JPH0342620Y2 - - Google Patents

Info

Publication number
JPH0342620Y2
JPH0342620Y2 JP1985158082U JP15808285U JPH0342620Y2 JP H0342620 Y2 JPH0342620 Y2 JP H0342620Y2 JP 1985158082 U JP1985158082 U JP 1985158082U JP 15808285 U JP15808285 U JP 15808285U JP H0342620 Y2 JPH0342620 Y2 JP H0342620Y2
Authority
JP
Japan
Prior art keywords
magnetic pole
magnetic
shunt
magnetic field
ion beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1985158082U
Other languages
Japanese (ja)
Other versions
JPS6266157U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985158082U priority Critical patent/JPH0342620Y2/ja
Publication of JPS6266157U publication Critical patent/JPS6266157U/ja
Application granted granted Critical
Publication of JPH0342620Y2 publication Critical patent/JPH0342620Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は、イオンビームに均一の磁場強度を与
えるための質量分析装置の磁極シヤントに関する
ものである。
[Detailed Description of the Invention] The present invention relates to a magnetic pole shunt for a mass spectrometer to provide a uniform magnetic field strength to an ion beam.

〔従来の技術〕[Conventional technology]

第3図は磁場型質量分析装置の磁極の平面図、
第4図は第3図に示す磁場型質量分析装置の磁極
のA−A断面図、第5図は従来の磁極に用いられ
るシヤントの構成例を示す図、第6図は第5図に
示すシヤントの等価回路を示す図である。図中、
11,21と22は磁極本体、12と23は分析
管、13は入口シヤント、14はイオンビーム、
15と28はホール素子、16と29は取付支
柱、17は出口シヤント、24ないし27は磁極
片を示す。
Figure 3 is a plan view of the magnetic pole of the magnetic field mass spectrometer.
Figure 4 is a sectional view taken along line AA of the magnetic pole of the magnetic field mass spectrometer shown in Figure 3, Figure 5 is a diagram showing an example of the configuration of a shunt used in a conventional magnetic pole, and Figure 6 is shown in Figure 5. FIG. 3 is a diagram showing an equivalent circuit of a shunt. In the figure,
11, 21 and 22 are magnetic pole bodies, 12 and 23 are analysis tubes, 13 is an entrance shunt, 14 is an ion beam,
15 and 28 are Hall elements, 16 and 29 are mounting posts, 17 is an exit shunt, and 24 to 27 are magnetic pole pieces.

磁場型質量分析装置の磁極本体は上側と下側と
に分割されて対をなし、その間隙には第3図に示
すようにイオンビーム14が通過する分析管12
及び磁場強度を検出し制御するためのホール素子
15が納められている。この磁極本体11の上側
と下側との間隙は、イオンビームの進行方向と共
にそれに直角な方向においても均一な磁界である
ことが必要であり、この均一性が損なわれると磁
場強度を制御する上で支障を来すことになる。そ
こでこの磁極本体11の入口と出口には、端縁場
における磁場強度の広がりを抑えるために入口シ
ヤント13、出口シヤント17が設けられてい
る。出口シヤントの17部のA−A断面図を示し
たのが第4図であり、この図から明らかなように
上側の磁極本体11と下側の磁極本体11′との
間に分析管12が通つており、シヤントは、この
分析管12の保守上の必要性等から一体構造とす
るのが困難なため、通常は数個に分割され構成さ
れている。
The magnetic pole body of the magnetic field mass spectrometer is divided into an upper part and a lower part to form a pair, and in the gap between them is an analysis tube 12 through which the ion beam 14 passes, as shown in FIG.
and a Hall element 15 for detecting and controlling the magnetic field strength. The gap between the upper and lower sides of the magnetic pole body 11 needs to have a uniform magnetic field in the direction of travel of the ion beam as well as in the direction perpendicular to it, and if this uniformity is impaired, it will be difficult to control the magnetic field strength. This will cause trouble. Therefore, an inlet shunt 13 and an outlet shunt 17 are provided at the inlet and outlet of the magnetic pole body 11 in order to suppress the spread of the magnetic field strength in the edge field. FIG. 4 shows an A-A cross-sectional view of part 17 of the exit shunt, and as is clear from this figure, the analysis tube 12 is located between the upper magnetic pole body 11 and the lower magnetic pole body 11'. Since it is difficult to construct the shunt as an integral structure due to maintenance requirements for the analysis tube 12, it is usually divided into several pieces.

