JPH0341963B2 - - Google Patents

Info

Publication number
JPH0341963B2
JPH0341963B2 JP57115593A JP11559382A JPH0341963B2 JP H0341963 B2 JPH0341963 B2 JP H0341963B2 JP 57115593 A JP57115593 A JP 57115593A JP 11559382 A JP11559382 A JP 11559382A JP H0341963 B2 JPH0341963 B2 JP H0341963B2
Authority
JP
Japan
Prior art keywords
goethite
iron powder
acicular
magnetic
properties
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57115593A
Other languages
Japanese (ja)
Other versions
JPS596502A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP57115593A priority Critical patent/JPS596502A/en
Publication of JPS596502A publication Critical patent/JPS596502A/en
Publication of JPH0341963B2 publication Critical patent/JPH0341963B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/065Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder obtained by a reduction

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、磁気記録用磁性材料として用いられ
る針状形強磁性鉄粉の製造技術に関し、詳しくは
ゲーサイトを脱水して得たヘマタイトを特定の条
件下で焼成処理して針状性良好な強磁性鉄粉を得
る技術に関する。 従来、磁気用磁性材料としては、針状であるγ
−Fe2O3やFe3O4などの酸化鉄、あるいはこれら
にCoをドープした酸化鉄が用いられている。し
かしながら、最近の磁気記録の高密度化の要請に
応じるには、これらの酸化鉄系の磁性材料では性
能不足であつて、鉄を主成分とする強磁性金属粉
が求められている。 針状形強磁性鉄粉に要求される性能としては、
金状形が良好であること、粒径分布が狭いこと、
磁気特性が十分であること、酸化安定性が良好で
あること、比表面積が最適であることなどのあら
ゆる特性の綜合結果が良好であることが要求され
る。 針状形強磁性鉄粉の製造方法には、種々の方法
が知られているが、工業的に主に行なわれている
のは、針状形ゲーサイトをH2、COなどの還元性
ガスにより還元する乾式還元法である。 ゲーサイトを乾式還元して針状形強磁性鉄粉を
製造する方法としては、既にいくつか提案されて
いる。 例えば特公昭56−39682、特開昭56−23201、特
開昭56−20105などがある。 しかしこれらに記された技術では、磁気特性、
比表面積、電子顕微鏡写真で観察される形状や粒
径分布、酸化安定性、磁気テープに作成したとき
のテープ特性など種々の評価法で評価した場合、
これらの特性が必ずしも十分であるとは言えな
い。 たとえば第一に、鉄粉の磁気特性値が低い。す
なわち特公昭56−39682に示されている通り、金
属粉の抗磁力(Hc)、飽和磁束密度(σs)が示さ
れているが、いずれも金属鉄粉として期待される
値よりも低い。 つぎに、酸化安定性が不十分である。すなわち
特開昭56−23201における金属鉄粉は、空気中、
60℃、90%RHの条件下において促進テストを行
うと、飽和磁束密度が大きく低下してしまう。 更に、これら先行技術により得られた金属鉄粉
を用いて作製した磁気テープでは、抗磁力、残留
磁束密度、角形比などの特性が良くない。例えば
特開昭56−20105の方法で得た金属鉄粉を用いて
作成した磁気テープの特性値は、きわめて不十分
である。 この様な問題は、金属鉄粉製造時において針状
形を保持する技術が、酸化鉄系のそれに比べて格
段と難かしいことに主たる原因があり、このこと
のゆえに、磁気特性、酸化安定性、比表面積、磁
気テープとしたときの特性など種々の特性がすべ
て良好である金属鉄粉を得ることを困難にしてい
る。酸化鉄系の磁性粉の製造は、古くから行なわ
れており、針状形保持の技術は完成されている
が、この技術をそのまま金属鉄粉の製造に適用し
ても旨くゆかない。そして、前記の様に、ゲーサ
イトの乾式還元法により強磁性金属鉄粉を製造す
るために、いくつかのい新しい方法が提案されて
はいるが、それぞれ未だ何らかの問題点を残して
おり、記録用磁性材料としては未だ満足しうるも
のではない。これらの公知の方法においても、な
お未だ金属鉄粉における針状形保持の困難さを十
分に克服し得ていないために、例えば磁気特性に
おいて高い特性を得ようとすれば比表面積の制御
に無理が生じたり、あるいは酸化安定性を向上さ
せようとすれば、磁気テープを作成したときの特
性を犠性にせざるを得ないといつた様に、綜合的
に高性能を得るには至つていない。 参考の為にここで、酸化鉄に比較して金属鉄粉
の針状形保持の困難性がいかなる理由に基くかに
ついてのべる。 ここでまず針状形の保持とはどういう意味なの
かについて説明する。 ゲーサイトから還元鉄を製造する工程には、脱
水してヘマタイトにする工程と、更に還元する工
程に分けられる。ヘマタイト化工程ではゲーサイ
トの脱水が起こり、1個の単結晶から成り立つて
いた針状形のゲーサイト粒子には多数の脱水孔が
生じ、いくつかのヘマタイト単結晶の集合体すな
わち多結晶へと変換する。ついで還元を受けるこ
とにより、Feの単結晶の集合体となる。この時、
Feの単結晶集合体の外形が、出発物であるゲー
サイト粒子の針状形をよく保持していることが望
まれる。これを妨げる針状形の崩壊もしくは針状
形のひずみには、ヘマタイト化の工程及び気相還
元の工程で、針状粒子がいくつかの破片に折れた
り、2つ以上の針状粒子が焼結して塊状になつた
り、弓状にわん曲したりすることがある。 針状形の崩壊もしくはひずみにより生じる、破
片粒子、塊状粒子、わん曲粒子等は、粒径分布拡
大の原因となつたり、磁気特性特に抗磁力、角形
比の低下や、テープ作製時の配向性の悪化の原因
となる。 酸化鉄粉の金属鉄粉の調整上の相異点として
は、第1に還元率で比較すれば、ゲーサイト中に
含まれている全酸素量のうち、マグネタイトを製
造する場合には、脱水で25%、還元で8.3%の酸
素が除去されるにすぎないが、金属鉄粉を製造す
る場合には、脱水で25%、還元で75%のすべての
酸素が除去される。したがつて、還元時間が長く
なり、針状形保持の困難さが増す。 第2に結晶構造について比較すれば、ヘマタイ
トとマグネタイトもしくはマグヘマタイトは、酸
素分子の最密充填構造を基本として、鉄が酸素を
介して結合することにより結晶が構築されている
点でよく似ているのに対して、金属Feは、酸素
分子を保有せずFe原子同志のみで結晶が構築さ
れている点で、大きく異なる。したがつて、還元
の進行にともなつて、粒子内部からの針状形崩壊
が発生しやすい。 第3に、密度がヘマタイトでは5.30g/cm3、マ
グネタイトでは5.19g/cm3に対して、Feでは7.86
g/cm3と大きく異なる。したがつて、還元の進行
に伴う針状形のひずみが生じやすい。 本発明者らは、上記に述べた技術上の問題を解
決することを目的とし、還元鉄の針状形保持の困
難さを克服するために鋭意努力を重ねた結果、針
状晶ゲーサイトから得たヘマタイトを特定の焼成
処理することがきわめて有効であることを見い出
し、本発明を完成した。 すなわち本発明は、針状晶ゲーサイトを500℃
未満で脱水して得たヘマタイトを、雰囲気中の水
蒸気濃度が5容量%以下でありかつ温度が500℃
以上において焼成処理することを特徴とする改良
された強磁性鉄粉の製造方法である。 本発明に云う針状晶ゲーサイトは、公知の技術
により合成される針状晶ゲーサイトを用いてよ
い。例えば、硫酸鉄を過剰のカセイソーダ液と混
合したのち含酸素ガスを吹込んで針状晶ゲーサイ
トを得る、いわゆるアルカリ法ゲーサイト、塩化
鉄溶液に低PHの条件下で含酸素ガスを吹込んで針
状晶ゲーサイトを得る、いわゆる酸性法ゲーサイ
トのいずれであつてもよい。 また、ゲーサイトを合成する際にあらかじめ、
特許請求の範囲第二項に特定した各種の元素すな
わちCr、Zn、Ni、Si、Mn、Coなどの鉄以外の
成分を、第1鉄塩水溶液もしくはアルカリ水溶液
に添加したのち、含酸素ガスを吹込んで合成され
た、副成分を含有した針状晶ゲーサイトを用いる
ことは本発明の効果をより一層顕著ならしめる。 更に、ゲーサイトの表層部に、Si、Zn、Ni、
Cr、Co、Mn、B、Snなどの鉄以外の成分を被
着させておくことも本発明の効果を助長する。 ゲーサイトから脱水過程を経たまゝのヘマタイ
トは、きわめて多孔性に富み低密度であつて、こ
れをそのまま還元して得られた金属粉は、多孔性
であるためか磁気特性が低く、また、崩壊しやす
いために磁気記録用磁性材料としてはあまり有用
でなはない。 本発明者らは長年の研究により、ゲーサイトを
脱水して得たヘマタイトを特定の条件下で焼成処
理することが、すぐれた品質を有する磁気記録用
強磁性鉄粉を得る上できわめて有効であることを
見出し、本発明を完成するに到つた。 脱水過程で発生する水分は、原料ゲーサイトに
対し重量比で約10v%であり、加熱炉内の水分濃
