JPH0342142B2 - - Google Patents

Info

Publication number
JPH0342142B2
JPH0342142B2 JP60263482A JP26348285A JPH0342142B2 JP H0342142 B2 JPH0342142 B2 JP H0342142B2 JP 60263482 A JP60263482 A JP 60263482A JP 26348285 A JP26348285 A JP 26348285A JP H0342142 B2 JPH0342142 B2 JP H0342142B2
Authority
JP
Japan
Prior art keywords
slab
mold
amount
reduction
landing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60263482A
Other languages
Japanese (ja)
Other versions
JPS62124058A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP26348285A priority Critical patent/JPS62124058A/en
Publication of JPS62124058A publication Critical patent/JPS62124058A/en
Publication of JPH0342142B2 publication Critical patent/JPH0342142B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、金型の鋳片への圧下量を正確に制御
し得るようにした、連続鋳片圧下装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a continuous slab rolling-down device that can accurately control the amount of rolling down of a mold onto a slab.

[従来の技術] 連続鋳造設備では、鋳片が凝固するに際して、
肉厚中央部近傍にポロシテイ(小穴)が発生する
傾向がある。このポロシテイは、鋳片の強度品質
を損う原因になるので、何等かの圧下装置で鋳片
を圧下し、ポロシテイを圧着する必要が生じてい
る。
[Prior art] In continuous casting equipment, when a slab solidifies,
Porosities (small holes) tend to occur near the center of the wall thickness. Since this porosity causes deterioration of the strength and quality of the slab, it is necessary to reduce the slab by using some kind of rolling device and press the porosity.

又凝固に際して、凝固収縮現象が肉厚内部で起
こり、放置しておくと内部に間隙が生じ、この間
隙へ未凝固層から溶融金属が流動し、いわゆる成
分不均一による偏折現象の原因となつている。偏
折防止のためには凝固収縮に相当する量だけ鋳片
を連続的に圧下する装置が必要である。
Also, during solidification, a solidification shrinkage phenomenon occurs inside the thick wall, and if left untreated, gaps will be created inside, and molten metal will flow into these gaps from the unsolidified layer, causing a phenomenon of polarization due to so-called non-uniformity of components. ing. In order to prevent deflection, a device is required to continuously reduce the slab by an amount corresponding to solidification shrinkage.

このような理由から、凝固点近傍において鋳片
を連続的に圧下する装置が必要とされ、圧下装置
としては、例えば第4図及び第5図に示すものが
提案されている。
For these reasons, there is a need for a device for continuously rolling down the slab in the vicinity of the solidification point, and as a rolling device, the devices shown in FIGS. 4 and 5, for example, have been proposed.

第4図において、1は連続鋳造用の鋳型、2は
鋳型1から引抜かれた連続鋳片(以下単に鋳片と
いう)、2−1は鋳片2の凝固層、2−2は未凝
固層、2−3はポロシテイ(小穴)、3は複数の
ロールを備えた上ピンチロール群、4は複数のロ
ールを備えた下ピンチロール群であり、上下ピン
チロール群3,4の下流側には連続鋳片圧下装置
5が配設されている。
In Fig. 4, 1 is a mold for continuous casting, 2 is a continuous slab drawn from the mold 1 (hereinafter simply referred to as slab), 2-1 is a solidified layer of slab 2, and 2-2 is an unsolidified layer. , 2-3 is a porosity (small hole), 3 is an upper pinch roll group with a plurality of rolls, 4 is a lower pinch roll group with a plurality of rolls, and on the downstream side of the upper and lower pinch roll groups 3 and 4. A continuous slab rolling down device 5 is provided.

連続鋳片圧下装置5について説明すると、鋳片
2をまたぐようにハウジング6が配設され、該ハ
ウジング6には、竪向きで且つピストンロツド7
aが下向きの圧下シリンダ7及び竪向きで且つピ
ストンロツド8aが上向きの圧下シリンダ8が
夫々4組ずつ圧下シリンダとして配設され、ピス
トンロツド7a,8aの下端及び上端には、軸線
が鋳片2の幅方向へ延びる車輪9,10が回転自
在に枢着されている。
To explain the continuous slab rolling down device 5, a housing 6 is disposed so as to straddle the slab 2, and the housing 6 includes a vertical piston rod 7.
Four sets of the reduction cylinders 7 and 8, each with a pointing downward and a vertical piston rod 8a, are arranged as reduction cylinders, and at the lower and upper ends of the piston rods 7a and 8a, the axis line is the width of the slab 2. Wheels 9, 10 extending in the direction are rotatably pivoted.

ハウジング6の前後中央上部には、圧下シリン
ダ7と平行な流体圧シリンダ11が2組配設さ
れ、該2組の流体圧シリンダ11のピストンロツ
ド11a上端は、鋳片2の進行方向に平行に延び
るレバー12によつて連結され、レバー12の長
手方向略中央部には、竪向きのロツド13が枢着
され、ロツド13の下端には圧下金型本体ブロツ
ク14が枢支されている。
Two sets of fluid pressure cylinders 11 parallel to the reduction cylinder 7 are disposed at the front and rear center upper part of the housing 6, and the upper ends of the piston rods 11a of the two sets of fluid pressure cylinders 11 extend parallel to the direction of movement of the slab 2. They are connected by a lever 12, and a vertically oriented rod 13 is pivotally attached to the substantially central portion of the lever 12 in the longitudinal direction, and a reduction mold main body block 14 is pivotally supported at the lower end of the rod 13.

圧下金型本体ブロツク14の上面には、車輪9
が転動し得るようにした案内レール15が固着さ
れ、流体圧シリンダ11のピストンロツド11a
を圧油により上方へ付勢することによりロツド1
3を介して圧下金型本体ブロツク14を上方へ吊
上げ、案内レール15を常時車輪9に当接させ得
るようになつている。
Wheels 9 are mounted on the upper surface of the rolling die main body block 14.
A guide rail 15 that can roll is fixed to the piston rod 11a of the hydraulic cylinder 11.
By pressing upward with pressure oil, rod 1
3, the main body block 14 of the rolling die can be lifted upwardly, and the guide rail 15 can be kept in contact with the wheel 9 at all times.

圧下金型本体ブロツク14の下方に配設された
圧下金型本体ブロツク16の下面には、車輪10
が転動し得るようにした案内レール17が固着さ
れ、圧下金型本体ブロツク16は案内レール17
を介して車輪10上に載置されている。
Wheels 10 are mounted on the lower surface of the rolling die main body block 16 disposed below the rolling die main body block 14.
A guide rail 17 that can roll is fixed, and the rolling die main body block 16 is attached to the guide rail 17.
It is mounted on the wheel 10 via.

圧下金型本体ブロツク14,16の下面或いは
上面には、鋳片2を圧下成形するためのライナー
18,19が着脱可能に取付けられ、ハウジング
6の鋳片2移動方向上流側には鋳片2幅方向へ延
びるビーム20,21が固着され、該ビーム2
0,21に固着したブラケツト22,23には、
鋳片2長手方向へ水平に延びる往復シリンダ2
4,25の後端が枢支せしめられ、該往復シリン
ダ24,25のピストンロツド24a,25a先
端は、圧下金型本体ブロツク14,16の後面に
固着したブラケツト26,27に連結され、ハウ
ジング6の幅方向両側上部には、往復シリンダ2
4,25により前記圧下金型本体ブロツク14,
16を鋳片2長手方向へ往復移動させる際に圧下
金型本体ブロツク14,16を案内する案内ブロ
ツク28,29が固着されている。
Liners 18 and 19 for rolling the slab 2 are removably attached to the lower or upper surfaces of the rolling mold body blocks 14 and 16, and the housing 6 is provided with liners 18 and 19 on the upstream side of the housing 6 in the moving direction of the slab 2. Beams 20 and 21 extending in the width direction are fixed, and the beam 2
The brackets 22 and 23 fixed to 0 and 21 have
Reciprocating cylinder 2 extending horizontally in the longitudinal direction of slab 2
The rear ends of the reciprocating cylinders 24 and 25 are connected to brackets 26 and 27 fixed to the rear surfaces of the reduction mold body blocks 14 and 16, respectively. At the top of both sides in the width direction, reciprocating cylinders 2
4 and 25, the reduction mold main body block 14,
Guide blocks 28 and 29 are fixed to guide the reduction mold body blocks 14 and 16 when the roll 16 is reciprocated in the longitudinal direction of the slab 2.