すなわち、シヤントは、分析管の上下左右の四
方を取り巻き、磁気的には閉じた回路で構成され
ている必要がある。また、分析管は、内部を洗浄
するのに取り外すことがあるため、シヤントの閉
じた一部分が解放でき、そこから分析管が取り出
せる構造になつていることが必要である。そのた
め、従来の磁場型質量分析装置の磁極におけるシ
ヤントは、第5図に示すように上下左右の4個の
磁極片24ないし27に分割して構成され、非磁
性体の取付支柱29により磁極本体21,22側
に支えられている。従つて4個所の接触面を有し
ている。なお、ホール素子28は、磁極本体2
1、22の間隙中でイオンビームの通過する点と
同位置上になることが理想的であるが、真空を保
つ分析管23に当たらない範囲内に納める必要が
ある。
That is, the shunt must surround the analysis tube on all four sides, top, bottom, left and right, and must be configured as a magnetically closed circuit. Furthermore, since the analysis tube may be removed to clean the inside, it is necessary that the closed part of the shunt be opened and the analysis tube taken out from there. Therefore, the shunt in the magnetic pole of a conventional magnetic field mass spectrometer is configured by dividing into four magnetic pole pieces 24 to 27 on the upper, lower, left, and right sides, as shown in FIG. It is supported by the 21 and 22 sides. Therefore, it has four contact surfaces. Note that the Hall element 28 is connected to the magnetic pole body 2
Ideally, it should be at the same position as the point through which the ion beam passes in the gap between 1 and 22, but it is necessary to keep it within a range where it does not hit the analysis tube 23, which maintains a vacuum.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

しかしながら、第5図に示す従来のシヤントで
は、4個所の接触面が全て完全に接触するように
構成部品を加工し組み立てることは高精度の加工
が必要となり技術的に非常に難しく、接触面のい
ずれかに不完全な接触或いは空隙31が生じる場
合が通常である。その結果、右側のシヤントを通
る磁路の磁気抵抗と左側のシヤントを通る磁路の
磁気抵抗とが異なることとなる。このような場合
の等価回路を示したのが第6図である。磁気回路
のオームの法則によれば、磁束をΦ(Wb)、磁気
抵抗をR(AT/Wb)とすると、磁束を回路に通
す起磁力F(AT)は、 F=ΦR となるから、磁極本体では、磁気抵抗の大きい方
は磁束が少なくなり、磁気抵抗の小さい方は磁束
が多くなる。従つて、第5図に示すように上側の
磁極片21と左側の磁極片26との接触面に空隙
31が生じた場合には、第6図に示すように左側
の磁路の磁気抵抗が空隙31による磁気抵抗rの
分だけ大きくなるので、磁束Φ1<磁束Φ2となる。
そのため、磁極本体自体によるイオンビーム進行
方向と直角な方向での間隙の磁気強度に不均一が
生じる。従つて、第3図に示すような磁極構造で
のホール素子位置とイオンビーム位置の関係を有
する磁極構造においては、僅かな磁場強度の違い
であつても、高速掃引時ホール素子による磁場強
度の制御を狂わせることになつてしまう。即ち、
磁極本体内壁体43において磁場強度を検出し制
御するために挿入されているホール素子の近傍の
磁界強度とイオンビームが通過する近傍の磁界の
強度とが一致しないため、高速掃引により磁場強
度を制御しようとする場合に掃引時間の遅れをも
たらす原因となつてしまう。
However, with the conventional shunt shown in Figure 5, it is technically very difficult to process and assemble the components so that all four contact surfaces are in complete contact, requiring high-precision machining. Usually, incomplete contact or a gap 31 occurs in either direction. As a result, the magnetic resistance of the magnetic path passing through the right shunt and the magnetic resistance of the magnetic path passing through the left shunt are different. FIG. 6 shows an equivalent circuit in such a case. According to Ohm's law for magnetic circuits, if the magnetic flux is Φ (Wb) and the magnetic resistance is R (AT/Wb), the magnetomotive force F (AT) that passes the magnetic flux through the circuit is F = ΦR, so the magnetic pole In the main body, the magnetic flux decreases when the magnetic resistance is large, and the magnetic flux increases when the magnetic resistance is small. Therefore, if a gap 31 is created at the contact surface between the upper magnetic pole piece 21 and the left magnetic pole piece 26 as shown in FIG. 5, the magnetic resistance of the left magnetic path will be reduced as shown in FIG. Since the magnetic resistance r due to the air gap 31 increases, magnetic flux Φ 1 < magnetic flux Φ 2 .
Therefore, non-uniformity occurs in the magnetic strength of the gap due to the magnetic pole body itself in a direction perpendicular to the ion beam traveling direction. Therefore, in a magnetic pole structure that has the relationship between the Hall element position and the ion beam position as shown in Figure 3, even a slight difference in magnetic field strength will cause the magnetic field strength due to the Hall element to change during high-speed sweep. It ends up causing the control to go out of order. That is,
Since the magnetic field strength near the Hall element inserted in the inner wall 43 of the magnetic pole body to detect and control the magnetic field strength does not match the magnetic field strength near the ion beam passing through, the magnetic field strength is controlled by high-speed sweeping. If you try to do this, it will cause a delay in the sweep time.

