JPH0342153A - Continuous casting machine for cast strip - Google Patents

Continuous casting machine for cast strip

Info

Publication number
JPH0342153A
JPH0342153A JP17547089A JP17547089A JPH0342153A JP H0342153 A JPH0342153 A JP H0342153A JP 17547089 A JP17547089 A JP 17547089A JP 17547089 A JP17547089 A JP 17547089A JP H0342153 A JPH0342153 A JP H0342153A
Authority
JP
Japan
Prior art keywords
side mold
long
short
mold
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17547089A
Other languages
Japanese (ja)
Inventor
Takeshi Yasuda
健 安田
Hideyo Kodama
英世 児玉
Satoshi Hirano
聡 平野
Akio Hanawa
塙 昭夫
Mitsuru Kobayashi
満 小林
Akira Okayama
岡山 昭
Masateru Suwa
正輝 諏訪
Tomoaki Kimura
智明 木村
Tadashi Nishino
西野 忠
Saburo Moriwaki
森脇 三郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Hitachi Ltd
Original Assignee
Hitachi Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Kawasaki Steel Corp filed Critical Hitachi Ltd
Priority to JP17547089A priority Critical patent/JPH0342153A/en
Publication of JPH0342153A publication Critical patent/JPH0342153A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily develop solidified shell on long side mold and to smoothly draw a cast strip downward by making heat conductivity in the long side mold material at part adjacent to both side edge parts of short side mold equal or more to or than the heat conductivity the main material constituting both side edge parts of the short side mold. CONSTITUTION:The side edge parts 12 of short side mold 5 is made of copper and the material of belt 2 is made of copper showing the heat conductivity equal to the heat conductivity in the short side mold 5. By this method, the solidified shell on the sort side mold 5 is integrally developed with the solidified shell formed on the long side mold, and sticking or abnormal growth on the short side mold are eliminated and breakout is eliminated. The short side is made to smoothly draw downward and the cat strip having excellent quality can be stably obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、7s湯を冷却しつつ造形する薄板鋳片連続鋳
造機に係り、特に品質の優れた鋳片を安定に得るのに好
適な薄板鋳片連続鋳造機に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a continuous casting machine for thin plate slabs that forms while cooling 7 seconds of hot water, and is particularly suitable for stably obtaining slabs of excellent quality. Concerning a continuous thin plate slab casting machine.

〔従来の技術〕[Conventional technology]

薄板を連続的に造形する装置として長辺梢回移動式連続
鋳造機があるが、絞り込み式双ベルト式連続鋳造機は、
従来のスラブ連続鋳造機に比べて経済的に優れているこ
とで知られているので、ここでは従来技術の代表例とし
て、絞り込み式双ベルト式連続鋳造機に関して述へるこ
とにする。ただし、本発明は、ここで述べる連続鋳造機
のみではなく、全ての薄板を連続的に造形する装置とし
ての連続鋳造機一般に該当する。
There is a continuous casting machine with a continuous rotation on the long side as a device that continuously forms thin plates, but a continuous casting machine with a narrowing type twin belt is
Since it is known to be economically superior to conventional slab continuous casting machines, the drawing type twin-belt continuous casting machine will be described here as a representative example of the prior art. However, the present invention applies not only to the continuous casting machine described here, but also to continuous casting machines in general as devices that continuously form all thin plates.

この絞り込み式双ベルト式連続鋳造機は、注湯部の湯面
面積が広く、下方に向かうに従って狭くなり、最狭部の
隙間で板厚が決定される。溶湯は互いに相対向する冷却
体が移動又は回動するにつれて冷却され造形される。冷
却体は造形される鋳片の長辺側に面するので長辺鋳型と
いう。この長辺鋳型の端部間には溶湯のこぼれを防ぐた
め、サイドダムが設けられており、このサイドダムは造
形される鋳片の短辺側に面するので短辺鋳型という。短
辺鋳型は、通常、固定的に設けられ、長辺鋳型のように
動くものではない。したがって、短辺鋳型は冷却作用の
すくないもので構成される。
In this drawing-type twin-belt continuous casting machine, the surface area of the molten metal in the pouring section is wide, and it becomes narrower as it goes downward, and the plate thickness is determined by the gap at the narrowest part. The molten metal is cooled and shaped as the mutually opposing cooling bodies move or rotate. The cooling body faces the long side of the slab to be shaped, so it is called a long side mold. A side dam is provided between the ends of this long-side mold to prevent spillage of the molten metal, and this side dam is called a short-side mold because it faces the short side of the slab to be formed. Short side molds are usually fixed and do not move like long side molds. Therefore, the short side mold is made of a material that has little cooling effect.