第5図中30,31は位置検出器であり、又鋳
片2の圧下機構と往復動装置を連動駆動すること
は特願昭60−81540号明細書や特願昭60−77226号
明細書に開示されている。
In Fig. 5, numerals 30 and 31 are position detectors, and it is known in Japanese Patent Application No. 60-81540 and Japanese Patent Application No. 60-77226 that the rolling down mechanism for the slab 2 and the reciprocating device are driven in conjunction with each other. has been disclosed.

上記鋳片連続圧下成形装置5では、圧下金型本
体ブロツク14,16は圧下シリンダ7,8によ
つて鋳片に対して、相対向して上下運動を行い、
往復シリンダ24,25によつて鋳片2長手方向
に対し往復運動を行う。従つて、圧下シリンダ
7,8及び往復シリンダ24,25の動きを組合
わすことにより、圧下金型本体ブロツク14,1
6に第6図に示すような空間軌跡A,A′が与え
られて、矢印X方向へ連続的に移動する鋳片2の
圧下成形が行われる。第6図でP,P′は圧下金型
本体ブロツク14,16が鋳片2と共に進んでい
る区間、S,S′は圧下金型本体ブロツク14,1
6が鋳片2から昇降し、離れて行く区間、Q,
Q′は圧下金型本体ブロツク14,16がスター
ト位置に戻る区間、R,R′は圧下金型本体ブロ
ツク14,16が鋳片2に対し下降若しくは上昇
し、鋳片2と接触して圧下成形を行う区間であ
る。圧下により例えばポロシテイ2−3は第4図
に示すように順次小さくなる。
In the continuous slab rolling machine 5, the rolling mold body blocks 14 and 16 are moved up and down relative to the slab by the rolling cylinders 7 and 8,
Reciprocating cylinders 24 and 25 reciprocate the slab 2 in the longitudinal direction. Therefore, by combining the movements of the reduction cylinders 7, 8 and the reciprocating cylinders 24, 25, the reduction mold body blocks 14, 1
Spatial trajectories A and A' as shown in FIG. 6 are given to 6, and the slab 2 is rolled and formed continuously in the direction of arrow X. In Fig. 6, P and P' are the sections where the rolling die body blocks 14 and 16 are advancing together with the slab 2, and S and S' are the sections where the rolling die body blocks 14 and 16 are progressing together with the slab 2.
The section where 6 moves up and down from the slab 2 and moves away from it, Q,
Q' is the period in which the rolling die main body blocks 14, 16 return to the starting position, and R, R' are the sections in which the rolling die main body blocks 14, 16 descend or rise relative to the slab 2, come into contact with the slab 2, and are rolled down. This is the section where forming is performed. Due to the reduction, for example, the porosity 2-3 gradually becomes smaller as shown in FIG.

[発明が解決しようとする問題点] 一般に、鋳片のポロシテイ防止や偏折防止のた
めに鋳片の圧下成形を行う場合には、圧下量を所
定の値に正確に行う必要があるが、圧下装置その
ものが弾性変形してしまううえ鋳片の装置入側で
の厚さは変動するため、圧下量を正しい値にする
ことは困難である。特に、圧下金型本体ブロツク
14,16が、上述のように、流体圧シリンダ2
4,25により鋳片2の長手方向へ往復移動する
場合は、圧下金型本体ブロツク14,16の鋳片
2への厚さ方向の着地点が鋳片厚さ方向の寸法誤
差により各回とも常に変化するので、圧下量が正
しく把握できない。又圧下金型本体ブロツク1
4,16は鋳片2と共に或る長さだけ鋳片2長手
方向へ移動するので、鋳片2の圧下量は正しい値
になりにくい。
[Problems to be Solved by the Invention] Generally, when rolling down a slab to prevent porosity or deflection of the slab, the amount of rolling needs to be done accurately to a predetermined value; Since the rolling device itself is elastically deformed and the thickness of the slab on the entrance side of the device varies, it is difficult to set the rolling amount to the correct value. In particular, the reduction mold body blocks 14, 16 are connected to the hydraulic cylinder 2, as described above.
4 and 25, when the slab 2 is reciprocated in the longitudinal direction, the landing point of the rolling die main body blocks 14 and 16 on the slab 2 in the thickness direction always changes due to dimensional errors in the thickness direction of the slab. Since it changes, the amount of reduction cannot be accurately determined. Also, the reduction mold body block 1
4 and 16 move along with the slab 2 by a certain length in the longitudinal direction of the slab 2, so the amount of reduction of the slab 2 is difficult to reach a correct value.

本発明は、上述の実情に鑑み、鋳型で鋳造され
て連結的に送給されて来た鋳片の圧下量を正確に
制後し得るようにした連続鋳片圧下装置を提供す
ることを目的としてなしてものである。
In view of the above-mentioned circumstances, an object of the present invention is to provide a continuous slab reduction device that can accurately control the reduction amount of slabs that have been cast in a mold and fed in a continuous manner. It is done as such.