本考案は、上記の問題点を解決するものであつ
て、シヤントを構成する磁極片の接触面に空隙が
生じたとしてもシヤントの左右両側の磁路におい
て磁気抵抗がほぼ等しくなる質量分析装置の磁極
シヤントを提供することを目的とするものであ
る。
The present invention solves the above-mentioned problems by creating a mass spectrometer in which the magnetic resistance is almost equal in the magnetic paths on both the left and right sides of the shunt, even if a gap occurs at the contact surface of the magnetic pole pieces that make up the shunt. The purpose is to provide magnetic pole shunt.

〔問題点を解決するための手段〕[Means for solving problems]

そのために本考案に質量分析装置の磁極シヤン
トは、対称な2個の磁極片に分割し、かつ対をな
す磁極本体の位置に対応する上側と下側の中央部
を接触面とするように構成したことを特徴とする
ものである。
To this end, the magnetic pole shunt of the mass spectrometer is divided into two symmetrical magnetic pole pieces, and the contact surface is formed at the center of the upper and lower sides corresponding to the positions of the paired magnetic pole bodies. It is characterized by the fact that

〔作用〕[Effect]

本考案の質量分析装置の磁極シヤントでは、磁
極本体からの磁束はシヤントの接触面に生じる空
隙よりそれぞれシヤントを構成する左右2個の磁
極片に2分して流れるので、接触面に空隙が生じ
ても磁極本体自体による磁場強度に不均一が生じ
ない。
In the magnetic pole shunt of the mass spectrometer of the present invention, the magnetic flux from the magnetic pole body is divided into two and flows through the air gap created at the contact surface of the shunt to the two left and right magnetic pole pieces that make up the shunt, so an air gap is created at the contact surface. Even if the magnetic pole body itself is used, there will be no non-uniformity in the magnetic field strength.

〔実施例〕〔Example〕

以下、実施例を図面を参照しつつ説明する。 Examples will be described below with reference to the drawings.

第1図は本考案の質量分析装置の磁極シヤント
の1実施例を示す図、第2図は第1図に示す磁極
シヤントの等価回路を示す図である。
FIG. 1 is a diagram showing one embodiment of the magnetic pole shunt of the mass spectrometer of the present invention, and FIG. 2 is a diagram showing an equivalent circuit of the magnetic pole shunt shown in FIG. 1.