耐火物などは最も好適なものと考えられる。このように
冷却作用を排除するのは、冷却されると鋳片が下方に引
き抜けなくなるからである。短辺鋳型を耐火物で構成し
た場合、長辺鋳型との接触による破壊対策として短辺鋳
型の側縁部に異材を用いることが好適である。ベルト材
としては、−船釣に鉄系材料が用いられている。
Refractories are considered to be the most suitable material. The reason why the cooling effect is eliminated in this way is that once the slab is cooled, it cannot be pulled out downward. When the short-side mold is made of a refractory material, it is preferable to use a different material on the side edges of the short-side mold as a countermeasure against damage caused by contact with the long-side mold. As the belt material, iron-based materials are used for boat fishing.

なお、この種の薄板鋳片連続鋳造機として関連するもの
には例えば特許出願公告昭61−9903号公報に開示
されたものがある。
Incidentally, a related continuous casting machine for thin plate slabs of this type is disclosed, for example, in Japanese Patent Application Publication No. 1988-9903.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このような構成で問題となることは、鋳片が下方にうま
く引き抜けるかどうかという点である。
The problem with such a configuration is whether or not the slab can be successfully pulled downward.

短辺鋳型は固定式であるために短辺鋳型上に形成された
凝固シェルは基本的には移動しない。すむわち、このよ
うな連続鋳造機では短辺鋳型に形成された凝固シェルは
長辺鋳型で形成された凝固シェルと一体になることによ
って鋳片が下方にうまく引き抜ける構成になっている。
Since the short-side mold is fixed, the solidified shell formed on the short-side mold basically does not move. In other words, in such a continuous casting machine, the solidified shell formed in the short-side mold is integrated with the solidified shell formed in the long-side mold, so that the slab can be successfully drawn downward.

短辺鋳型は固定式であるために凝固シェルは形成されや
すい。それに対して、長辺鋳型は概して高速で移動して
いる。そのため、メニスカス部近傍では通常凝固シェル
は形成しずらい状況である。
Since the short side mold is fixed, a solidified shell is easily formed. In contrast, long-sided molds are generally moving at high speeds. Therefore, it is usually difficult to form a solidified shell near the meniscus.

すなわち、メニスカス近傍では短辺鋳型上のみに凝固シ
ェルが形成されるために、短辺鋳型上に形成された凝固
シェルは趣動している長辺鋳型上に形成された凝固シェ
ルと連なっていない。そのために、短辺鋳型上に形成さ
れた凝固シェルは短辺鋳型上に固着した状態でどんどん
大きく成長していき、これらは移動している冷却体と同
期して動いている長辺鋳型上に形成された凝固シェルと
は分離された状態で短辺鋳型上に取り残される。その結
果、冷却体と同期して動いている鋳片の短辺部シェルは
ほとんど形成されることなく鋳型外へ送り出され、その
結果として、ブレークアウト(凝固シェル破壊による7
B湯鋳型外流失トラブル)が発生し安定なVI造を実現
できず、所望の鋳片を得ることができないという問題点
がある。
In other words, since a solidified shell is formed only on the short side mold in the vicinity of the meniscus, the solidified shell formed on the short side mold is not connected to the solidified shell formed on the moving long side mold. . Therefore, the solidified shell formed on the short side mold grows larger and larger while being fixed on the short side mold, and these shells are transferred to the long side mold that is moving in synchronization with the moving cooling body. It is left on the short side mold in a state separated from the formed solidified shell. As a result, the short side shell of the slab, which is moving in synchronization with the cooling body, is sent out of the mold without being formed.
There is a problem that a stable VI construction cannot be realized due to the problem of B-molten metal flowing out of the mold, and a desired slab cannot be obtained.