度としては容易に5v%以上の高濃度に達するの
で、本発明を実施するためには、焼成処理過程に
移行する前に、加熱炉内の水分をパージしておく
必要がある。加熱炉内の水分パージ方法として
は、加熱炉内に乾燥空気を通気する方法、炉の開
口部から水分を拡散させる方法、脱水工程終了時
点でヘマタイトを別の加熱炉へ移した上で焼成を
行う方法等があるが、いずれを用いてもかまわな
い。 本発明の特定する条件を外した場合即ち焼成処
理過程で雰囲気中の水分濃度を5v%以上とした
場合には、得られた鉄粉の磁気特性が良くない。
この理由は針状晶ヘマタイトが高温下において焼
結を生じやすくなるからではないかと思われる。
焼結したヘマタイトを還元して得られる還元鉄粉
は、針状形のそこなわれた鉄粉であるために、磁
気記録用磁性材料としては、磁気特性が不足して
おり、また、テープ塗布時の配向性も悪く、さら
には、充填性が高くないために、高品質の磁気テ
ープを得ることができない。 本発明の実施における加熱方式としては、横型
回転炉が便利に用いられるが、流動層方式、固定
床方式などいずれの方式を用いてもよい。 なお、本発明の実施により得られるヘマタイト
を還元する方法は公知のいづれの技術も適用でき
る。 本発明の実施により得られた強磁性鉄粉のすぐ
れている点は、第1に、良好な磁気特性を有する
ことである。金属鉄粉は、従来の酸化鉄系の磁性
材料に比べ、抗磁力で2〜3倍、飽和磁化力で2
倍ときわめて大巾に向上している点に最大の利点
を有するが、この利点が本発明の実施により十分
に発揮されている。 第2に、酸化安定性が高いことである。これ
は、本発明の方法により得られる強磁性鉄粉を、
空気中、60℃、90%RHの条件下において劣化促
進テストを行うことにより、その磁気特性の劣化
が小さいことで判定される。 第3に、本発明の方法を実施して得られる強磁
性鉄粉を用いて製造したテープは、抗磁力、残留
磁束密度、角形比において、従来の水準に比して
飛躍的に向上している。 以下実施例より、本発明を具体的に説明する。 実施例 1 硫酸第1鉄水溶液を、カセイソーダ水溶液を添
加したのち、35℃において19時間空気を吹込んで
針状晶ゲーサイトを得た。このゲーサイトを水中
に分散させたのち、ケイ酸ナトリウムの水溶液を
添加してFeに対してSiが0.5%となる様被着処理
したのち、乾燥させた。この乾燥粉を横型転動炉
へ入れ、480℃まで昇温したのち、乾燥空気を通
気することにより炉内水分をパージし、ついて
550℃に保持しながら75時間焼成処理を行なつた。
この焼成処理過程での雰囲気中の水分は、0.05容
量%であつた。得られたヘマタイトを常法により
還元して鉄粉を得た。この鉄粉の磁気特性は、
Hc=1250Oe、σs=175emu/g、σr/σs=0.51で
あり、鉄粉の比表面積は30m2/gであつて、電子
顕微鏡写真により観察したところ、良好な針状形
を認めた。 実施例 2 硫酸第一鉄水溶液に、硫酸クロム水溶液をFe
に対するCr換算で0.2%、硫酸亜鉛水溶液をFeに
対するZe換算で0.6%添加したのち、アルカリ水
溶液と混合し、40℃において12時間空気を吹込ん
でゲーサイトを得た。このゲーサイトを水中に分
散させたのち、ケイ酸ナトリウムの水溶液を添加
してFeに対してSiが0.5%となるよう被着処理し
たのち、乾燥させた。この乾燥粉を実施例1と同
一の方法により脱水・焼成及び還元を行なつて、
鉄粉を得た。この鉄粉の特性は表1の通りで、い
ずれも、必要なる磁気特性と、適正なる鉄粉の比
表面積及び良好なる針状形を持つていた。 実施例 3 硫酸第1鉄水溶液を、カセイソーダ水溶液を添
加したのち、35℃において19時間空気を吹込んで
針状晶ゲーサイトを得た。このゲーサイトを水中
に分散させたのち、ケイ酸ナトリウムの水溶液を
添加してFeに対してSiが0.5%となる様被着処理
したのち、乾燥させた。この乾燥粉を流動層に入
れ、N2通気下480℃まで昇温した。ついでこのヘ
マタイトを横型転動炉に移し550℃にて7.5時間焼
成した。この焼成過程での雰囲気中の水分は、
4.0容量%であつた。得られたヘマタイトを常法
により還元して鉄粉を得た。この鉄粉の特性は表
1の通りで、いずれも、必要なる磁気特性と、適
正なる鉄粉の比表面積及び良好なる針状形を持つ
ていた。 実施例 4 硫酸第1鉄水溶液を、カセイソーダ水溶液を添
加したのち、35℃において5時間空気を吹込んで
針状晶ゲーサイトを得た。このゲーサイトを水中
に分散させたのち、ケイ酸ナトリウムの水溶液を
添加してFeに対してSiが0.5%となる様被着処理
したのち、乾燥させた。この乾燥粉を横型転動炉
へ入れ480℃まで昇温したのち、乾燥空気を通気
することにより炉内水分をパージし、ついで550
℃に保持しながら7.5時間焼成処理を行なつた。
この焼成処理過程での雰囲気中の水分は、0.05容
量%であつた。得られたヘマタイトを常法により
還元して鉄粉を得た。この鉄粉の特性は表1の通
りで、いずれも、必要なる磁気特性と、適正なる
鉄粉の比表面積及び良好なる針状形を持つてい
た。 比較例 1 硫酸第1鉄水溶液を、カセイソーダ水溶液を添
加したのち、35℃において19時間空気を吹込んで
針状晶ゲーサイトを得た。このゲーサイトを水中
に分散させたのち、ケイ酸ナトリウムの水溶液を
添加してFeに対してSiが0.5%となる様被着処理
したのち、乾燥させた。この乾燥粉を横型転動炉
へ入れ、480℃まで昇温したのち、炉内水分をパ
ージすることなく、550℃に保持しながら7.5時間
焼成処理を行なつた。この焼成処理過程での雰囲
気中の水分は、20〜15容量%であつた。得られた
ヘマタイトを常法により還元して得た鉄粉の特性
を表1に示す。磁気特性が良好でなく、金属粉の
比表面積が適正な範囲を外れており、しかも針状
形が不良であつた。 実施例 5〜8 実施例1〜3で得られた強磁性鉄粉(P1〜P3)
23重量部、ポリウレタン系樹脂4重量部、トルエ
ン16重量部からなる混合物をボールミル中で15時
間撹拌分散した後、さらに、上記ポリウレタン系
樹脂11重量部、トルエン46重量部をポールミル中
に加え、1時間撹拌分散して磁性塗料を調製し
た。 得られた磁性塗料を、厚さ21μmのポリエステ
ルフイルムに乾燥厚みが5μmとなる様塗布し、
磁界を通して強磁性鉄粉の配向を行なつた後乾燥
し、次いで磁性層表面をカレンダー処理により鏡
面加工した後、所定の幅に裁断して磁気テープを
得た。 得られた磁気テープの抗磁力(Hc)、残留磁束
密度及び角形比を測定した値を表2に示す。いず
れも良好な特性値を示している。 比較例 2 比較例1で得られた強磁性鉄粉(P−4)よ
り、実施例5〜8と全く同一の方法で磁気テープ
を得た後、抗磁力(Hc)、残留磁束密度及び角形
比を測定した値を表2に示す。いずれも磁気テー
プとしての特性値が不十分である。 実施例 9〜12 実施例1〜4で得られた強磁性鉄粉(P−1〜
P−4)を、空気中、60℃、90%RHの雰囲気下
で24時間放置した後の磁気特性を表3に示す。い
ずれも、特性の低下が少なく酸化安定性が高いた
めに磁気特性の劣化が小さい。 比較例 3 比較例1で得られた強磁性鉄粉(P−4)を、
実施例9〜12と全く同一条件で放置した後の磁気
特性を表3に示す。いずれも酸化安定性が低いた
めに、磁気特性の劣化が大きい。
The present invention relates to a manufacturing technology for acicular ferromagnetic iron powder used as a magnetic material for magnetic recording, and more specifically, hematite obtained by dehydrating goethite is sintered under specific conditions to obtain good acicular properties. Concerning technology for obtaining ferromagnetic iron powder. Conventionally, as a magnetic material for magnetism, acicular γ
- Iron oxides such as Fe 2 O 3 and Fe 3 O 4 or iron oxides doped with Co are used. However, in order to meet the recent demands for higher density magnetic recording, these iron oxide-based magnetic materials have insufficient performance, and ferromagnetic metal powders containing iron as a main component are required. The performance required for needle-shaped ferromagnetic iron powder is as follows:
Good gold shape, narrow particle size distribution,