[問題点を解決するための手段] 本発明のうち、第1の発明は、上金型ブロツク
の下面に取付けられた上金型と、該上金型ブロツ
クの下方に配設された下金型ブロツクの上面に取
付けられた下金型と、前記上金型ブロツクの上方
に配設され且つピストンロツド下端が鋳片幅方向
へ延びる軸線に対して転動し得る車輪を介し上金
型ブロツクの上面に当接ししかも鋳片を下方へ向
けて圧下する竪向きの圧下シリンダと、前記下金
型ブロツクの下方に配設され且つピストンロツド
上端が鋳片幅方向へ延びる軸線に対し転動し得る
車輪を介し下金型ブロツクの下面に当接し、鋳片
を上方へ向けて圧下する竪向きの圧下シリンダ
と、前記上、下金型ブロツクの鋳片進行方向前方
或いは後方に鋳片進行方向に対し略平行になるよ
う配設され且つ上、下金型ブロツクに対向した端
部が前記上、下金型ブロツクに連結され、前記
上、下金型ブロツクを鋳片進行方向と平行な方向
へ往復動させる往復シリンダと、前記各圧下シリ
ンダのヘツド側流体室へ流体を供給する管路に接
続された圧力検出器と、前記管路に接続され且つ
前記圧下シリンダのヘツド側流体室へ供給される
流体を制御する制御弁と、前記圧力検出器で検出
した管路内の流体圧が基準レベルを越えたら着地
信号を出力する着地信号発生装置と、金型の鋳片
厚さ方向中心側への移動量を検出する位置検出器
と、前記着地信号発生装置より着地信号が与えら
れたら金型が鋳片に着地したと判断して着地点認
識信号を出力する着地点認識信号を出力する着地
点認識装置と、該着地点認識装置からの着地点認
識信号が与えられたら前記位置検出器で検出した
金型の鋳片厚さ方向中心側への移動量を零にリセ
ツトし、リセツト後に前記位置検出器から与えら
れた金型の鋳片厚さ方向中心側への移動量と、該
変位計リセツト装置のリセツト後に変位計リセツ
ト装置から与えられた金型の鋳片厚さ方向中心側
への移動量と鋳片に対する圧下設定量の偏差を圧
下フオードバツク量として出力するフイードバツ
ク量算出指令装置と、該フオードバツク量算出指
令装置からの圧下フイードバツク量を指令信号と
して前記制御弁へ与える弁開度指令装置を設けた
ものであり、第2の発明は、上金型ブロツクの下
面に取付けられた上金型と、該上金型ブロツクの
下方に配設された下金型ブロツクの上面に取付け
られた下金型と、前記上金型ブロツクの上方に配
設され且つピストンロツド下端が鋳片幅方向へ延
びる軸線に対して転動し得る車輪を介し上金型ブ
ロツクの上面に当接ししかも鋳片を下方へ向けて
圧下する竪向きの圧下シリンダと、前記下金型ブ
ロツクの下方に配設され且つピストンロツド上端
が鋳片幅方向へ延びる軸線に対し転動し得る車輪
を介し下金型ブロツクの下面に当接し、鋳片を上
方へ向けて圧下する竪向きの合下シリンダと、前
記上、下金型ブロツクの鋳片進行方向前方或いは
後方に鋳片進行方向に対し略平行になるよう配設
され且つ上、下金型ブロツクに対向した端部が前
記上、下金型ブロツクに連結され、前記上、下金
型ブロツクを鋳片進行方向と平行な方向へ往復動
させる往復シリンダと、前記各圧下シリンダのヘ
ツド側流体室へ流体を供給する管路に接続された
圧力検出器と、前記管路に接続され且つ前記圧下
シリンダのヘツド側流体室へ供給される流体を制
御する制御弁と、前記圧力検出器で検出した管路
内の流体圧が基準レベルを越えたら着地信号を出
力する着地信号発生装置と、金型の鋳片厚さ方向
中心側への移動量を検出する位置検出器と、前記
着地信号発生装置より着地信号が与えられたら金
型が鋳片に着地したと判断して着地点認識信号を
出力する着地点認識装置と、該着地点認識装置か
らの着地点認識信号が与えられたら前記位置検出
器で検出した金型の鋳片厚さ方向中心側への移動
量を零にリセツトし、リセツト後に前記位置検出
器から与えられた金型の鋳片厚さ方向中心側への
移動量を出力する変位計リセツト装置と、該変位
計リセツト装置のリセツト後に変位計リセツト装
置から与えられた金型の鋳片厚さ方向中心側への
移動量と鋳片に対する圧下設定量の偏差を求める
加算器と、前記荷重検出器で検出された荷重をば
ね定数で割ることにより金型の弾性変位量を求め
る演算装置と、該演算装置で求めた弾性変位量と
前記加算器で求めた偏差を加算して圧下フイード
バツク量を求め、該圧下フイードバツク量を出力
するフイードバツク量算出指令装置と、該フオー
ドバツク量算出指令装置からの圧下フイードバツ
ク量を指令信号として前記制御弁へ与える弁開度
指令装置を設けたものである。
[Means for Solving the Problems] Among the present inventions, the first invention provides an upper mold attached to the lower surface of the upper mold block, and a lower mold disposed below the upper mold block. The lower mold is attached to the upper surface of the mold block, and the lower end of the piston rod is connected to the upper mold block through a wheel that is disposed above the upper mold block and can roll about an axis extending in the width direction of the slab. A vertical reduction cylinder that contacts the upper surface and rolls down the slab downward; and a wheel that is disposed below the lower mold block and whose upper end of the piston rod can roll about an axis extending in the width direction of the slab. A vertical reduction cylinder that comes into contact with the lower surface of the lower mold block through the cylinder and lowers the slab upward; The ends of the mold blocks, which are disposed substantially parallel to each other and opposite to the upper and lower mold blocks, are connected to the upper and lower mold blocks, and reciprocate in the direction parallel to the direction in which the slab travels through the upper and lower mold blocks. a reciprocating cylinder to be moved; a pressure detector connected to a pipe line that supplies fluid to the head side fluid chamber of each of the pressure reduction cylinders; and a pressure detector connected to the pipe line and supplied to the head side fluid chamber of the pressure reduction cylinder. a control valve that controls the fluid; a landing signal generator that outputs a landing signal when the fluid pressure in the pipeline detected by the pressure detector exceeds a reference level; a position detector that detects the amount of movement; and a landing point that outputs a landing point recognition signal that determines that the mold has landed on the slab when a landing signal is given from the landing signal generator and outputs a landing point recognition signal. When a recognition device and a landing point recognition signal from the landing point recognition device are given, the amount of movement of the mold toward the center in the slab thickness direction detected by the position detector is reset to zero, and after resetting, the position is The amount of movement of the mold toward the center in the thickness direction of the slab given by the detector and the amount of movement of the mold toward the center in the thickness direction of the slab given by the displacement meter reset device after the displacement meter reset device is reset. A feedback amount calculation command device that outputs the deviation between the movement amount and the set reduction amount for the slab as a reduction feedback amount, and a valve opening command device that provides the reduction feedback amount from the feedback amount calculation instruction device as a command signal to the control valve. The second invention has an upper mold attached to the lower surface of the upper mold block, and an upper mold attached to the upper surface of the lower mold block disposed below the upper mold block. The lower end of the piston rod contacts the upper surface of the upper mold block via a wheel that is disposed above the upper mold block and that can roll about an axis extending in the width direction of the slab. The lower surface of the lower mold block is connected to a vertical reduction cylinder that rolls down the lower mold block, and a wheel that is disposed below the lower mold block and that allows the upper end of the piston rod to roll on an axis extending in the width direction of the slab. a vertically oriented lower cylinder that abuts against and presses down the slab upward; and a vertically oriented lower cylinder that is arranged approximately parallel to the direction of slab advancement in front or rear of the upper and lower mold blocks in the direction of slab advancement. a reciprocating cylinder whose ends facing the upper and lower mold blocks are connected to the upper and lower mold blocks, and which reciprocates the upper and lower mold blocks in a direction parallel to the slab traveling direction; a pressure detector connected to a pipe line that supplies fluid to the head side fluid chamber of each pressure reduction cylinder; and a control valve connected to the pipe line and controlling the fluid supplied to the head side fluid chamber of the pressure reduction cylinder. , a landing signal generator that outputs a landing signal when the fluid pressure in the pipeline detected by the pressure detector exceeds a reference level, and a position detector that detects the amount of movement of the mold toward the center in the slab thickness direction. a landing point recognition device that determines that the mold has landed on the slab when a landing signal is given from the landing signal generating device and outputs a landing point recognition signal; and landing point recognition from the landing point recognition device. When the signal is given, the amount of movement of the mold toward the center in the slab thickness direction detected by the position detector is reset to zero, and after resetting, the amount of movement of the mold in the slab thickness direction detected by the position detector is reset to zero. A displacement meter reset device outputs the amount of movement toward the center, and after the displacement meter reset device is reset, the amount of movement of the mold toward the center in the slab thickness direction given by the displacement meter reset device and the reduction on the slab an adder that calculates the deviation of the set amount; an arithmetic device that calculates the amount of elastic displacement of the mold by dividing the load detected by the load detector by a spring constant; a feedback amount calculation command device that calculates a reduction feedback amount by adding the deviations obtained by the device, and outputs the reduction feedback amount; and a valve that supplies the reduction feedback amount from the feedback amount calculation command device to the control valve as a command signal. It is equipped with an opening command device.

[作用] 第1の発明では、金型の圧下シリンダにより昇
降させられ、往復シリンダにより鋳片長手方向へ
移動させられつつ鋳片の圧下を行うが、この際荷
重検出器で検出した荷重が基準レベルを超えたら
着地信号発生装置から着地信号が着地点認識装置
へ与えられ、着地点認識装置から変位計リセツト
装置に着地点認識信号が与えられて変位計リセツ
ト装置がリセツトされ、リセツト後に位置検出器
から与えられた金型の鋳片厚さ方向中心側への移
動量と鋳片に対する圧下設定量の偏差が圧下フイ
ードバツク量としてフイードバツク算出指令装置
から出力され、弁開度指令装置を介し指令信号と
して制御弁へ与えられ、これにより制御弁を通つ
て圧下シリンダへ供給される圧液量が制御されて
金型による圧下量が制御される。
[Function] In the first invention, the slab is lowered while being raised and lowered by the rolling cylinder of the mold and moved in the longitudinal direction of the slab by the reciprocating cylinder. At this time, the load detected by the load detector is the standard. When the level is exceeded, a landing signal is given from the landing signal generator to the landing point recognition device, and the landing point recognition device gives the landing point recognition signal to the displacement meter reset device to reset the displacement meter reset device, and after resetting, the position is detected. The deviation between the amount of movement of the mold toward the center in the thickness direction of the slab given by the device and the set reduction amount for the slab is output as the reduction feedback amount from the feedback calculation command device, and a command signal is sent via the valve opening command device. As a result, the amount of pressurized liquid supplied to the reduction cylinder through the control valve is controlled, and the amount of reduction by the mold is controlled.

