通で第1図の回路構成だと電圧利得を100倍と
した場合1ボルトにも達するが、第2図の回路構
成だと最悪値でも入力換算オフセツト電圧の概略
2倍になるにすぎない。
Therefore, the input equivalent offset voltage of an operational amplifier in an integrated circuit is normally about 10 millivolts, and in the circuit configuration shown in Figure 1, it reaches as much as 1 volt when the voltage gain is multiplied by 100. With the circuit configuration shown in the figure, even the worst value is only approximately twice the input equivalent offset voltage.

このようにすると音声周波数帯域における高域
通過関数回路、即ち直流阻止回路と低域通過関数
回路すなわち交流阻止回路をスイツチトキヤパシ
タで実現しており、大容量のキヤパシタおよび大
きな抵抗を用いる必要がなく、かつ高精度で実現
でき、集積回路内に簡単に製造できる利点があ
る。
In this way, the high-pass function circuit in the audio frequency band, that is, the DC blocking circuit, and the low-pass function circuit, that is, the AC blocking circuit, are realized using switched capacitors, and there is no need to use a large capacitor or a large resistor. It has the advantage that it can be realized with high precision and easily manufactured in an integrated circuit.

また、本実施例では電圧利得を1に対して非常
に大きくするとき、出力直流オフセツト電圧は使
用する2個の演算増幅器の入力換算オフセツト電
圧の差になるが、集積回路で演算増幅器を構成す
るとその値が整合しやすい、すなわち入力換算オ
フセツト電圧の極性と絶対値が同一になりやすい
ので出力直流オフセツト電圧が小さくなる利点が
ある。
In addition, in this embodiment, when the voltage gain is made very large compared to 1, the output DC offset voltage is the difference between the input-referred offset voltages of the two operational amplifiers used, but if the operational amplifier is configured with an integrated circuit, Since the values are likely to match, that is, the polarity and absolute value of the input equivalent offset voltage are likely to be the same, there is an advantage that the output DC offset voltage is small.

なお、高域通過関数回路、即ち直流阻止回路は
必要により別に設けてもよい。またスイツチS5
S7及びキヤパシタC4又はスイツチS6,S8及びキ
ヤパシタC5の一方だけでも直流阻止は可能であ
り、さらに回路構成を簡易にするためクロツク
φ1とφ2及び12を同一にするか、若くはクロ
ツクφ12及び1とφ2を同一のクロツクにして
も可能である。
Note that a high-pass function circuit, that is, a DC blocking circuit may be provided separately if necessary. Also Switch S 5 ,
DC blocking is possible with only one of S7 and capacitor C4 or switches S6 , S8 and capacitor C5 , and to simplify the circuit configuration, clocks φ1 and φ2 and 1 and 2 are made the same. Alternatively, it is also possible to use the same clock for clocks φ1 and 2 and clocks φ1 and φ2 .

(発明の効果) 以上詳細に説明したように本発明は、使用回路
素子が全て集積回路において実現できるので外付
け部品を使うことなく、音声周波数帯域の交流増
幅回路を集積回路内に構成できる効果がある。
(Effects of the Invention) As explained in detail above, the present invention has the advantage that an AC amplification circuit in the audio frequency band can be configured in an integrated circuit without using external components because all the circuit elements used can be realized in an integrated circuit. There is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の交流増幅回路を示す回路図、第
2図は本発明交流増幅回路の一実施例を示す回路
図である。 1……信号入力端子、2……信号出力端子、
OP1,OP2……演算増幅器、C1,C2,C3,C4,C5
……キヤパシタ、R1,R2……抵抗、S1,S2,S3
S4,S5,S6,S7,S8……スイツチ。
FIG. 1 is a circuit diagram showing a conventional AC amplifier circuit, and FIG. 2 is a circuit diagram showing an embodiment of the AC amplifier circuit of the present invention. 1...Signal input terminal, 2...Signal output terminal,
OP 1 , OP 2 ... operational amplifier, C 1 , C 2 , C 3 , C 4 , C 5
... Capacitor, R 1 , R 2 ... Resistor, S 1 , S 2 , S 3 ,
S 4 , S 5 , S 6 , S 7 , S 8 ... switch.