第1図において、1と2は磁極本体、3と4は
磁極片、5は分析管、6はホール素子、7は取付
支柱を示す。この第1図に示す本考案の実施例で
は、2個の磁極片3,4によりシヤントを構成
し、且つ分割された2個の磁極片3,4の接触面
は、イオンビームが通るほぼ中心位置において磁
束が通る方向と同じ垂直方向になるようにする。
このようにすると、その接触面に空隙7が生じた
場合、第2図にその等価回路を示すように空隙7
による磁気抵抗rは、丁度シヤントの右側の磁気
回路と左側の磁気回路で2分されることになり、
左右同じ磁気抵抗となる。従つて磁極本体からの
磁束は左右等しくシヤントに流れ磁極本体による
磁場強度に不均一をもたらすことがなくなる。そ
の結果、ホール素子をイオンビーム通過位置から
離した位置に設けて高速掃引で磁場を制御する場
合においても、早い応答で正しく制御できる。
In FIG. 1, 1 and 2 are magnetic pole bodies, 3 and 4 are magnetic pole pieces, 5 is an analysis tube, 6 is a Hall element, and 7 is a mounting support. In the embodiment of the present invention shown in FIG. 1, the two magnetic pole pieces 3 and 4 form a shunt, and the contact surface of the two divided magnetic pole pieces 3 and 4 is located approximately at the center through which the ion beam passes. The position should be in the same vertical direction as the direction of magnetic flux.
In this way, if a gap 7 is generated on the contact surface, the gap 7 will be as shown in the equivalent circuit in FIG.
The magnetic resistance r due to is exactly divided into two by the magnetic circuit on the right side of the shunt and the magnetic circuit on the left side,
The left and right sides have the same magnetic resistance. Therefore, the magnetic flux from the magnetic pole body flows equally in a shunt on the left and right sides, and no unevenness is caused in the magnetic field strength due to the magnetic pole body. As a result, even when the Hall element is provided at a position away from the ion beam passing position and the magnetic field is controlled by high-speed sweeping, accurate control can be achieved with quick response.

〔考案の効果〕[Effect of idea]

以上の説明から明らかなように、本考案によれ
ば、イオンビームが通過する位置を中心にして垂
直方向にシヤントを2分割するため、イオンビー
ム通過点を境界とした2つの磁極片に等しく磁束
が流れ磁極本体による磁場強度を均一にできる。
従つて、ホール素子近傍とイオンビーム通過点の
磁場強度は常に等しく保たれるので、これ以外の
分割方法によるシヤントの場合と異なり、掃引時
間の遅れを生じせしめる必要もない。また、本考
案以外の分割方法によるシヤントでは、各々の磁
極片の接触面を高精度で加工し均一に密着させる
必要があつたのに対して、本考案のシヤントの場
合には、一般的な加工方法と加工精度でよく、磁
極片加工が容易になりコストの低減を図ることが
できる。
As is clear from the above explanation, according to the present invention, since the shunt is vertically divided into two parts with the ion beam passing point as the center, the magnetic flux is equal to the two magnetic pole pieces with the ion beam passing point as the boundary. The magnetic field strength caused by the magnetic pole body can be made uniform.
Therefore, since the magnetic field strength near the Hall element and at the ion beam passing point are always kept equal, there is no need to cause a delay in the sweep time, unlike in the case of shunts using other division methods. In addition, in shunts using splitting methods other than the one proposed by the present invention, it was necessary to process the contact surfaces of each magnetic pole piece with high precision to make them adhere uniformly, whereas in the case of the shunt of the present invention, it was necessary to process the contact surfaces of each magnetic pole piece with high precision to make them adhere uniformly. The machining method and machining accuracy are sufficient, and the machining of the magnetic pole pieces is facilitated, resulting in cost reduction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の質量分析装置の磁極のシヤン
トの1実施例を示す図、第2図は第1図に示す磁
極シヤントの等価回路を示す図、第3図は磁場型
質量分析装置の磁極の平面図、第4図は第3図に
示す磁場型質量分析装置の磁極A−A断面図、第
5図は従来の磁極に用いられるシヤントの構成例
を示す図、第6図は第5図に示すシヤントの等価
回路を示す図である。 1と2は磁極本体、3と4は磁極片、5は分析
管、6はホール素子、7は取付支柱。
Fig. 1 is a diagram showing an example of the magnetic pole shunt of the mass spectrometer of the present invention, Fig. 2 is a diagram showing an equivalent circuit of the magnetic pole shunt shown in Fig. 1, and Fig. 3 is a diagram of the magnetic field type mass spectrometer. 4 is a cross-sectional view of the magnetic pole A-A of the magnetic field type mass spectrometer shown in FIG. 3, FIG. 5 is a diagram showing an example of the configuration of a shunt used in a conventional magnetic pole, and FIG. 5 is a diagram showing an equivalent circuit of the shunt shown in FIG. 5; FIG. 1 and 2 are magnetic pole bodies, 3 and 4 are magnetic pole pieces, 5 is an analysis tube, 6 is a Hall element, and 7 is a mounting support.