本発明の目的は、上記のようむ問題点に対処するために
、短辺鋳型部分で形成されろ凝固シェルが長辺鋳型部分
で形成される凝固シェルと一体になって鋳片が下方にう
まく引き抜ける構成にすることによって、品質の優れた
鋳片を安定に得る連続鋳造装置を提供することを目的と
する。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, it is an object of the present invention to ensure that the solidified shell formed in the short side mold part is integrated with the solidified shell formed in the long side mold part so that the slab can be smoothly moved downward. It is an object of the present invention to provide a continuous casting device that stably obtains slabs of excellent quality by having a structure that allows the casting to be drawn.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、長辺鋳型の少なくとも短辺Wi’12両側
綾部に隣接する部分の長辺鋳型材質の熱伝導率を、短辺
鋳型両側縁部構成主材質の熱伝導率と同等以上の値とす
ることによって達成される。
The above purpose is to make the thermal conductivity of the long side mold material of at least the portion adjacent to the twill portions on both sides of the short side Wi'12 of the long side mold to a value equal to or higher than the thermal conductivity of the main material constituting both side edges of the short side mold. This is achieved by

〔作用〕[Effect]

この場合、短辺鋳型両側縁部に隣接する部分の長辺鋳型
材質の熱伝導率を、短辺鋳型両側縁部構成主材質の熱伝
導率と同等以上の値を示すようにすることによって、長
辺鋳型の冷却が促進され、長辺鋳型上に凝固シェルがで
きやすくなる。その結果、短辺鋳型両側縁部に隣接して
いる廃動長辺梼型上に早期に凝固シェルが形成されると
ともに、その凝固シェルは短辺鋳型上に形成された凝固
シェルと一体化し、その結果、鋳片が下方1こうまく引
き抜けるようになるために、品質の優れた鋳片を安定に
得ることができる。
In this case, by making the thermal conductivity of the long side mold material adjacent to both side edges of the short side mold exhibit a value equal to or higher than the thermal conductivity of the main material constituting the both side edges of the short side mold, Cooling of the long-side mold is promoted, and a solidified shell is easily formed on the long-side mold. As a result, a solidified shell is quickly formed on the discarded long-side ladder mold adjacent to both side edges of the short-side mold, and the solidified shell is integrated with the solidified shell formed on the short-side mold. As a result, since the slab can be pulled out downward, it is possible to stably obtain slabs of excellent quality.

〔実施例〕〔Example〕

次に、本発明の実施例を図面に基づいて説明する。 Next, embodiments of the present invention will be described based on the drawings.

まず、絞り込み式双ベルト式連続鋳造機の構成を第1図
に示す。双ベルト式連続鋳造機は、二つのベルト(長辺
鋳型)2.2が相対向して一対に設けられ、その両端部
間には高融点耐火物3よりなる短辺鋳型(サイドダム)
5がそれぞれ設けられている。ベルト2はローラ6.7
,8によりガイドされ、静水圧軸受方式のパッドlによ
り浮上支持され、鋳造方向(下方)に向けて回転移動さ
れる。ベルト2にはシリンダ10からブラケット9を介
してローラ7を引っ張ることにより張力が与えられる。
First, Fig. 1 shows the configuration of a narrowing double-belt continuous casting machine. The twin-belt continuous casting machine is equipped with a pair of two belts (long side molds) 2.2 facing each other, and a short side mold (side dam) made of high melting point refractory material 3 between the two ends.
5 are provided respectively. Belt 2 is roller 6.7
, 8, is floated and supported by a hydrostatic bearing type pad 1, and rotated in the casting direction (downward). Tension is applied to the belt 2 by pulling the roller 7 from the cylinder 10 via the bracket 9.

このようにしてベルト2の移動によって冷却されつつ鋳
片11が連続的に造形される。
In this way, the slab 11 is continuously shaped while being cooled by the movement of the belt 2.

本発明の効果を検討するために、短辺鋳型(サイドダム
)5の側縁部12を銅製とし、ベルト2の材質を短辺鋳
型の熱伝導率より小さな熱伝導率を示す鋼製、及び本発
明例として短辺鋳型の熱伝導率と同等の熱伝導率を示す
銅製の二種類用意して連続鋳造を行ない、鋳造性を検討
した。
In order to examine the effects of the present invention, the side edge 12 of the short side mold (side dam) 5 was made of copper, and the material of the belt 2 was made of steel having a thermal conductivity lower than that of the short side mold. As an example of the invention, two types of copper molds having thermal conductivity equivalent to that of the short side mold were prepared, continuous casting was performed, and castability was examined.