Claims (1)

【特許請求の範囲】 1 第一の演算増幅器の非反転入力端子を信号入
力とし、この演算増幅器の出力が第一の抵抗を介
して同演算増幅器の反転入力端子に接続され、か
つ第一のスイツチを介して、片端子が信号接地に
接続された第二のスイツチの他端子と第一のキヤ
パシタの片端子に接続され、第一のキヤパシタの
他端子は片端子が信号接地に接続された第三のス
イツチの他端子と、第四のスイツチの片端子に接
続され、第四のスイツチの他端子は片端子が信号
接地に接続された第二のキヤパシタの他端子と第
二の演算増幅器の非反転入力端子に接続され、こ
の演算増幅器の出力は同演算増幅器の反転入力端
子に接続されかつ第二の抵抗を介して前記第一の
演算増幅器の反転入力端子に接続され、第一、第
四のスイツチが第一のクロツクに従つて開閉し、
第二、第三のスイツチが第一のクロツクと位相反
転の関係にある第二のクロツクに従つて開閉し、
第一の演算増幅器の出力端子を信号出力とする交
流増幅回路。 2 第一の演算増幅器の非反転入力端子を信号入
力とし、この演算増幅器の出力が第一の抵抗を介
して同演算増幅器の反転入力端子に接続され、か
つ第一のスイツチを介して、片端子が信号接地に
接続された第二のスイツチの他端子と第一のキヤ
パシタの片端子に接続され、第一のキヤパシタの
他端子は片端子が信号接地に接続された第三のス
イツチの他端子と、第四のスイツチの片端子に接
続され、第四のスイツチの他端子は片端子が信号
接地に接続された第二のキヤパシタの他端子と第
二の演算増幅器の非反転入力端子に接続され、こ
の演算増幅器の出力は同演算増幅器の反転入力端
子に接続されかつ第二の抵抗を介して前記第一の
演算増幅器の反転入力端子に接続され、第一、第
四のスイツチが第一のクロツクに従つて開閉し、
第二、第三のスイツチが第一のクロツクと位相反
転の関係にある第二のクロツクに従つて開閉し、
第一の演算増幅器の出力端子を信号出力とする交
流増幅回路において、片端子を信号入力とし他端
子が前記第一の演算増幅器の非反転入力端子の信
号入力に接続された第三のキヤパシタと、前記第
三のキヤパシタの他端子が第五のスイツチの片端
子に接続され第五のスイツチの他端子は第七のス
イツチを介して信号接地に接続されるとともに第
四のキヤパシタを介して信号接地に接続された少
なくとも1つのスイツチとキヤパシタとを具備
し、前記第五のスイツチと前記第七のスイツチと
は互いに位相反転の関係にあるクロツクに従つて
開閉する交流増幅回路。 3 前記スイツチとキヤパシタを2つ具備し、前
記第五のスイツチとキヤパシタ同士が互いに位相
反転の関係にあるクロツクに従つて開閉する特許
請求の範囲第2項記載の交流増幅回路。
[Claims] 1. A non-inverting input terminal of a first operational amplifier is used as a signal input, an output of this operational amplifier is connected to an inverting input terminal of the operational amplifier via a first resistor, and One terminal of the second switch was connected to signal ground through the switch, and the other terminal of the first capacitor was connected to one terminal of the first capacitor, and one terminal of the other terminal of the first capacitor was connected to signal ground. The other terminal of the third switch is connected to one terminal of the fourth switch, and the other terminal of the fourth switch is connected to the other terminal of the second capacitor, one terminal of which is connected to signal ground, and the second operational amplifier. the output of the operational amplifier is connected to the inverting input terminal of the operational amplifier and connected to the inverting input terminal of the first operational amplifier via a second resistor; A fourth switch opens and closes according to the first clock;
the second and third switches open and close according to a second clock that is in a phase-inverted relationship with the first clock;
An AC amplifier circuit that uses the output terminal of the first operational amplifier as a signal output. 2. The non-inverting input terminal of the first operational amplifier is used as a signal input, and the output of this operational amplifier is connected to the inverting input terminal of the operational amplifier via the first resistor, and The other terminal of the second switch whose terminal is connected to signal ground is connected to one terminal of the first capacitor, and the other terminal of the first capacitor is connected to the other terminal of a third switch whose one terminal is connected to signal ground. terminal is connected to one terminal of a fourth switch, and the other terminal of the fourth switch is connected to the other terminal of a second capacitor, one terminal of which is connected to signal ground, and to the non-inverting input terminal of a second operational amplifier. The output of this operational amplifier is connected to the inverting input terminal of the operational amplifier and the inverting input terminal of the first operational amplifier via a second resistor, and the first and fourth switches are connected to the inverting input terminal of the first operational amplifier. Open and close according to the first clock,
the second and third switches open and close according to a second clock that is in a phase-inverted relationship with the first clock;
A third capacitor in which one terminal is a signal input and the other terminal is connected to the signal input of the non-inverting input terminal of the first operational amplifier in an AC amplifier circuit in which the output terminal of the first operational amplifier is used as a signal output; , the other terminal of the third capacitor is connected to one terminal of the fifth switch, the other terminal of the fifth switch is connected to the signal ground via the seventh switch, and the signal is connected via the fourth capacitor. An alternating current amplifier circuit comprising at least one switch and a capacitor connected to ground, the fifth switch and the seventh switch opening and closing according to a clock whose phase is inverted to each other. 3. The AC amplifier circuit according to claim 2, comprising two of said switches and two capacitors, and said fifth switch and said capacitors open and close in accordance with a clock whose phase is inverted with respect to each other.
JP58179352A 1983-09-29 1983-09-29 Ac amplifier circuit Granted JPS6072407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58179352A JPS6072407A (en) 1983-09-29 1983-09-29 Ac amplifier circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58179352A JPS6072407A (en) 1983-09-29 1983-09-29 Ac amplifier circuit