第2の発明では、金型は圧下シリンダにより昇
降させられ、往復シリンダにより鋳片長手方向へ
移動させられつつ鋳片の圧下を行うが、この際荷
重検出器で検出した荷重が基準レベルを超えたら
着地信号発生装置から着地信号が着地点認識装置
へ与えられ、着地点認識装置から変位計リセツト
装置に着地点認識信号が与えられて変位計リセツ
ト装置がリセツトされ、リセツト後に変位検出器
から与えられた金型の鋳片厚さ方向中心側への移
動量と鋳片に対する圧下設定量の偏差が加算器に
おいて求められ、該偏差はフイードバツク量算出
指令装置へ与えられ、又演算装置においては、荷
重検出器で検出された荷重をばね定数で割ること
により金型の弾性変位量が求められ、該弾性変位
量はフイードバツク量算出指令装置に与えられ、
フイードバツク量算出指令装置では偏差に弾性変
位量が加算されて圧下フイードバツク量が求めら
れ、該圧下フイードバツク量はフイードバツク量
算出指令装置から出力され、弁開度指令装置を介
して指令信号として制御弁へ与えられ、これによ
り制御弁を通つて圧下シリンダへ供給される圧液
量が制御されて金型による圧下量が制御される。
In the second invention, the mold is raised and lowered by a reduction cylinder, and the slab is rolled down while being moved in the longitudinal direction of the slab by a reciprocating cylinder, but at this time, the load detected by the load detector exceeds a reference level. The landing point recognition device then gives the landing point recognition signal to the displacement meter reset device to reset the displacement meter reset device, and after resetting, the landing point recognition device gives the landing point recognition signal to the The deviation between the amount of movement of the mold toward the center in the thickness direction of the slab and the set reduction amount for the slab is determined in the adder, and the deviation is given to the feedback amount calculation command device, and the calculation device The amount of elastic displacement of the mold is obtained by dividing the load detected by the load detector by the spring constant, and the amount of elastic displacement is given to a feedback amount calculation command device,
The feedback amount calculation command device adds the elastic displacement amount to the deviation to obtain the reduction feedback amount, and the reduction feedback amount is output from the feedback amount calculation command device and sent to the control valve as a command signal via the valve opening degree command device. As a result, the amount of pressurized liquid supplied to the reduction cylinder through the control valve is controlled, and the amount of reduction by the mold is controlled.

[実施例] 以下、本発明の実施例を添付図面を参照しつつ
説明する。
[Examples] Examples of the present invention will be described below with reference to the accompanying drawings.

第1図は本発明の連続鋳片圧下装置の一実施例
の説明図で、基本構成は第4図及び第5図に示す
ものと略同一構成であるが、本実施例では鋳片2
の圧下量を正確な値に制御するために種々の制御
用の機器が設けられている。
FIG. 1 is an explanatory diagram of an embodiment of the continuous slab rolling down device of the present invention.The basic configuration is approximately the same as that shown in FIGS. 4 and 5, but in this embodiment, the slab
Various control devices are provided to control the amount of reduction to an accurate value.

第1図中、32はサーボ弁等の制御弁33を備
えた給液管、34は給液管32に設けられ圧下シ
リンダ7に供給される流体の圧力を検出するため
の圧力検出器、35は圧下シリンダ7のピストン
ロツド7aの変位量を検出するマグネスケール等
の位置検出器、36は例えば渦電流方式等による
非接触式の位置検出器、37は案内ブロツク28
外側方へ向けて固着され、位置検出器36により
圧下金型本体ブロツク16の上下方向変位昇降量
を検出する際の被検知金具であり、前期位置検出
器36は鋳片2の厚さ方向D中心l側への圧下金
型本体ブロツク14の移動量を検出し得るように
なつている。
In FIG. 1, 32 is a liquid supply pipe equipped with a control valve 33 such as a servo valve, 34 is a pressure detector provided in the liquid supply pipe 32 to detect the pressure of the fluid supplied to the pressure reduction cylinder 7, and 35 36 is a non-contact type position detector using an eddy current method, etc., and 37 is a guide block 28.
It is fixed outward and is a metal fitting to be detected when the position detector 36 detects the amount of up and down vertical displacement of the rolling die main body block 16. The amount of movement of the rolling die main body block 14 toward the center l side can be detected.

圧力検出器34で検出した流体圧シリンダ7へ
供給される流体の圧力は着地信号発生装置38及
び演算装置39へ加え得るようになつている。着
地信号発生装置38では予め設定された基準レベ
ル圧力P0と圧力検出器34で検出された圧力PR
を比較し圧力PRが基準レベル圧力P0よりも大き
い場合には着地点認識装置40へ信号を与え得る
ようになつており、演算装置39は圧力PR及び
圧下金型本体ブロツク14の弾性係数KRから圧
下金型本体ブロツク14の弾性変位量yR′を求め
得るようになつている。
The pressure of the fluid supplied to the fluid pressure cylinder 7 detected by the pressure detector 34 can be applied to the landing signal generator 38 and the arithmetic unit 39. The landing signal generator 38 uses the preset reference level pressure P 0 and the pressure P R detected by the pressure detector 34.
When the pressure P R is larger than the reference level pressure P 0 , a signal can be given to the landing point recognition device 40 , and the calculation device 39 calculates the pressure P R and the elasticity of the rolling die main body block 14 . The elastic displacement amount yR ' of the rolling die main body block 14 can be determined from the coefficient KR.

位置検出器36からは着地信号発生装置41及
び変位計リセツト装置42へ信号を与え得るよう
になつており、着地信号発生装置41からは、圧
下金型本体ブロツク14が鋳片に対して着地した
と判断した場合に着地信号を着地点認識装置40
へ与え得るようになつている。又第5図に示す位
置検出器30,31で検出された圧下金型本体ブ
ロツク14の長手方向変位Xは着地信号発生装置
43へ与え得るようになつており、着地信号発生
装置43からは、圧下金型本体ブロツク14が鋳
片2に対して着地したと判断した場合に着地信号
を着地点認識装置40へ与え得るようになつてい
る。
The position detector 36 is capable of giving a signal to a landing signal generator 41 and a displacement meter reset device 42, and the landing signal generator 41 detects when the rolling die main body block 14 has landed on the slab. If it is determined that the landing point recognition device 40
It is now possible to give to Further, the displacement X in the longitudinal direction of the rolling die main body block 14 detected by the position detectors 30 and 31 shown in FIG. When it is determined that the rolling die main body block 14 has landed on the slab 2, a landing signal can be given to the landing point recognition device 40.

圧下金型本体ブロツク14が鋳片2に対して着
地した後に位置検出器36で検出された圧下量yR
の信号はいつたん、零にリセツトされた後変位計
リセツト装置42を経て加算器44へ与え得るよ
うになつており、加算器44では、圧下量yRと圧
下量設定器47で設定された圧下設定量yR0とか
ら圧下量の偏差ΔyRを求め得るようになつてい
る。
The reduction amount y R detected by the position detector 36 after the reduction mold main body block 14 lands on the slab 2
After the signal is reset to zero, it can be given to the adder 44 via the displacement meter reset device 42. The deviation Δy R of the rolling reduction amount can be determined from the set rolling reduction amount y R0 .