It is required that the overall result of all properties, such as sufficient magnetic properties, good oxidation stability, and optimal specific surface area, be good. Various methods are known for producing acicular ferromagnetic iron powder, but the main method used industrially is to process acicular goethite with a reducing gas such as H 2 or CO. This is a dry reduction method. Several methods have already been proposed for producing acicular ferromagnetic iron powder by dry reduction of goethite. For example, there are JP-A-56-39682, JP-A-56-23201, JP-A-56-20105, etc. However, with the techniques described in these, the magnetic properties,
When evaluated using various evaluation methods such as specific surface area, shape and particle size distribution observed in electron micrographs, oxidation stability, and tape properties when made into magnetic tape,
It cannot be said that these characteristics are necessarily sufficient. For example, firstly, the magnetic properties of iron powder are low. That is, as shown in Japanese Patent Publication No. 56-39682, the coercive force (Hc) and saturation magnetic flux density (σs) of metal powder are shown, both of which are lower than expected values for metal iron powder. Next, oxidation stability is insufficient. In other words, the metallic iron powder in JP-A-56-23201 is
When accelerated testing is performed under conditions of 60°C and 90% RH, the saturation magnetic flux density decreases significantly. Furthermore, magnetic tapes manufactured using metallic iron powder obtained by these prior art techniques have poor properties such as coercive force, residual magnetic flux density, and squareness ratio. For example, the characteristic values of a magnetic tape made using metallic iron powder obtained by the method of JP-A-56-20105 are extremely inadequate. The main cause of these problems is that the technology to maintain the acicular shape during the production of metallic iron powder is much more difficult than that for iron oxide, and because of this, the magnetic properties and oxidation stability This makes it difficult to obtain metallic iron powder that has good properties in all respects, such as , specific surface area, and properties when used as a magnetic tape. The production of iron oxide-based magnetic powder has been carried out for a long time, and the technology for maintaining the needle-like shape has been perfected, but applying this technology as is to the production of metallic iron powder will not work. As mentioned above, several new methods have been proposed for producing ferromagnetic metallic iron powder by the dry reduction method of goethite, but each still has some problems and It is still not satisfactory as a magnetic material for use. Even with these known methods, the difficulty of maintaining the acicular shape of metallic iron powder has not yet been sufficiently overcome, so that it is difficult to control the specific surface area when trying to obtain high magnetic properties, for example. If you try to improve the oxidation stability, you have to sacrifice the characteristics of the magnetic tape when it was made, so it is difficult to obtain high performance overall. do not have. For your reference, we will discuss here the reason behind the difficulty in maintaining the acicular shape of metallic iron powder compared to iron oxide. First, what is meant by maintaining the needle-like shape will be explained. The process of producing reduced iron from goethite is divided into a process of dehydration to form hematite and a process of further reduction. During the hematization process, goethite dehydrates, and the needle-shaped goethite particles, which were made up of one single crystal, develop many dehydration pores and turn into an aggregate of several hematite single crystals, that is, polycrystals. Convert. Then, by undergoing reduction, it becomes an aggregate of Fe single crystals. At this time,