Publications (2)

Publication Number Publication Date
JPS6072407A JPS6072407A (en) 1985-04-24
JPH0342726B2 true JPH0342726B2 (en) 1991-06-28

Family

ID=16064337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58179352A Granted JPS6072407A (en) 1983-09-29 1983-09-29 Ac amplifier circuit

Country Status (1)

Country Link
JP (1) JPS6072407A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2545776Y2 (en) * 1990-09-17 1997-08-27 三洋電機株式会社 Low temperature boost circuit

Also Published As

Publication number Publication date
JPS6072407A (en) 1985-04-24

Similar Documents

Publication Publication Date Title
US4918338A (en) Drain-biassed transresistance device for continuous time filters
JPS6326107A (en) Transistor circuit with gain element
JP2000022500A (en) Switched capacitor circuit
EP0490295B1 (en) Circuit for suppressing the noise produced by the switching of two voltage sources, particularly for audio preamplification stages
JPS6213843B2 (en)
JPH0342726B2 (en)
JPH10150328A (en) Electronic circuit converting differential input voltage into single end output voltage
EP0730344B1 (en) Single pole negative feedback for class-D amplifier
JPS6378612A (en) Level shifting circuit
JPH03293806A (en) Output offset compensating circuit
JPH0158893B2 (en)
JP2808927B2 (en) Frequency discriminator
US20050218961A1 (en) Operational amplifier integrator
JPH0225286B2 (en)
JPS5974710A (en) Quadrature detector
JPH0380369B2 (en)
JP2684837B2 (en) Differential amplifier circuit
JP3880129B2 (en) Inductor circuit and filter
JPS6052107A (en) Two-way active filter circuit
JPH0441611Y2 (en)
JPH04293306A (en) Amplifier
JP3645359B2 (en) Analog mute circuit
JPS5926673Y2 (en) Noise removal circuit
JP3099679B2 (en) Low-pass filtering circuit
JPS5928285B2 (en) phase inversion circuit