なお、鋳型向凝固挙動をモニターするために、短辺鋳型
側縁部の溶湯接触側近傍に温度検知センサーを設けて、
短辺鋳型に接触する近傍の温度を検知し鋳型向凝固挙動
をモニターするようにした。
In addition, in order to monitor the pro-solidification behavior of the mold, a temperature detection sensor was installed near the molten metal contact side of the short mold side edge.
The temperature near the short side of the mold in contact with the mold was detected to monitor the pro-solidification behavior of the mold.

これにより、短辺鋳型部分での凝固シェル生成状況を把
握できる。第2図の(イ)と(ロ)は、第1図で示した
双ベルト式連続鋳造機の短辺鋳型部分を溶湯側から見た
模式図である。(イ)は平面図、(ロ)は側面図である
。温度検知センサー4は、短辺鋳型(サイドダム)5の
両側縁部に設けた銅よりなる側縁部12内に、それぞれ
の場所において湯面から0.5mn+の位置に設けられ
ている。温度検知センサーの設けである場所を黒点で示
す。丸で囲んだ数字は、温度検知センサー4の番号であ
る。ここで、正常な鋳造の場合には温度検知センサー4
の番号の小さいものほど高い温度を示すはずである。ま
た、安定した鋳造の場合にはそれぞれの温度は変化の小
さいものになるはずである。
Thereby, it is possible to grasp the solidified shell formation status in the short side mold portion. FIGS. 2A and 2B are schematic diagrams of the short-side mold portion of the twin-belt continuous casting machine shown in FIG. 1, viewed from the molten metal side. (a) is a plan view, and (b) is a side view. The temperature detection sensors 4 are provided in side edge portions 12 made of copper provided on both side edges of the short side mold (side dam) 5, at respective positions 0.5 mm+ from the hot water level. The locations where temperature detection sensors are installed are indicated by black dots. The circled number is the number of the temperature detection sensor 4. Here, in the case of normal casting, the temperature detection sensor 4
The smaller the number, the higher the temperature. Furthermore, in the case of stable casting, each temperature should have small changes.

第1図でベルト2の材質を鋼製として、溶湯金属保持領
域の上部幅20Qmm、下部の溶湯金属保持領域最狭部
を30noにして幅800nnの鋼薄板を12m/mi
n、の速度で連続的に引き抜いた時の、第2図で示した
温度検知センサーが検知した温度分布の一例として、■
、■の結果を第3図に示す。各センサーの温度はこきざ
みなピークで構成されており、検知温度逆転現象が生じ
ている。
In Fig. 1, the belt 2 is made of steel, the upper width of the molten metal holding area is 20Qmm, the narrowest part of the lower molten metal holding area is 30mm, and a steel thin plate with a width of 800nm is attached at 12m/mi.
As an example of the temperature distribution detected by the temperature detection sensor shown in Fig. 2 when continuously withdrawing at a speed of n,
, ■The results are shown in Figure 3. The temperature of each sensor consists of small peaks, and a detection temperature reversal phenomenon occurs.

ここで、センサー温度にこきざみなピークができるのは
、短辺鋳型(サイドダム)5の側縁部上での凝固シェル
がスムースに移動しないで固着していることを示してい
る。すなわち、温度が下降していることは凝固シェルが
移動せずに固着して厚く成長じている状態である。また
、温度が上昇している部分は凝固シェルが脱落し、そこ
の部分に溶湯が侵入してきたためである。このように、
凝固シェルの固着及び脱落が無秩序に生じている結果と
して検知温度逆転現象が発生する。第3図のA部分では
■、■の温度がともに急激に下降し、その後急激に上昇
している。これは、固着した凝固シェルが大きく成長し
、その後ブレークアウトした結果を示している。これら
は、ベルト2の材質を鋼製とした場合には、短辺鋳型(
サイドダム)5上の凝固シェルが長辺鋳型上に形成され
ている凝固シェルと分離生成し、短辺鋳型上で固着或は
異常に大きく成長するためである。
Here, the presence of small peaks in the sensor temperature indicates that the solidified shell on the side edge of the short side mold (side dam) 5 does not move smoothly and is stuck. In other words, when the temperature is decreasing, the solidified shell is not moving but is solidifying and growing thickly. Furthermore, the area where the temperature is rising is because the solidified shell has fallen off and the molten metal has entered that area. in this way,
The sensed temperature inversion phenomenon occurs as a result of the solidified shell sticking and falling off in a disorderly manner. In part A of FIG. 3, the temperatures of both ■ and ■ suddenly drop, and then rise rapidly. This shows the result of the solidified solidified shell growing significantly and then breaking out. When the belt 2 is made of steel, the short side mold (
This is because the solidified shell on the side dam) 5 separates from the solidified shell formed on the long side mold, and sticks or grows abnormally large on the short side mold.