It is desired that the external shape of the Fe single crystal aggregate retains well the acicular shape of the starting goethite particles. Disintegration or distortion of the acicular shape that prevents this may include breakage of the acicular particle into several pieces or sintering of two or more acicular particles during the hematization process and gas phase reduction process. It may become knotted and form a lump or become arched. Fragmented particles, lumpy particles, curved particles, etc. caused by the collapse or distortion of the acicular shape may cause an expansion of the particle size distribution, a decrease in magnetic properties, especially coercive force, squareness ratio, and poor orientation during tape production. cause deterioration of The difference in preparation between iron oxide powder and metallic iron powder is that, firstly, if we compare the reduction rate, of the total amount of oxygen contained in goethite, when producing magnetite, the amount of dehydration is Only 25% of the oxygen is removed by dehydration and 8.3% by reduction, but when producing metallic iron powder, 25% of the oxygen is removed by dehydration and 75% by reduction. Therefore, the reduction time becomes longer and the difficulty of maintaining the needle shape increases. Second, if we compare their crystal structures, hematite and magnetite or maghematite are very similar in that their crystals are constructed by bonding iron through oxygen, based on a close-packed structure of oxygen molecules. On the other hand, metal Fe differs greatly in that it does not contain oxygen molecules and its crystals are composed only of Fe atoms. Therefore, as the reduction progresses, the needle-like shape is likely to collapse from inside the particles. Thirdly, the density is 5.30 g/cm 3 for hematite and 5.19 g/cm 3 for magnetite, whereas it is 7.86 g/cm 3 for Fe.
It is significantly different from g/ cm3 . Therefore, needle-shaped distortion is likely to occur as the reduction progresses. With the aim of solving the above-mentioned technical problems, the present inventors made intensive efforts to overcome the difficulty of maintaining the acicular shape of reduced iron, and as a result, the acicular goethite The present invention was completed based on the discovery that it is extremely effective to subject the obtained hematite to a specific firing treatment. That is, in the present invention, acicular goethite is heated at 500°C.
The hematite obtained by dehydrating the hematite at a temperature of less than 500°C is
This is an improved method for producing ferromagnetic iron powder characterized by carrying out a firing treatment. As the acicular goethite referred to in the present invention, acicular goethite synthesized by a known technique may be used. For example, acicular goethite is obtained by mixing iron sulfate with an excess of caustic soda solution and then blowing in an oxygen-containing gas to obtain acicular goethite. It may be any so-called acid process goethite that obtains crystalline goethite. Also, when synthesizing game sites, in advance,
After adding various elements specified in claim 2, that is, components other than iron such as Cr, Zn, Ni, Si, Mn, and Co, to an aqueous ferrous salt solution or an aqueous alkaline solution, an oxygen-containing gas is added. Use of acicular crystal goethite containing subcomponents synthesized by blowing makes the effects of the present invention even more remarkable. Furthermore, the surface layer of goethite contains Si, Zn, Ni,
The effect of the present invention is also enhanced by depositing components other than iron such as Cr, Co, Mn, B, and Sn. Hematite that has undergone the dehydration process from goethite is extremely porous and has a low density, and the metal powder obtained by directly reducing it has low magnetic properties, probably due to its porous nature. Because it easily disintegrates, it is not very useful as a magnetic material for magnetic recording. Through many years of research, the present inventors have found that firing hematite obtained by dehydrating goethite under specific conditions is extremely effective in obtaining ferromagnetic iron powder for magnetic recording with excellent quality. They discovered something and completed the present invention. The moisture generated during the dehydration process is about 10v% by weight of the raw goethite, and the moisture concentration in the heating furnace easily reaches a high concentration of 5v% or more. Before proceeding to the firing process, it is necessary to purge moisture in the heating furnace. Methods for purging moisture in the heating furnace include venting dry air into the furnace, diffusing moisture from the opening of the furnace, and transferring the hematite to another heating furnace at the end of the dehydration process before firing. There are several ways to do this, and any of them may be used. When the conditions specified in the present invention are not met, that is, when the moisture concentration in the atmosphere is set to 5v% or more during the firing process, the magnetic properties of the obtained iron powder are not good.