演算装置39で求められた圧下金型本体ブロツ
ク14の弾性変位量yR′と加算器39で求められ
た圧下量の偏差ΔyRはフイードバツク量算出指令
装置45で加算され、圧下フイードバツク量yR
は弁開度指令装置46へ加え得るようになつてい
る。
The elastic displacement amount y R ' of the rolling die main body block 14 obtained by the arithmetic unit 39 and the deviation Δy R of the reduction amount obtained by the adder 39 are added by the feedback amount calculation command device 45 to obtain the reduction feedback amount y R
can be applied to the valve opening command device 46.

弁開度指令装置46では、圧下フイードバツク
量yR″と位置検出器35で検出された圧下シリン
ダ7のピストンロツド7aの移動量を比較演算し
つつ制後弁33へ弁開度指令を与え得るようにな
つている。
The valve opening command device 46 compares and calculates the reduction feedback amount yR '' with the amount of movement of the piston rod 7a of the reduction cylinder 7 detected by the position detector 35, and is designed to issue a valve opening command to the control valve 33. It's getting old.

なお、弁開度指令装置46へフイードバツクさ
れる信号のゲインは、例えばフイードバツク量算
出指令装置46のゲインCを調節すればよい。第
1図に示す連続鋳片圧下装置は、左右の圧下シリ
ンダ7のうち左側にのみ設けた場合が図示してる
が、右側の圧下シリンダ7にも設けられ、第4図
に示す下側の圧下シリンダ8に対しも設けられて
いる。
The gain of the signal fed back to the valve opening command device 46 may be adjusted, for example, by adjusting the gain C of the feedback amount calculation command device 46. The continuous slab rolling down device shown in Fig. 1 is shown installed only on the left side of the left and right rolling cylinders 7, but it is also installed on the right rolling cylinder 7, and is used for lower rolling as shown in Fig. 4. It is also provided for the cylinder 8.

操業時には、圧下シリンダ7に圧液が供給れ、
ピストンロツド7aが昇降することによつて圧下
金型本体ブロツク14が昇降し、往復シリンダ2
4に圧液が供給されピストンロツド24a鋳片2
長手方向へ往復動することにより、圧金型本体ブ
ロツク14は第6図に示す空間軌跡を描き、同様
に圧下金型本体ブロツク16は第図に示す空間軌
跡A′を描きつつ鋳片2の圧成形が行われる。
During operation, pressure liquid is supplied to the reduction cylinder 7,
As the piston rod 7a moves up and down, the reduction mold main body block 14 moves up and down, and the reciprocating cylinder 2
Pressure fluid is supplied to the piston rod 24a and the slab 2
By reciprocating in the longitudinal direction, the press die main body block 14 draws a spatial locus shown in FIG. Pressing is performed.

斯かる鋳片2の圧下成形の際の制御を圧下金本
体ブロツク14について説明すると、ピストンロ
ツド7aが下降する際に圧下シリンダ7のヤンバ
内の液圧は圧力検出器34で検出され、出された
圧力PRは着地信号発生装置38に送れ、該圧力
PRが着地信号発生装置38に予め設定された基
準レベル圧力P0よりも大きい場合には、着地信
号発生装置38から着地信号が着地点認識装置4
0に送られる。又圧力検出器34で検出された圧
力PRは演算装置39へ送られ、該演算装置39
においては圧力金型本体ブロツク14の弾性変位
量yR′がyR′=PR/KRによつて演算され、該弾性変位 量yR′は装置自体や圧下金型本体ブロツク14の
弾性変位を補正する修正追加圧下量としてフイー
ドバツク量算出指令装置45へ送られる。
To explain the control during the reduction forming of such a slab 2 with respect to the reduction die main body block 14, when the piston rod 7a descends, the hydraulic pressure in the lower part of the reduction cylinder 7 is detected by the pressure detector 34, and the pressure is output. The pressure P R is sent to the landing signal generator 38, and the pressure
When P R is larger than the reference level pressure P 0 preset in the landing signal generator 38, the landing signal generator 38 outputs a landing signal to the landing point recognition device 4.
Sent to 0. Moreover, the pressure P R detected by the pressure detector 34 is sent to the calculation device 39.
In this case, the elastic displacement amount y R ′ of the pressure mold main body block 14 is calculated by y R ′=P R /K R , and the elastic displacement amount y R ′ depends on the elasticity of the device itself and the reduction mold main body block 14. This is sent to the feedback amount calculation command device 45 as a corrected additional reduction amount for correcting the displacement.

一方、ピストンロツド7aの下降により下降す
る圧下金型本体ブロツク14の下降量(鋳片2の
厚さ方向D中心側lへの移動量は位置検出器36
によつて検出され、着地信号発生装置41及び変
位計リセツト装置42へ送られる。而して、着地
信号発生装置41では位置検出器36からの信号に
より、圧下金型本体ブロツク14が鋳片2に対し
て着地したか否かの判断は次のようにして行う。
すなわち、圧下金型本体ブロツク14が鋳片2に
対し着地していない場合には、第2図に示すよう
に、その下降量は時刻に比例して直線イに従い増
加する。しかるに、圧下金型本体ブロツク14が
鋳片2に対して着地すると該本体ブロツク14は
鋳片2から着地衝撃を受け、直線的には下降でき
ず曲線口に示すように時刻に従つた本体ブロツク
14の下降量は著しく減少する。しかし、時刻の
経過と共に圧下シリンダ7に供給される流体の圧
力は上昇し、圧下金型本体ブロツク14は、以後
は直線ハに従い下降する。そこで、ある時刻にお
いて、圧下金型本体ブロツク14が鋳片2に対し
て着地していない場合に予測される圧下金型本体
ブロツク14の下降量と圧下金型本体ブロツク1
4の実際の下降量の差ΔyCを求め、該差ΔyCが予
め定められた或る値Δy0よりも大きい場合には、
圧下金型本体ブロツク14が鋳片2に対して着地
したものと判断し、着地信号発生装置41から着
地信号が着地点認識装置40へ送られる。
On the other hand, the amount of descent of the rolling die main body block 14 that descends due to the descent of the piston rod 7a (the amount of movement of the slab 2 toward the center side l in the thickness direction D is detected by the position detector 36).
The signal is detected by the landing signal generator 41 and sent to the displacement meter reset device 42. The landing signal generating device 41 determines whether the rolling die main body block 14 has landed on the slab 2 in the following manner based on the signal from the position detector 36.
That is, when the rolling die main body block 14 has not landed on the slab 2, as shown in FIG. 2, the amount of descent thereof increases in proportion to time according to a straight line A. However, when the rolling die main body block 14 lands on the slab 2, the main body block 14 receives a landing impact from the slab 2, and cannot descend in a straight line. 14 is significantly reduced. However, as time passes, the pressure of the fluid supplied to the reduction cylinder 7 increases, and the reduction mold main body block 14 thereafter descends along a straight line C. Therefore, at a certain time, if the rolling die main body block 14 has not landed on the slab 2, the amount of descent of the rolling die main body block 14 predicted and the rolling die main body block 1
4, and if the difference Δy C is larger than a predetermined value Δy 0 ,
It is determined that the rolling die main body block 14 has landed on the slab 2, and a landing signal is sent from the landing signal generator 41 to the landing point recognition device 40.