つぎに、本発明にしたがって、ベルト2の材質を銅製と
して上記と同様の鋳造をおこなった。その場合の、■、
■の温度検知センサーが検知した温度分布結果を第4図
に示す。第3図とは異なり。
Next, according to the present invention, the belt 2 was made of copper and cast in the same manner as described above. In that case, ■,
Figure 4 shows the temperature distribution results detected by the temperature detection sensor (2). Unlike Figure 3.

それぞれの温度は安定しており、また検知温度の逆転現
象は発生しない。また、ブレークアウトもなくなった。
Each temperature is stable, and no reversal phenomenon of detected temperatures occurs. Also, there are no more breakouts.

温度結果が第4図のようになった原因は、短辺鋳型(サ
イドダム)5上の凝固シェルが長辺鋳型上に形成されて
いる凝固シェルと一体生威し、短辺鋳型上での固着或は
異常成長がなくなったためである。また、これは短辺鋳
型両側縁部に接触する部分の長辺鋳型材質の熱伝導率を
、短辺鋳型側録部構成主材質の熱伝導率と同等以上の値
を示す材質にすることによって、短辺鋳型両側綾部にI
′a接している廃動長辺鋳型上に早期に凝固シェルが形
成されるとともに、その凝固シェルは短辺鋳型上に形成
された凝固シェルと一体化したためである。その結果、
鋳片が下方にうまく弓き抜けるようになり、品質の優れ
た鋳片を安定に得ることができた。なお、鋼材の成分組
成は、重量%で、C; 0.04%、Mn;0.30%
、pro。
The reason why the temperature results are as shown in Figure 4 is that the solidified shell on the short side mold (side dam) 5 grows together with the solidified shell formed on the long side mold, and it sticks on the short side mold. Or this is because abnormal growth has disappeared. In addition, this is achieved by making the material of the long side mold in contact with both edges of the short side mold to a material that has a thermal conductivity equal to or higher than the thermal conductivity of the main material constituting the side part of the short side mold. , I on both sides of the short side mold
This is because a solidified shell was formed at an early stage on the waste long-side mold that was in contact with the mold, and that solidified shell was integrated with the solidified shell formed on the short-side mold. the result,
The slab was now able to pass through the bow successfully, and slabs of excellent quality could be stably obtained. The composition of the steel material is C: 0.04%, Mn: 0.30% in weight%.
, pro.

023%、 S ; 0.016%、AΩ;0.042
%のものを用いた。
023%, S; 0.016%, AΩ; 0.042
% was used.

実施例では、ベルトは銅製一体ものとしたが、短辺鋳型
に隣接する部分のみを当該材料にしてもさしつかえない
In the embodiment, the belt is made of copper, but only the portion adjacent to the short side mold may be made of the same material.

ベルト表面部分の当該場所にメツキ、溶射、クラッド、
スパッタリング膜、CVD膜、イオンダイナミックミキ
シング等の表面処理をほどこしたものも本発明に該当す
る。逆に、表面部分のみに凝固シェル生成に寄与しない
程度の表面処理がほどこされた場合には、ベルト主構成
材料が本発明の対象となる。また、短辺鋳型材料の熱伝
導率は、構成主材料の値であり表面処理等によって表面
部分のみの熱伝導率を異ならせても関係しないが、表面
処理の方法で短辺鋳型上の凝固シェル生成に影響を与え
る場合には、表面処理部分の熱伝導率が本発明に関係す
ることはいうまでもない。
Plating, thermal spraying, cladding,
Materials subjected to surface treatments such as sputtering films, CVD films, and ion dynamic mixing also fall under the scope of the present invention. On the other hand, if only the surface portion is subjected to surface treatment to the extent that it does not contribute to the formation of a solidified shell, the main constituent material of the belt is subject to the present invention. In addition, the thermal conductivity of the short-side mold material is the value of the main component material, and it is not related even if the thermal conductivity of only the surface part is changed by surface treatment. It goes without saying that the thermal conductivity of the surface-treated portion is relevant to the present invention if it affects shell formation.