The reason for this is thought to be that acicular hematite tends to sinter at high temperatures.
The reduced iron powder obtained by reducing sintered hematite is iron powder with a damaged acicular shape, so it lacks magnetic properties as a magnetic material for magnetic recording. The magnetic tape has poor orientation and, furthermore, the filling properties are not high, making it impossible to obtain a high-quality magnetic tape. As a heating method in carrying out the present invention, a horizontal rotary furnace is conveniently used, but any method such as a fluidized bed method or a fixed bed method may be used. Note that any known technique can be applied to the method of reducing hematite obtained by carrying out the present invention. The first advantage of the ferromagnetic iron powder obtained by implementing the present invention is that it has good magnetic properties. Metallic iron powder has 2 to 3 times the coercive force and 2 times the saturation magnetization force compared to conventional iron oxide magnetic materials.
The greatest advantage lies in the extremely large improvement, which is twice as large, and this advantage is fully demonstrated by implementing the present invention. Second, it has high oxidation stability. This means that the ferromagnetic iron powder obtained by the method of the present invention,
By conducting an accelerated deterioration test in air at 60°C and 90% RH, it is determined that the deterioration of magnetic properties is small. Thirdly, the tape manufactured using the ferromagnetic iron powder obtained by implementing the method of the present invention has dramatically improved coercive force, residual magnetic flux density, and squareness ratio compared to conventional standards. There is. The present invention will be specifically explained below using Examples. Example 1 After adding a caustic soda aqueous solution to a ferrous sulfate aqueous solution, air was blown into the mixture at 35° C. for 19 hours to obtain acicular goethite. After this goethite was dispersed in water, an aqueous solution of sodium silicate was added to coat it so that Si was 0.5% relative to Fe, and then it was dried. This dry powder is put into a horizontal rolling furnace, heated to 480℃, and then the moisture inside the furnace is purged by ventilating dry air.
Firing treatment was carried out for 75 hours while maintaining the temperature at 550°C.
The moisture content in the atmosphere during this firing process was 0.05% by volume. The obtained hematite was reduced by a conventional method to obtain iron powder. The magnetic properties of this iron powder are
Hc = 1250 Oe, σs = 175 emu/g, σr/σs = 0.51, the specific surface area of the iron powder was 30 m 2 /g, and when observed using an electron microscope, a good needle-like shape was observed. Example 2 Adding a chromium sulfate aqueous solution to a ferrous sulfate aqueous solution
After adding a zinc sulfate aqueous solution of 0.2% in terms of Cr and 0.6% in terms of Ze relative to Fe, the mixture was mixed with an alkaline aqueous solution and air was blown in at 40°C for 12 hours to obtain goethite. After this goethite was dispersed in water, an aqueous solution of sodium silicate was added to coat it so that Si was 0.5% relative to Fe, and then it was dried. This dried powder was dehydrated, calcined, and reduced in the same manner as in Example 1, and
Obtained iron powder. The properties of this iron powder are shown in Table 1, and all had the necessary magnetic properties, appropriate specific surface area of the iron powder, and good acicular shape. Example 3 After adding a caustic soda aqueous solution to a ferrous sulfate aqueous solution, air was blown into the mixture at 35° C. for 19 hours to obtain acicular goethite. After this goethite was dispersed in water, an aqueous solution of sodium silicate was added to coat it so that Si was 0.5% relative to Fe, and then it was dried. This dry powder was placed in a fluidized bed and heated to 480° C. under N 2 aeration. This hematite was then transferred to a horizontal rolling furnace and fired at 550°C for 7.5 hours. The moisture in the atmosphere during this firing process is