又往復シリンダ24のピストンロツド24aが
往復動することによる圧下金型本体ブロツク14
の鋳片2長手方向移動量xは位置検出器30,3
1により検出され、着地信号発生装置43へ送ら
れる。而して着地信号発生装置43では位置検出
器30,31からの信号により、圧下金型本体ブ
ロツク14が鋳片2に対して着地したか否かの判
断は次のようにして行う。すなわち、圧下金型本
体ブロツク14が鋳片2に対して着地していない
場合は第3図に示すように、移動量xは時刻の経
過と共に曲線ニに従い変化するが、鋳片2に着地
すると、鋳片2と圧下金型本体ブロツク14との
速度差により該圧下金型本体ブロツク14は着地
衝撃を受け、鋳片長手方向への移動量xCが生じ
る。従つて、この移動量xCが予め定められた或る
値xBより大きい場合には、圧下金型本体ブロツク
14が鋳片2に対して着地したものと判断し、着
地信号発生装置43から着地信号が着地点認識装
置40へ送られる。
Also, the reduction mold body block 14 is reduced by the reciprocating movement of the piston rod 24a of the reciprocating cylinder 24.
The longitudinal movement x of the slab 2 is determined by the position detectors 30, 3.
1 and sent to the landing signal generator 43. The landing signal generating device 43 determines whether the rolling die main body block 14 has landed on the slab 2 in the following manner based on the signals from the position detectors 30 and 31. That is, when the rolling die main body block 14 does not land on the slab 2, as shown in FIG. Due to the speed difference between the slab 2 and the rolling die main body block 14, the rolling die main body block 14 receives a landing impact, and a movement amount x C in the longitudinal direction of the slab occurs. Therefore, if this amount of movement x C is larger than a predetermined value x B , it is determined that the rolling die main body block 14 has landed on the slab 2, and the landing signal generator 43 outputs a signal. A landing signal is sent to the landing point recognition device 40.

着地点認識装置40には着地信号発生装置3
8,41,43から着地信号が加えられるが、例
えば、着地信号発生装置38,41,43のうち
何れか2つの装置から着地信号が送られて来たら
圧下金型本体ブロツク14が鋳片2に着地したも
のと判断し、着地点認識装置40から着地点認識
信号が変位計リセツト装置42へ加えられる。着
地信号発生装置38,41,43のうち2個所か
ら着地信号が送られて来た場合に着地点認識信号
を着地点認識装置40から出力するようにしたの
は、圧下金型本体ブロツク14の鋳片2に対する
着地点検出は一般に不安定で検出しにくいためで
ある。このように2個所で着地を検出すれば信頼
度が高まる。勿論全ての装置38,41,43か
ら着地信号が送られて来た場合に着地点の認識を
行うようにしても良い。
The landing point recognition device 40 includes a landing signal generating device 3.
For example, if a landing signal is sent from any two of the landing signal generators 38, 41, and 43, the rolling die main body block 14 will move the slab 2. It is determined that the vehicle has landed on the ground, and a landing point recognition signal is applied from the landing point recognition device 40 to the displacement meter reset device 42. The reason why the landing point recognition signal is outputted from the landing point recognition device 40 when a landing signal is sent from two of the landing signal generating devices 38, 41, and 43 is because of the reduction die main body block 14. This is because detection of the landing point on the slab 2 is generally unstable and difficult to detect. Detecting landing at two locations in this way increases reliability. Of course, the landing point may be recognized when landing signals are sent from all the devices 38, 41, and 43.

着地点認識信号が、着地点認識装置40から変
位計リセツト装置42に加えられると、位置検出
器36から変位計リセツト装置42へ送られて来
た圧下金型本体ブロツク14の下降量の信号は零
にリセツトされ、このため、それ以後位置検出器
36から送られて来た信号が、圧下金型本体ブロ
ツク14が鋳片2に着地して以後の実際の圧下量
となる。
When the landing point recognition signal is applied from the landing point recognition device 40 to the displacement meter reset device 42, the signal of the amount of descent of the rolling die main body block 14 sent from the position detector 36 to the displacement meter reset device 42 is It is reset to zero, and therefore, the signal sent from the position detector 36 thereafter becomes the actual reduction amount after the reduction mold body block 14 lands on the slab 2.

変位計リセツト装置42がリセツトされると、
位置検出器36から圧下量yRの信号が加算器44
に送られ、該加算器44では圧下量設定器47で
設定された圧下設定量yR0と圧下量yRの偏差ΔyR
演算され、該偏差ΔyRはフイードバツク量算出指
令装置45に加えられる。又フイードバツク量算
出指令装置45へは演算装置39で演算された弾
性変位量yR′の信号も送られて来るため該フイー
ドバツク量算出指令装置45では、偏差ΔyRと弾
性変位量yR′が加算され、該指令装置45からは
圧下フイードバツク量yR″が圧下すべきトータル
量として弁開度指令装置46へ加えられ、弁開度
指令装置46からの指令信号により制御弁33の
開度が調整される。このため制御弁33から圧下
シリンダ7へ供給される圧液量が制御され、ピス
トンロツド7aが所定量下降し、而して圧下金型
本体ブロツク14による圧下量は正確な値に制御
される。ピストンロツド7aの下降量は位置検出
器35により検出され、弁開度指令装置46へフ
イードバツクされ、ピストンロツド7aが所定量
下降すると弁開度指令装置46からは指令信号は
出力されず、制御弁33は閉止される。
When the displacement meter reset device 42 is reset,
The signal of the reduction amount y R from the position detector 36 is sent to the adder 44.
The adder 44 calculates the deviation Δy R between the set reduction amount y R0 set by the reduction amount setter 47 and the reduction amount y R , and the deviation Δy R is added to the feedback amount calculation command device 45. . In addition, since the signal of the elastic displacement amount y R ′ calculated by the calculation device 39 is also sent to the feedback amount calculation command device 45 , the feedback amount calculation command device 45 calculates the deviation Δy R and the elastic displacement amount y R ′. The reduction feedback amount yR '' is added from the command device 45 to the valve opening command device 46 as the total amount to be reduced, and the opening of the control valve 33 is controlled by the command signal from the valve opening command device 46. Therefore, the amount of pressurized liquid supplied from the control valve 33 to the reduction cylinder 7 is controlled, the piston rod 7a is lowered by a predetermined amount, and the amount of reduction by the reduction mold body block 14 is controlled to an accurate value. The amount of descent of the piston rod 7a is detected by the position detector 35 and fed back to the valve opening command device 46, and when the piston rod 7a is lowered by a predetermined amount, no command signal is output from the valve opening command device 46, and the control is stopped. Valve 33 is closed.

なお、本発明は上述の実施例に限定されるもの
ではなく、本発明の要旨を逸脱しない範囲内で
種々変更を加え得ること、等は勿論である。
It should be noted that the present invention is not limited to the above-described embodiments, and it goes without saying that various changes may be made without departing from the gist of the present invention.

[発明の効果] 本発明の連続鋳片圧下装置によれば、鋳片の圧
下量が一定になるよう確実に制御することができ
るため、凝固殻の収縮量以上の圧下を行うことが
でき、従つてポロシテイの偏析のない良好な鋳片
を得ることができ、又ハウジング等装置全体及び
金型に変形があり、鋳片厚さが入側で変動して
も、鋳片に対する金型の圧下量を正確に制御でき
るという優れた効果を奏し得る。
[Effects of the Invention] According to the continuous slab reduction device of the present invention, since the amount of slab reduction can be reliably controlled to be constant, it is possible to perform a reduction that is greater than the amount of contraction of the solidified shell. Therefore, it is possible to obtain a good slab without porosity segregation, and even if the whole device such as the housing or the mold is deformed, and the thickness of the slab changes on the entry side, the reduction of the mold against the slab can be maintained. An excellent effect can be achieved in that the amount can be accurately controlled.