実施例では短辺鋳型は円弧状であるが、必ずしも円弧状
である必要はなく、直線状または二次曲線状にしても本
発明の効果には影響を受けない。
Although the short-side mold is arcuate in the embodiment, it does not necessarily have to be arcuate, and the effects of the present invention are not affected even if it is linear or quadratic curved.

実施例では、長辺鋳型をベルトにしたベルト式連続鋳造
機に関してのべたが、長辺鋳型はベルト式に限られるも
のではなく、双ロール式、無限軌道板等でもよい。
In the embodiment, a belt-type continuous casting machine in which the long-side mold is a belt has been described, but the long-side mold is not limited to the belt type, and may be a twin roll type, a track plate, or the like.

本発明は、実施例で述べた下方引抜き連続鋳造機の場合
のみに適用されるものではなく、水平連続鋳造機や下方
引抜き方法と水平連続鋳造機の間に位置する種々の角度
の連続鋳造機にも適用可能である。
The present invention is not only applicable to the downward drawing continuous casting machine described in the embodiments, but also to horizontal continuous casting machines and continuous casting machines of various angles located between the downward drawing method and the horizontal continuous casting machine. It is also applicable to

実施例では、短辺鋳型5には高融点耐火物3を用いたが
、当該部分に保熱用高融点耐火物を溶射等にまり肉盛あ
るいは接着してもよい。また、高融点耐火物3がなくて
該当部分が金属や有機及び無機材料あるいはアモルファ
ス等でも良い。
In the embodiment, the high melting point refractory material 3 is used for the short side mold 5, but a high melting point refractory material for heat retention may be applied to the relevant portion by thermal spraying or the like, overlaying or bonding. Alternatively, the high melting point refractory 3 may be omitted and the corresponding portion may be made of metal, organic or inorganic material, or amorphous material.

実施例では絞り込み式であるが、必ずしも絞り込み式で
ある必要はなく、絞り込まない方式でも本発明の効果に
は影響を受けない。
Although the embodiment uses a narrowing down method, it does not necessarily have to be a narrowing down method, and the effects of the present invention are not affected by a method that does not narrow down.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、短辺鋳型両側綾部に接触している廓動
長辺鋳型上に早期に凝固シェルが形成されるとともに、
その凝固シェルは短辺鋳型上に形成された凝固シェルと
一体化し、その結果、鋳ノ?が下方にうまく引き抜ける
ようになるために、品質の優れた鋳片を安定に得ること
ができるという効果がある。
According to the present invention, a solidified shell is formed at an early stage on the movable long-side mold that is in contact with the traverse portions on both sides of the short-side mold, and
The solidified shell is integrated with the solidified shell formed on the short side mold, and as a result, the solidified shell is formed on the short side of the mold. This has the effect of making it possible to stably obtain slabs of excellent quality because the steel can be successfully pulled downward.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は双ベルト式連G+”l vI造機の概要を示す
構成国、第2図の(イ)と(ロ)は双ベルト式連続鋳造
機の短辺鋳型部分を溶湯側から見た模式図、第3図は長
辺鋳型材料の熱伝導率を短辺鋳型材料の熱伝導率より小
さくさせるためにベルト材質を別として鋳造した場合の
第2図で示した1℃、■の温度検知センサーが検知した
温度分布仝示すグラフ、第4図は本発明に従い長辺鋳型
材料の熱伝導率を短辺鋳型材料の熱伝導率と同等にする
ためにベルト材質を鋼として鋳造した場合の第2図で示
したの、■の温度検知センサーが検知した温度分布を示
すグラフである。 トパッド、2・・・ベルト(長辺鋳型)、3・・・高融
点耐火物、4・・・温度検知センサー、5・・・短辺鋳
型(サイドダム)、6,7.8・・・ロール、9・・・
ブラケット、10・・・シリンダ、11・・・鋳辺、1
2・・・短第1図 第2図 (イ) 第3図 ハ 時間 第4図 時間
Figure 1 shows the outline of the twin-belt continuous G+"l vI casting machine, and Figure 2 (a) and (b) are schematic views of the short side mold part of the twin-belt continuous casting machine as seen from the molten metal side. Figure 3 shows the temperature detection at 1℃ and ■ shown in Figure 2 when the belt material is cast separately in order to make the thermal conductivity of the long side mold material smaller than the thermal conductivity of the short side mold material. The graph shown in Fig. 4 shows the temperature distribution detected by the sensor, in which the belt material is cast as steel in order to make the thermal conductivity of the long-side mold material equal to the thermal conductivity of the short-side mold material according to the present invention. This is a graph showing the temperature distribution detected by the temperature detection sensor (■) shown in Figure 2.Top pad, 2...Belt (long side mold), 3...High melting point refractory, 4...Temperature Detection sensor, 5... Short side mold (side dam), 6, 7.8... Roll, 9...
Bracket, 10... Cylinder, 11... Cast side, 1
2...Short Figure 1 Figure 2 (A) Figure 3 C Time Figure 4 Time