It was 4.0% by volume. The obtained hematite was reduced by a conventional method to obtain iron powder. The properties of this iron powder are shown in Table 1, and all had the necessary magnetic properties, appropriate specific surface area of the iron powder, and good acicular shape. Example 4 After adding a caustic soda aqueous solution to a ferrous sulfate aqueous solution, air was blown into the mixture at 35° C. for 5 hours to obtain acicular goethite. After this goethite was dispersed in water, an aqueous solution of sodium silicate was added to coat it so that Si was 0.5% relative to Fe, and then it was dried. After this dry powder was put into a horizontal rolling furnace and heated to 480℃, the moisture inside the furnace was purged by ventilating dry air, and then heated to 550℃.
The calcination treatment was carried out for 7.5 hours while maintaining the temperature at ℃.
The moisture content in the atmosphere during this firing process was 0.05% by volume. The obtained hematite was reduced by a conventional method to obtain iron powder. The properties of this iron powder are shown in Table 1, and all had the necessary magnetic properties, appropriate specific surface area of the iron powder, and good acicular shape. Comparative Example 1 After adding a caustic soda aqueous solution to a ferrous sulfate aqueous solution, air was blown at 35° C. for 19 hours to obtain acicular goethite. After this goethite was dispersed in water, an aqueous solution of sodium silicate was added to coat it so that Si was 0.5% relative to Fe, and then it was dried. This dry powder was placed in a horizontal rotary furnace and heated to 480°C, and then fired for 7.5 hours while maintaining the temperature at 550°C without purging the moisture in the furnace. The moisture content in the atmosphere during this firing process was 20 to 15% by volume. Table 1 shows the properties of iron powder obtained by reducing the obtained hematite using a conventional method. The magnetic properties were not good, the specific surface area of the metal powder was outside the appropriate range, and the needle shape was poor. Examples 5 to 8 Ferromagnetic iron powders obtained in Examples 1 to 3 (P1 to P3)
After stirring and dispersing a mixture of 23 parts by weight, 4 parts by weight of polyurethane resin, and 16 parts by weight of toluene in a ball mill for 15 hours, 11 parts by weight of the polyurethane resin and 46 parts by weight of toluene were further added to the ball mill, and 1 A magnetic paint was prepared by stirring and dispersing for a period of time. The obtained magnetic paint was applied to a 21 μm thick polyester film to a dry thickness of 5 μm.
The ferromagnetic iron powder was oriented in a magnetic field and then dried.The surface of the magnetic layer was mirror-finished by calendering, and then cut into a predetermined width to obtain a magnetic tape. Table 2 shows the measured values of coercive force (Hc), residual magnetic flux density, and squareness ratio of the obtained magnetic tape. All of them show good characteristic values. Comparative Example 2 A magnetic tape was obtained from the ferromagnetic iron powder (P-4) obtained in Comparative Example 1 in exactly the same manner as in Examples 5 to 8, and then the coercive force (Hc), residual magnetic flux density, and square shape were obtained. Table 2 shows the measured ratios. Both have insufficient characteristic values as magnetic tapes. Examples 9 to 12 Ferromagnetic iron powders obtained in Examples 1 to 4 (P-1 to
Table 3 shows the magnetic properties of P-4) after it was left in the air at 60° C. and 90% RH for 24 hours. In either case, the deterioration of magnetic properties is small because the properties are less deteriorated and the oxidation stability is high. Comparative Example 3 The ferromagnetic iron powder (P-4) obtained in Comparative Example 1 was
Table 3 shows the magnetic properties after being left under exactly the same conditions as Examples 9 to 12. Both have low oxidation stability, resulting in significant deterioration of magnetic properties.