【図面の簡単な説明】[Brief explanation of drawings]

第4図は本発明の連続鋳片圧下装置の説明図、
第2図は第1図の装置における圧下金型本体ブロ
ツクの下降量と時刻との関係を示すグラフ、第3
図は第1図の装置における圧下金型本体ブロツク
の鋳片長手方向移動量と時刻との関係を示すグラ
フ、第4図はこれまでに提案されている連続鋳片
圧下装置の概略の説明図、第5図は同連続鋳片圧
下装置の斜視図、第6図は第4図の装置の圧下金
型本体ブロツクの空間軌跡の説明図である。 図中、5は連続鋳片圧下装置、6はハウジン
グ、7,8は圧下シリンダ、7a,8aはピスト
ンロツド、14,16は圧下金型本体ブロツク、
24,25は往復シリンダ、24a,25aはピ
ストンロツド、30,31,35,36は位置検
出器、32は給液管(管路)、33は制御弁、3
4は圧力検出器、38,41,43は着地信号発
生装置、39は演算装置、40は着地点認識装
置、42は変位計リセツト装置、44は加算器、
45はフイードバツク量算出指令装置、46は弁
開度指令装置、47は圧下量設定器を示す。
FIG. 4 is an explanatory diagram of the continuous slab rolling down device of the present invention;
Figure 2 is a graph showing the relationship between the amount of descent of the rolling die main body block and time in the apparatus of Figure 1;
The figure is a graph showing the relationship between time and the amount of movement of the rolling die main body block in the longitudinal direction of the slab in the apparatus shown in Figure 1, and Figure 4 is a schematic explanatory diagram of the continuous slab rolling apparatus that has been proposed so far. 5 is a perspective view of the same continuous slab rolling down device, and FIG. 6 is an explanatory diagram of the spatial locus of the rolling die main body block of the device of FIG. 4. In the figure, 5 is a continuous slab reduction device, 6 is a housing, 7 and 8 are reduction cylinders, 7a and 8a are piston rods, 14 and 16 are reduction mold body blocks,
24, 25 are reciprocating cylinders, 24a, 25a are piston rods, 30, 31, 35, 36 are position detectors, 32 is a liquid supply pipe (pipe line), 33 is a control valve, 3
4 is a pressure detector; 38, 41, 43 are landing signal generators; 39 is an arithmetic unit; 40 is a landing point recognition device; 42 is a displacement meter reset device; 44 is an adder;
45 is a feedback amount calculation command device, 46 is a valve opening command device, and 47 is a reduction amount setting device.

Claims (1)

【特許請求の範囲】 1 上金型ブロツクの下面に取付けられた上金型
と、該上金型ブロツクの下方に配設された下金型
ブロツクの上面に取付けられた下金型と、前記上
金型ブロツクの上方に配設され且つピストンロツ
ド下端が鋳片幅方向へ延びる軸線に対して転動し
得る車輪を介し上金型ブロツクの上面に当接しし
かも鋳片を下方へ向けて圧下する竪向きの圧下シ
リンダと、前記下金型ブロツクの下方に配設され
且つピストンロツド上端が鋳片幅方向へ延びる軸
線に対し転動し得る車輪を介し下金型ブロツクの
下面に当接し、鋳片を上方へ向けて圧下する竪向
きの圧下シリンダと、前記上、下金型ブロツクの
鋳片進行方向前方或いは後方に鋳片進行方向に対
し略平行になるよう配設され且つ上、下金型ブロ
ツクに対向した端部が前記上、下金型ブロツクに
連結され、前記上、下金型ブロツクを鋳片進行方
向と平行な方向へ往復動させる往復シリンダと、
前記各圧下シリンダのヘツド側流体室へ流体を供
給する管路に接続された圧力検出器と、前記管路
に接続され且つ前記圧下シリンダのヘツド側流体
室へ供給される流体を制御する制御弁と、前記圧
力検出器で検出した管路内の流体圧が基準レベル
を越えたら着地信号を出力する着地信号発生装置
と、金型の鋳片厚さ方向中心側への移動量を検出
する位置検出器と、前記着地信号発生装置より着
地信号が与えられたら金型が鋳片に着地したと判
断して着地点認識信号を出力する着地点認識装置
と、該着地点認識装置からの着地点認識信号が与
えられたら前記位置検出器で検出した金型の鋳片
厚さ方向中心側への移動量を零にリセツトし、リ
セツト後に前記位置検出器から与えられた金型の
鋳片厚さ方向中心側への移動量を出力する変位計
リセツト装置と、該変位計リセツト装置のリセツ
ト後に変位計リセツト装置から与えられた金型の
鋳片厚さ方向中心側への移動量と鋳片に対する圧
下設定量の偏差を圧下フイードバツク量として出
力するフイードバツク量算出指令装置と、該フイ
ードバツク量算出指令装置からの圧下フイードバ
ツク量を指令信号として前記制御弁へ与える弁開
度指令装置を設けたことを特徴とする連続鋳片圧
下装置。 2 上金型ブロツクの下面に取付けられた上金型
と、該上金型ブロツクの下方に配設された下金型
ブロツクの上面に取付けられた下金型と、前記上
金型ブロツクの上方に配設され且つピストンロツ
ド下端が鋳片幅方向へ延びる軸線に対して転動し
得る車輪を介し上金型ブロツクの上面に当接しし
かも鋳片を下方へ向けて圧下する竪向きの圧下シ
リンダと、前記下金型ブロツクの下方に配設され
且つピストンロツド上端が鋳片幅方向へ延びる軸
線に対し転動し得る車輪を介し下金型ブロツクの
下面に当接し、鋳片を上方へ向けて圧下する竪向
きの圧下シリンダと、前記上、下金型ブロツクの
鋳片進行方向前方或いは後方に進行方向に対し略
平行になるよう配設され且つ上、下金型ブロツク
に対向した端部が前記上、下金型ブロツクに連結
され、前記上、下金型ブロツクを鋳片進行方向と
平行な方向へ往復動させる往復シリンダと、前記
各圧下シリンダのヘツド側流体室へ流体を供給す
る管路に接続された圧力検出器と、前記管路に接
続され且つ前記圧下シリンダヘツド側流体室へ供
給される流体を制御する制御弁と、前記圧力検出
器で検出した管路内の流体圧が基準レベルを超え
たら着地信号を出力する着地信号発生装置と、金
型の鋳片厚さ方向中心側への移動量を検出する位
置検出器と、前記着地信号発生装置より着地信号
が与えられたら金型が鋳片に着地したと判断して
着地点認識信号を出力する着地点認識装置と、該
着地点認識装置からの着地点認識信号が与えられ
たら前記位置検出器で検出した金型の鋳片厚さ方
向中心側への移動量を零にリセツトし、リセツト
後に前記位置検出器から与えられた金型の鋳片厚
さ方向中心側への移動量を出力する変位計リセツ
ト装置と、該変位計リセツト装置のリセツト後に
変位計リセツト装置から与えられた金型の鋳片厚
さ方向中心側への移動量と鋳片に対する圧下設定
量の偏差を求める加算器と、前記荷重検出器で検
出された荷重をばね定数で割ることにより金型の
弾性変位量を求める演算装置と、該演算装置で求
めた弾性変位量と前記加算器で求めた偏差を加算
して圧下フイードバツク量を求め、該圧下フイー
ドバツク量を出力するフイードバツク量算出指令
装置と、該フイードバツク量算出指令装置からの
圧下フイードバツク量を指令信号として前記制御
弁へ与える弁開度指令装置を設けたことを特徴と
する連続鋳片圧下装置。
[Claims] 1. An upper mold attached to the lower surface of the upper mold block, a lower mold attached to the upper surface of the lower mold block disposed below the upper mold block, and The piston rod is disposed above the upper mold block, and the lower end of the piston rod comes into contact with the upper surface of the upper mold block via a wheel that can roll about an axis extending in the width direction of the slab, and also rolls down the slab downward. The upper end of the piston rod comes into contact with the lower surface of the lower mold block via a vertical reduction cylinder and a wheel that is disposed below the lower mold block and can roll about an axis extending in the width direction of the slab. a vertical reduction cylinder that presses down the upper and lower mold blocks; a reciprocating cylinder whose end facing the block is connected to the upper and lower mold blocks, and which reciprocates the upper and lower mold blocks in a direction parallel to the slab advancing direction;
a pressure detector connected to a pipe line for supplying fluid to the head side fluid chamber of each pressure reduction cylinder; and a control valve connected to the pipe line and controlling fluid supplied to the head side fluid chamber of the pressure reduction cylinder. a landing signal generator that outputs a landing signal when the fluid pressure in the pipeline detected by the pressure detector exceeds a reference level; and a position that detects the amount of movement of the mold toward the center in the slab thickness direction. a detector; a landing point recognition device that determines that the mold has landed on the slab when a landing signal is given by the landing signal generating device and outputs a landing point recognition signal; When the recognition signal is given, the amount of movement of the mold toward the center in the slab thickness direction detected by the position detector is reset to zero, and after resetting, the slab thickness of the mold given by the position detector is reset to zero. A displacement meter reset device outputs the amount of movement toward the center in the direction, and after the displacement meter reset device is reset, the amount of movement of the mold toward the center in the slab thickness direction given by the displacement meter reset device and the amount of movement of the mold toward the center in the slab thickness direction are calculated. A feedback amount calculation command device that outputs the deviation of the set reduction amount as a reduction feedback amount, and a valve opening command device that provides the reduction feedback amount from the feedback amount calculation command device as a command signal to the control valve. Continuous slab rolling equipment. 2. An upper mold attached to the lower surface of the upper mold block, a lower mold attached to the upper surface of the lower mold block arranged below the upper mold block, and a lower mold attached to the upper surface of the upper mold block. a vertically oriented reduction cylinder, which is disposed in the cylinder, and whose lower end of the piston rod contacts the upper surface of the upper mold block via a wheel that can roll about an axis extending in the width direction of the slab, and which rolls down the slab downward; , which is disposed below the lower mold block, and the upper end of the piston rod comes into contact with the lower surface of the lower mold block via a wheel that can roll about an axis extending in the width direction of the slab, and rolls the slab upward. A vertical reduction cylinder is disposed in front or behind the upper and lower mold blocks in the direction in which the slab travels so as to be substantially parallel to the traveling direction, and the ends facing the upper and lower mold blocks are A reciprocating cylinder connected to the upper and lower mold blocks and reciprocating the upper and lower mold blocks in a direction parallel to the slab advancing direction, and a pipe line for supplying fluid to the head side fluid chamber of each of the reduction cylinders. a pressure detector connected to the pressure sensor, a control valve connected to the pipe line and controlling the fluid supplied to the pressure cylinder head side fluid chamber, and a fluid pressure in the pipe line detected by the pressure detector as a reference. a landing signal generator that outputs a landing signal when the level is exceeded; a position detector that detects the amount of movement of the mold toward the center in the slab thickness direction; A landing point recognition device that determines that the mold has landed on the slab and outputs a landing point recognition signal; and a landing point recognition device that outputs a landing point recognition signal when the mold has landed on the slab; and when the landing point recognition signal from the landing point recognition device is given, the mold is a displacement meter reset device that resets the amount of movement toward the center in the slab thickness direction to zero, and outputs the amount of movement of the mold given from the position detector toward the center in the slab thickness direction after the reset; After the displacement meter reset device is reset, an adder calculates the deviation between the amount of movement of the mold toward the center in the thickness direction of the slab given by the displacement meter reset device and the set reduction amount for the slab, and the load detector detects the deviation. an arithmetic device that calculates the amount of elastic displacement of the mold by dividing the applied load by a spring constant; A continuous slab reduction characterized in that it is provided with a feedback amount calculation command device that outputs a reduction feedback amount, and a valve opening degree command device that provides the reduction feedback amount from the feedback amount calculation command device as a command signal to the control valve. Device.
JP26348285A 1985-11-22 1985-11-22 Rolling reduction controlling apparatus for continus casting billet Granted JPS62124058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26348285A JPS62124058A (en) 1985-11-22 1985-11-22 Rolling reduction controlling apparatus for continus casting billet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26348285A JPS62124058A (en) 1985-11-22 1985-11-22 Rolling reduction controlling apparatus for continus casting billet