Claims (1)

【実用新案登録請求の範囲】 〔産業上の利用分野〕 イオンビームに均一の磁場強度を与えるため分
析管の上側と下側に分割されて対をなす磁極本体
の入口と出口に分析管の四方を囲むように設けら
れる磁極分析装置の磁極シヤントであつて、対称
な2個の磁極片に分割し、かつ対をなす磁極本体
の位置に対応する上側と下側の中央部を接触面と
するように構成したことを特徴とする磁極分析装
置の磁極シヤント。
[Scope of Claim for Utility Model Registration] [Industrial Application Field] In order to provide uniform magnetic field strength to the ion beam, the analysis tube is divided into an upper and lower part, and the entrance and exit of the pair of magnetic pole bodies are connected to the four sides of the analysis tube. A magnetic pole shunt for a magnetic pole analyzer that is installed to surround a magnetic pole shunt, which is divided into two symmetrical magnetic pole pieces, and whose contact surfaces are the center portions of the upper and lower sides corresponding to the positions of the paired magnetic pole bodies. A magnetic pole shunt for a magnetic pole analyzer, characterized in that it is configured as follows.
JP1985158082U 1985-10-16 1985-10-16 Expired JPH0342620Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985158082U JPH0342620Y2 (en) 1985-10-16 1985-10-16

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985158082U JPH0342620Y2 (en) 1985-10-16 1985-10-16

Publications (2)

Publication Number Publication Date
JPS6266157U JPS6266157U (en) 1987-04-24
JPH0342620Y2 true JPH0342620Y2 (en) 1991-09-06

Family

ID=31081233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985158082U Expired JPH0342620Y2 (en) 1985-10-16 1985-10-16

Country Status (1)

Country Link
JP (1) JPH0342620Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6770888B1 (en) * 2003-05-15 2004-08-03 Axcelis Technologies, Inc. High mass resolution magnet for ribbon beam ion implanters
JP4954465B2 (en) * 2004-11-30 2012-06-13 株式会社Sen Ion beam / charged particle beam irradiation system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53134892U (en) * 1977-03-31 1978-10-25

Also Published As

Publication number Publication date
JPS6266157U (en) 1987-04-24

Similar Documents

Publication Publication Date Title
JP3219814B2 (en) Electron energy filter
JPH0342620Y2 (en)
US5066911A (en) Apparatus and method for sensing displacement using variations magnetic flux linkage
US4211992A (en) Positioning means for limited rotation motor
JPH0461483B2 (en)
DE2053829C3 (en)
US4362964A (en) Color picture tube with a magnetic focusing device
JPH0311669A (en) Magnetic transistor
JPH0618248Y2 (en) Electromagnetic force generator
CN209000864U (en) A kind of quadrupole rod package assembly
JPS62503051A (en) gas test equipment
US3546450A (en) Aperture devices for mass spectrometers
JPH10125267A (en) Energy filter
GB2102579A (en) Force transducer flexure reed bearing electrical connections
DE19828372A1 (en) Rotary or linear accelerometer
JPH0625927Y2 (en) H-shaped analysis electromagnet
US2636999A (en) x x x x i
KR890702181A (en) Magnetic head and its manufacturing method
JPH0765784A (en) Magnetic field of mass spectrograph
JPS639091Y2 (en)
JPS6184502A (en) Differential type position sensor using hall element
JPS5930996Y2 (en) Mass spectrometer ion source device
JPS55137652A (en) Magnetic lens for electron microscope
JPH06160502A (en) Measuring method for magnetic permeability
JPS57127868A (en) Metal detector