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 針状晶ゲーサイトを500℃未満で脱水して得
たヘマタイトを、雰囲気中の水蒸気濃度が5容量
%以下でありかつ温度が500℃以上において焼成
処理することを特徴とする、改良された強磁性鉄
粉の製造方法。 2 針状晶ゲーサイトが、周期律表第b族、第
族、第族に属する金属、錫、マンガン、チタ
ン、珪素、硼素、ビスマス、鉛、リン、アンチモ
ン、クローム、モリブデン、タングステンから成
る群より選ばれた1種又は2種以上の元素を含有
するゲーサイトであることを特徴とする特許請求
の範囲第1項記載の方法。
[Claims] 1. Hematite obtained by dehydrating acicular goethite at a temperature below 500°C is subjected to a firing treatment at a temperature of 500°C or higher and a water vapor concentration in the atmosphere of 5% by volume or less. An improved method for producing ferromagnetic iron powder. 2 Acicular crystal goethite is a group consisting of metals belonging to group B, group, and group of the periodic table, tin, manganese, titanium, silicon, boron, bismuth, lead, phosphorus, antimony, chromium, molybdenum, and tungsten. 2. The method according to claim 1, wherein the goethite contains one or more selected elements.
JP57115593A 1982-07-05 1982-07-05 Manufacture of improved ferromagnetic iron powder Granted JPS596502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57115593A JPS596502A (en) 1982-07-05 1982-07-05 Manufacture of improved ferromagnetic iron powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57115593A JPS596502A (en) 1982-07-05 1982-07-05 Manufacture of improved ferromagnetic iron powder