Publications (2)

Publication Number Publication Date
JPS62124058A JPS62124058A (en) 1987-06-05
JPH0342142B2 true JPH0342142B2 (en) 1991-06-26

Family

ID=17390121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26348285A Granted JPS62124058A (en) 1985-11-22 1985-11-22 Rolling reduction controlling apparatus for continus casting billet

Country Status (1)

Country Link
JP (1) JPS62124058A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63303669A (en) * 1987-05-30 1988-12-12 Ishikawajima Harima Heavy Ind Co Ltd Apparatus for controlling rolling reduction to continuously cast slab
JPS63313623A (en) * 1987-06-12 1988-12-21 Ishikawajima Harima Heavy Ind Co Ltd Rolling reduction apparatus for continuously cast slab
JPS6431536A (en) * 1987-07-28 1989-02-01 Ishikawajima Harima Heavy Ind Forging press device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS564304A (en) * 1979-06-23 1981-01-17 Sumitomo Metal Ind Ltd Manufacturing apparatus for continuously cast billet
JPS5645256A (en) * 1979-09-17 1981-04-24 Hitachi Ltd Continuous casting device
JPS57106461A (en) * 1980-12-24 1982-07-02 Kawasaki Steel Corp Method for controlling pressure of pinch roll of continuous casting installation
JPS5813457A (en) * 1981-07-14 1983-01-25 Sumitomo Metal Ind Ltd Continuous casting method
JPS5813454A (en) * 1981-07-13 1983-01-25 Nippon Steel Corp Method and device for controlling thickness of ingot in continuous casting

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS564304A (en) * 1979-06-23 1981-01-17 Sumitomo Metal Ind Ltd Manufacturing apparatus for continuously cast billet
JPS5645256A (en) * 1979-09-17 1981-04-24 Hitachi Ltd Continuous casting device
JPS57106461A (en) * 1980-12-24 1982-07-02 Kawasaki Steel Corp Method for controlling pressure of pinch roll of continuous casting installation
JPS5813454A (en) * 1981-07-13 1983-01-25 Nippon Steel Corp Method and device for controlling thickness of ingot in continuous casting
JPS5813457A (en) * 1981-07-14 1983-01-25 Sumitomo Metal Ind Ltd Continuous casting method

Also Published As

Publication number Publication date
JPS62124058A (en) 1987-06-05

Similar Documents

Publication Publication Date Title
US7806164B2 (en) Method and system for tracking and positioning continuous cast slabs
EP0804981B1 (en) Continuous casting method and apparatus therefor
KR20090037499A (en) Method of casting thin cast strip
JP2012011459A (en) Soft reduction method of cast slab in continuous casting
KR20010012379A (en) Method and device for producing slabs of steel
KR100588429B1 (en) Strip steering
JP2009066652A (en) Continuous casting method for steel, and continuous casting machine
JP5779978B2 (en) Light reduction method of slab in continuous casting
JPH0342142B2 (en)
JP5790449B2 (en) Quality judgment method for continuous cast slabs
KR101500102B1 (en) Apparatus and method of controlling wear of edgedam in twin roll strip casting process
US20180161861A1 (en) Monitoring and Control System for Continuous Casting Machine
JP3041591B2 (en) Method and apparatus for changing spacing of slab support guide roll for continuous casting
KR101053973B1 (en) Measuring device for measuring alignment deviation of segment girder and correcting misalignment
JPS62212048A (en) Slab reduction detection device and slab reducing control device using this detection device
KR920008556B1 (en) Apparatus for aligning pouring nozzle in continuous casting installation
JP3452799B2 (en) Continuous casting guide roll device and continuous casting method
JPS63303668A (en) Apparatus for controlling rolling reduction to continuously cast slab
JPH0333057B2 (en)
CN110114171A (en) Continuous casting equipment and method
JPS62124057A (en) Tool carry controlling apparatus
JP3237516B2 (en) Level control method and level control device for continuous casting machine
JPH0362505B2 (en)
JPH01306059A (en) Large pressing reduction method for cast slab strand in continuous casting
JPH02160154A (en) Method and apparatus for controlling molten metal surface level in mold

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees