JPH0341894B2 - - Google Patents

Info

Publication number
JPH0341894B2
JPH0341894B2 JP8492082A JP8492082A JPH0341894B2 JP H0341894 B2 JPH0341894 B2 JP H0341894B2 JP 8492082 A JP8492082 A JP 8492082A JP 8492082 A JP8492082 A JP 8492082A JP H0341894 B2 JPH0341894 B2 JP H0341894B2
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic
field region
recording medium
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8492082A
Other languages
Japanese (ja)
Other versions
JPS58203633A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP8492082A priority Critical patent/JPS58203633A/en
Publication of JPS58203633A publication Critical patent/JPS58203633A/en
Publication of JPH0341894B2 publication Critical patent/JPH0341894B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/842Coating a support with a liquid magnetic dispersion
    • G11B5/845Coating a support with a liquid magnetic dispersion in a magnetic field

Description

【発明の詳細な説明】 本発明は、磁気記録材料の製法に関し、特に、
磁性体の配向性にすぐれた磁気記録材料の製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a magnetic recording material, and in particular,
The present invention relates to a method for manufacturing a magnetic recording material with excellent orientation of magnetic materials.

磁気記録材料は、非磁性支持上に、バリウムフ
エライト、バリウムフエライトのバリウム、鉄の
一部をCa、Sr、Pb、Co、Ni、その他の金属で置
換したもの、MnBi及びMn、BiをSeその他の全
属で置換したものなど、粒子の形状が平板状であ
り、かつその磁化容易軸が、面に垂直な強磁性体
と結合剤を塗工したものである。
Magnetic recording materials include barium ferrite, barium in barium ferrite, iron partially replaced with Ca, Sr, Pb, Co, Ni, and other metals, MnBi, and Mn and Bi replaced with Se and other metals on a non-magnetic support. The particles are coated with a ferromagnetic material and a binder, such as those in which the particles are flat in shape and the axis of easy magnetization is perpendicular to the plane.

この製造方法において、磁性塗料を塗工後、塗
膜が乾燥する以前に磁性粒子を磁場中にて記録方
向に配向せしめて、その方向に対する電磁変換特
性を向上させる方法は通常の磁気テープに用いら
れている針状のr−Fe2O3などでは既に知られて
おり、実用化されている(その技術の一例は、特
公昭40−5350号、特公昭40−23624号、特公昭40
−23626号、特公昭41−2065号、特公昭43−21251
号等の特許公報に示されている)。
In this manufacturing method, the magnetic particles are oriented in the recording direction in a magnetic field before the coating film dries after the magnetic paint is applied, and the electromagnetic conversion characteristics in that direction are improved. acicular r-Fe 2 O 3 is already known and has been put into practical use.
−23626, Special Publication No. 1977-2065, Special Publication No. 1977-21251
(as shown in patent publications such as No.

本発明は特公昭56−856号に記載された方法を
改良し板状で、板面に垂直な方向に磁気異方性を
有する磁性体を用い支持体面に垂直な方向に該板
状強磁性粒子の磁化容易軸が配向し、垂直方向の
磁化成分を利用した磁気記録に好適な磁気記録媒
体をつくろうとするものである。
The present invention improves the method described in Japanese Patent Publication No. 56-856 and uses a plate-shaped magnetic material having magnetic anisotropy in a direction perpendicular to the plate surface. The aim is to create a magnetic recording medium in which the easy axis of magnetization of the particles is oriented and is suitable for magnetic recording using a perpendicular magnetization component.

垂直磁化記録が高記録密度磁気記録の点で優れ
ていることについては、「日経エレクトロニクス
(1978.8.7.)100〜111頁」及び「IEEE
TRANSACTIONS ON MAGNETICS」VOL.
MAG−15、No.6、1561〜1563頁(1979年11月)
に説明されている。
Regarding the superiority of perpendicular magnetization recording in terms of high recording density magnetic recording, see ``Nikkei Electronics (1978.8.7.) pp. 100-111'' and ``IEEE
TRANSACTIONS ON MAGNETICS” VOL.
MAG-15, No. 6, pp. 1561-1563 (November 1979)
is explained in.