Publications (2)

Publication Number Publication Date
JPS596502A JPS596502A (en) 1984-01-13
JPH0341963B2 true JPH0341963B2 (en) 1991-06-25

Family

ID=14666441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57115593A Granted JPS596502A (en) 1982-07-05 1982-07-05 Manufacture of improved ferromagnetic iron powder

Country Status (1)

Country Link
JP (1) JPS596502A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2732463B2 (en) * 1988-01-07 1998-03-30 コニカ株式会社 Magnetic recording media

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5625909A (en) * 1979-08-10 1981-03-12 Toda Kogyo Corp Preparation of magnetic grain powder consisting of needle crystal alloy of iron, cobalt and zinc
JPS5638405A (en) * 1979-09-01 1981-04-13 Basf Ag Production of needle like ferromagnetic iron particle
JPS5690904A (en) * 1979-12-25 1981-07-23 Mitsui Toatsu Chem Inc Production of ferromagnetic metal powder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5625909A (en) * 1979-08-10 1981-03-12 Toda Kogyo Corp Preparation of magnetic grain powder consisting of needle crystal alloy of iron, cobalt and zinc
JPS5638405A (en) * 1979-09-01 1981-04-13 Basf Ag Production of needle like ferromagnetic iron particle
JPS5690904A (en) * 1979-12-25 1981-07-23 Mitsui Toatsu Chem Inc Production of ferromagnetic metal powder

Also Published As

Publication number Publication date
JPS596502A (en) 1984-01-13

Similar Documents

Publication Publication Date Title
JPWO2008149785A1 (en) Magnetic iron oxide particles, magnetic materials, and radio wave absorbers
JPH0624062B2 (en) Magnetic recording medium
JP3268830B2 (en) Metal magnetic powder and method for producing the same
JPH0341963B2 (en)
JPS5980901A (en) Manufacture of ferromagnetic metal powder
JPS5923505A (en) Magnetic powder
JPS62241827A (en) Production of ferromagnetic fine powder for magnetic recording
JPH0633116A (en) Ferromagnetic metallic powder for magnetic recording medium and production thereof
JP2001081506A (en) Precursor for producing magnetic powder and ferromagneric metal powder obtained from the same
JP2000302445A (en) Fusiform goethite particle powder, fusiform hematite particle powder, and fusiform metallic magnetic particle powder consisting mainly of iron, and their production
KR0169491B1 (en) Acicular ferromagnetic iron oxide particles and process for producing the same
JPH02175806A (en) Manufacture of metal magnetic powder for magnetic recorder
JPS6122604A (en) Magnetic metal powder and manufacture thereof
JPH08165501A (en) Fusiform metallic magnetic-grain powder consisting essentially of cobalt and iron and its production
JP3328017B2 (en) Method for producing acicular hexagonal ferrite magnetic powder having perpendicular magnetic anisotropy
JP2735885B2 (en) Method for producing metal magnetic powder for magnetic recording
JPS6132259B2 (en)
JP2925561B2 (en) Spindle-shaped magnetic iron oxide particles
JPH0454362B2 (en)
JPH0614486B2 (en) Plate-shaped composite ferrite fine particle powder for magnetic recording and method for producing the same
JP3087808B2 (en) Manufacturing method of magnetic particle powder for magnetic recording
JPS63140005A (en) Production of fine ferromagnetic metal particle powder
JP3405748B2 (en) Method for producing metal magnetic powder
JPH06140222A (en) Magnetic metal powder and manufacture thereof
JPS59145706A (en) Production of magnetic metallic powder