Claims (1)

【特許請求の範囲】 1、造形すべき鋳片に同期して移動または回動する相対
向して設けられた一対の金属製長辺鋳型と前記一対の長
辺鋳型の両端部間に配された短辺鋳型とを備えた絞り込
み式長辺輪回移動式連続鋳造機において、前記長辺鋳型
の少なくとも短辺鋳型両側縁部に隣接する部分の長辺鋳
型主要部分の熱伝導率を短辺鋳型両側縁部構成主材質の
熱伝導率と同等以上の値を示すようにしたことを特徴と
する薄板鋳片連続鋳造機。 2、特許請求の範囲第1項の絞り込み式長辺輪回移動式
連続鋳造機において、前記長辺鋳型の少なくとも短辺鋳
型に隣接する部分の長辺鋳型表面処理材質の熱伝導率を
短辺鋳型両側縁部構成主材質の熱伝導率と同等以上の値
を示すようにしたことを特徴とする薄板鋳片連続鋳造機
。 3、特許請求の範囲第1項の絞り込み式長辺輪回移動式
の連続鋳造機において、前記長辺鋳型の少なくとも短辺
鋳型に隣接する部分の長辺鋳型はりあわせ材質の熱伝導
率を短辺鋳型両側縁部構成主材質の熱伝導率と同等以上
の値を示すようにしたことを特徴とする薄板鋳片連続鋳
造機。 4、特許請求の範囲第1項の絞り込み式長辺輪回移動式
連続鋳造機において、前記長辺鋳型の少なくとも短辺鋳
型に隣接る部分の長辺鋳型複合材質の熱伝導率を短辺鋳
型両側縁部構成主材質の熱伝導率と同等以上の値を示す
ようにしたことを特徴とする薄板鋳片連続鋳造機。
[Scope of Claims] 1. A pair of metal long-side molds that are arranged opposite to each other and move or rotate in synchronization with the slab to be formed, and a metal mold that is disposed between both ends of the pair of long-side molds. In the narrowing type long-side rotary continuous casting machine equipped with a short-side mold, the thermal conductivity of the main part of the long-side mold, at least in a portion adjacent to both side edges of the short-side mold, is calculated as the short-side mold. A continuous casting machine for thin plate cast slabs, characterized in that the machine exhibits a thermal conductivity equal to or higher than that of the main material constituting both side edges. 2. In the narrowing type long-side rotary moving continuous casting machine according to claim 1, the thermal conductivity of the long-side mold surface treatment material of at least the portion adjacent to the short-side mold of the long-side mold is determined by the short-side mold. A continuous casting machine for thin plate cast slabs, characterized in that the machine exhibits a thermal conductivity equal to or higher than that of the main material constituting both side edges. 3. In the continuous casting machine of the narrowing type long-side rotary moving type as set forth in claim 1, the thermal conductivity of the long-side mold gluing material at least in the portion adjacent to the short-side mold of the long-side mold is defined as the short side. A continuous casting machine for thin plate slabs, characterized in that the machine exhibits a thermal conductivity equal to or higher than that of the main material constituting both side edges of the mold. 4. In the narrowing type long-side rotary moving continuous casting machine according to claim 1, the thermal conductivity of the long-side mold composite material of at least a portion of the long-side mold adjacent to the short-side mold is determined as the thermal conductivity of the long-side mold composite material on both sides of the short-side mold. A continuous casting machine for thin plate slabs, characterized in that the machine exhibits a thermal conductivity equal to or higher than that of the main material forming the edge.
JP17547089A 1989-07-10 1989-07-10 Continuous casting machine for cast strip Pending JPH0342153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17547089A JPH0342153A (en) 1989-07-10 1989-07-10 Continuous casting machine for cast strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17547089A JPH0342153A (en) 1989-07-10 1989-07-10 Continuous casting machine for cast strip

Publications (1)

Publication Number Publication Date
JPH0342153A true JPH0342153A (en) 1991-02-22

Family

ID=15996622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17547089A Pending JPH0342153A (en) 1989-07-10 1989-07-10 Continuous casting machine for cast strip

Country Status (1)

Country Link
JP (1) JPH0342153A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009286155A (en) * 2008-05-27 2009-12-10 Takeshi Ikeda Tricycle
DE102010049506A1 (en) * 2010-10-21 2012-04-26 Deutsche Giessdraht Gmbh Device, useful for casting materials containing copper, comprises a rotating molding device exhibiting a molding space bounding with the molding device and a partially rotating casting belt
US10488751B2 (en) 2014-09-19 2019-11-26 Mitsui Chemicals, Inc. Pellicle, production method thereof, exposure method
US10585348B2 (en) 2014-09-19 2020-03-10 Mitsui Chemicals, Inc. Pellicle, pellicle production method and exposure method using pellicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009286155A (en) * 2008-05-27 2009-12-10 Takeshi Ikeda Tricycle
DE102010049506A1 (en) * 2010-10-21 2012-04-26 Deutsche Giessdraht Gmbh Device, useful for casting materials containing copper, comprises a rotating molding device exhibiting a molding space bounding with the molding device and a partially rotating casting belt
US10488751B2 (en) 2014-09-19 2019-11-26 Mitsui Chemicals, Inc. Pellicle, production method thereof, exposure method
US10585348B2 (en) 2014-09-19 2020-03-10 Mitsui Chemicals, Inc. Pellicle, pellicle production method and exposure method using pellicle

Similar Documents

Publication Publication Date Title
JP3260487B2 (en) Apparatus and method for continuous belt casting of metal strip
US7380583B2 (en) Belt casting of non-ferrous and light metals and apparatus therefor
US5775404A (en) Method of continuously casting austenitic stainless steel
JPH0342153A (en) Continuous casting machine for cast strip
US8579012B2 (en) Continuous casting apparatus for casting strip of variable width
AU692236B2 (en) Method and apparatus for twin belt casting
JPS60216956A (en) Continuous casting machine for thin sheet
JPH07124712A (en) Continuous casting mold
JPS5940539B2 (en) Continuous casting method
JPS63126651A (en) Belt type continuous casting method
JP2695089B2 (en) Method and apparatus for continuous casting of metal ribbon
JPH01258853A (en) Continuous casting machine for cast strip
JPH06210412A (en) Single belt type continuous casting apparatus
JPH02142648A (en) Cast strip continuous casting machine
JP3095951B2 (en) Twin belt continuous casting method
BE1002826A6 (en) PROCESS FOR PRODUCING A THIN STEEL SLAB BY CONTINUOUS CASTING.
JPH01237055A (en) Method for continuously casting strip
JPS63137548A (en) Method and apparatus for casting steel plate
JPH01254356A (en) Continuous casting method by belt caster
JPH02207948A (en) Production of cast strip with single belt type continuous casting machine
JPH0565261B2 (en)
JPH02255253A (en) Short wall side plate for cast strip continuous casting machine
JPH02241645A (en) Twin roll type continuous casting machine
JPH02295648A (en) Cooling drum for casting cast strip
JPH01258852A (en) Continuous casting machine for cast strip