本発明の目的は、第1に、垂直方向に高い配向
度を有する磁気記録材料の製法を提供するにあ
り、第2は、磁性塗料の新規な塗工法を提供する
にある。垂直方向に磁場配向をする方法として、
ウエブ面に垂直な磁場の強さを上げるもの(特開
昭57〜58246)、強磁場中で実質的に塗膜の乾燥を
終了させようとするもの(特開昭57−58241)な
どが提案されている。
The first object of the present invention is to provide a method for producing a magnetic recording material having a high degree of orientation in the perpendicular direction, and the second object is to provide a novel method for applying a magnetic paint. As a method of vertically aligning the magnetic field,
Proposals include a method that increases the strength of the magnetic field perpendicular to the web surface (Japanese Patent Laid-Open No. 57-58246), and a method that substantially ends the drying of the coating film in a strong magnetic field (Japanese Patent Laid-Open No. 57-58241). has been done.

平板状の形状を有し、その平板面に垂直な方向
に磁化容易軸を有する強磁性体を用いて垂直方向
に配向された磁気記録媒体を作るには、これを磁
性結合剤中に分散した塗布液をウエブ上に塗布し
ウエブに垂直方向の磁場をかけて前記平板状磁性
粒子の磁化容易軸をウエブ面に垂直に揃えるべく
磁場配向処理を行うのであるが、その際上記の公
知の諸法にみる如くウエブ面に垂直な強磁場をか
けると共にその強磁場中で乾燥することが望まし
い。
To create a vertically oriented magnetic recording medium using a ferromagnetic material that has a flat plate shape and an axis of easy magnetization perpendicular to the flat surface, it is necessary to disperse it in a magnetic binder. A coating liquid is applied onto the web, and a magnetic field is applied perpendicularly to the web to perform a magnetic field orientation treatment to align the axes of easy magnetization of the flat magnetic particles perpendicular to the web surface. It is desirable to apply a strong magnetic field perpendicular to the web surface and dry in that strong magnetic field, as shown in the method.

しかしながら、工業的にウエブを連続的に走行
させつつ、この処理を行う場合、強磁場を支える
部分を非常に長くせねば磁場の中で乾燥を実質的
におえることがむずかしくなる。
However, if this process is carried out industrially while the web is running continuously, it will be difficult to substantially prevent drying in the magnetic field unless the part that supports the strong magnetic field is made very long.

本発明者等は、磁場域を磁場配向を行う強い磁
場を形成する第1の磁場域と、配向された磁場配
向の効果を持続するための、前者より小さい磁場
に形成する第2の磁場域とに分けることによりよ
り少いエネルギーで長い区域にわたり磁場配向効
果を持続させることができ、且つ、この間にウエ
ブの乾燥を行うことによりウエブの磁場配向を維
持している間に乾燥を完結させることができるこ
とを見出し、本発明を完成した。
The present inventors have developed two magnetic field regions: a first magnetic field region that forms a strong magnetic field that performs magnetic field orientation, and a second magnetic field region that creates a smaller magnetic field than the former in order to maintain the effect of the oriented magnetic field orientation. By dividing the web into two parts, the magnetic field orientation effect can be sustained over a long area with less energy, and by drying the web during this time, the drying can be completed while the web's magnetic field orientation is maintained. They discovered that it is possible to do this, and completed the present invention.

すなわち、本発明は、平板状の形状を有し、そ
の磁化容易方向が平板面に垂直である強磁性粒子
をバインダー中に分散し、これを非磁性支持体上
に塗布したウエブを支持体面に垂直な磁場中で配
向しつつ乾燥することからなる支持体面に垂直な
方向に配向された磁気記録媒体の製造方法におい
て、平板状強磁性粒子を垂直方向に配向させる第
1磁場域と、第1の磁場域の磁場より小さい磁場
を有し、該平板状強磁性粒子の配向状態を保持す
るための第2磁場域とを連続的に順次通過させつ
つ乾燥することを特徴とする磁気記録媒体の製造
方法である。
That is, in the present invention, ferromagnetic particles having a flat plate shape and whose direction of easy magnetization is perpendicular to the flat plate surface are dispersed in a binder, and a web in which the ferromagnetic particles are coated on a non-magnetic support is applied to the support surface. A method for manufacturing a magnetic recording medium oriented in a direction perpendicular to a support surface, which comprises drying while being oriented in a perpendicular magnetic field, a first magnetic field region for orienting flat ferromagnetic particles in a perpendicular direction; A magnetic recording medium having a magnetic field smaller than the magnetic field of the magnetic field region and drying the medium by continuously passing through a second magnetic field region for maintaining the orientation state of the flat ferromagnetic particles. This is the manufacturing method.

以下、本発明について詳述する。 The present invention will be explained in detail below.

第1の磁場域は、後述するように強い磁場をす
る必要があり、電磁石を使つたり、強力な永久磁
石の磁極間の距離を狭くして使うなどの努力が必
要である。磁性粒子を配向させるにはこのように
強い磁場を必要とするが、乾燥する迄の間第2の
磁場域で、この磁性粒子の配向状態を保持するに
は、一般にこれよりも低い磁場でよい。したがつ
て隣接する磁極の間、又は相対する磁極の間隔を
大きくしたり永久磁石を用いるときもその磁力が
小さく、したがつて安価なものが用いられるとい
う利点がある。実施例1に示す処方の塗布液の1
部をポリエステルベース上に乾燥厚み4μとなる
ように塗布し電磁石中で乾燥せしめた。この乾燥
には、約10秒を要した、このときの磁場の強さ
と、垂直方向の配向度SQ⊥を添付図面の第1図
に示す。図より明かなように3000ガウス迄配向度
は急に上り5000ガウスの磁場でほゞ飽和する。更
に同じようにして最初2秒間を5000ガウスの磁場
中におきその后すみやかに磁場を所定の値まで下
げて乾燥を終了させた。そのときの配向度SQ⊥
と配向維持磁場の強さとの関係を第2図に示す。
この例では、約500ガウス以上で効果あり1500〜
2000ガウス程度でほゞ飽和する。この発見を応用
して第3図に示すように、異極対向の磁極を複数
に分割する。この分割した磁極の間隙C1,C2
の下部b1,b2…点などでは磁極の直下のa1,a2
点に比し磁場が弱いがなお大きい磁場を有する。
磁極間a1,a2…aoなどの磁場の大きさは一般に磁
極間距離z1,z2…zoを狭める程大きくできる。磁
極1,1′;2,2′、付近の磁場について考える
と、磁極の長さx1に比し間隔z1が等しい点をこえ
て大きくなるとa1部の磁場が急減する。又逆に磁
極対間のb1における磁場はY1がZ1に比して等し
い点をこえると急に減少しはじめる。したがつ
て、X1,Z1,Y1がほゞ等しいような配置が効率
的である。(しかし磁極の磁力が配向に必要な磁
場に比し十分大きければX1,Z1,Y1がほゞ等し
いという関係からはずれてもよいことは勿論であ
る。) 第4図には、対向磁極のまん中の高さ、ウエブ
が通る位置における、磁場の強さの測定例を示
す。
The first magnetic field region needs to be a strong magnetic field, as will be described later, and requires efforts such as using an electromagnet or narrowing the distance between the magnetic poles of a strong permanent magnet. Although such a strong magnetic field is required to orient the magnetic particles, a lower magnetic field is generally required to maintain the orientation of the magnetic particles in the second magnetic field region until drying. . Therefore, even when the distance between adjacent magnetic poles or opposing magnetic poles is increased, or when permanent magnets are used, there is an advantage that the magnetic force is small and therefore inexpensive magnets can be used. Coating liquid 1 with the formulation shown in Example 1
The sample was coated on a polyester base to a dry thickness of 4 μm and dried in an electromagnet. This drying took about 10 seconds, and the strength of the magnetic field and the degree of orientation SQ⊥ in the vertical direction are shown in Figure 1 of the attached drawings. As is clear from the figure, the degree of orientation rises suddenly up to 3000 Gauss and is almost saturated at a magnetic field of 5000 Gauss. Furthermore, in the same manner, the drying was completed by placing it in a magnetic field of 5000 Gauss for the first 2 seconds, and then immediately lowering the magnetic field to a predetermined value. Orientation degree SQ⊥ at that time
FIG. 2 shows the relationship between the strength of the orientation maintaining magnetic field and the strength of the orientation maintaining magnetic field.
In this example, it is effective at about 500 gauss or higher and from 1500 to
It is almost saturated at about 2000 Gauss. Applying this discovery, as shown in Fig. 3, the magnetic poles with opposite polarities are divided into a plurality of parts. The gaps between these divided magnetic poles C 1 , C 2 ...
At the lower part b 1 , b 2 … point, a 1 , a 2 … directly below the magnetic pole, etc.
Although the magnetic field is weaker than that of a point, it still has a large magnetic field.
In general, the magnitude of the magnetic field between magnetic poles a 1 , a 2 . . . a o can be increased as the distance between magnetic poles z 1 , z 2 . Considering the magnetic field near the magnetic poles 1, 1'; 2, 2', when the distance z 1 becomes larger than the point where it is equal to the length x 1 of the magnetic poles, the magnetic field in the a 1 portion decreases rapidly. Conversely, the magnetic field at b 1 between the magnetic pole pair begins to decrease suddenly when Y 1 exceeds the point where it is equal to Z 1 . Therefore, an arrangement in which X 1 , Z 1 , and Y 1 are approximately equal is efficient. (However, it goes without saying that if the magnetic force of the magnetic poles is sufficiently large compared to the magnetic field required for orientation, it is possible to deviate from the relationship in which X 1 , Z 1 , and Y 1 are approximately equal.) An example of measuring the strength of the magnetic field at the height of the center of the magnetic pole and the position where the web passes is shown.

磁極の長さXと、隣接磁極間の間隔Y、対向す
る磁極間の距離Zとして、X=Y=Z、及び、X
=ZY=1/2Xとしたときの磁場の強さの測定例を 第4図及び第5図の上方に示す。
As the length of the magnetic poles X, the distance Y between adjacent magnetic poles, and the distance Z between opposing magnetic poles, X=Y=Z, and
An example of measuring the strength of the magnetic field when =ZY=1/2X is shown in the upper part of FIGS. 4 and 5.

したがつて、これを応用して第3図のように磁
極を配置した。この場合、X=Y=Zとなるよう
にした。この間隙C部を利用してここから乾燥風
を送るようにして、乾燥を効率化することもでき
る。ウエブの中方向へのびた異極対抗型の磁極を
2対以上設けその間より乾燥風を送ることによ
り、磁極1,1′;2,2′;n,n′間のa1,b1
…ao,bo部に形成される強磁場中を磁性液が塗布
され未乾状態のウエブ11が図の左端より導入さ
れる。このウエブに対し磁極1,2の間より乾燥
風21を送る。
Therefore, by applying this, the magnetic poles were arranged as shown in Figure 3. In this case, it was arranged so that X=Y=Z. Drying can also be made more efficient by using this gap C to send drying air from here. A 1 , b 1 between the magnetic poles 1, 1'; 2, 2'; n, n';
...A web 11 coated with a magnetic liquid and in an undried state is introduced from the left end of the figure into a strong magnetic field formed at the a o and b o sections. A drying air 21 is sent to this web from between the magnetic poles 1 and 2.

ひきつづく磁極2,3…nの各間隙より同様に
乾燥風を送ることができる。なお、ウエブの磁場
中の走行路が長い場合には、ウエブの走行路を一
定に保つために、適当なウエブ支持ロールを設け
てもよく、下方の磁極間からウエブ下面に乾燥風
または風を送つてもよい。
Drying air can be similarly sent through each gap between the successive magnetic poles 2, 3, . . . n. In addition, if the running path of the web in the magnetic field is long, an appropriate web support roll may be provided to keep the web running path constant, and drying air or wind may be applied to the bottom surface of the web from between the lower magnetic poles. You can send it.

このように構成することにより、強磁場を生ず
る第1磁場域の形成と、それに比し弱い第2の磁
場域をつくり、磁場配向の有効範囲をこの例の場
合2倍に拡大し、磁場の中での乾燥を容易ならし
め、かつ磁極間部より乾燥風をふきつけることに
より更にこの効果を促進することができる。
With this configuration, a first magnetic field region that generates a strong magnetic field is created, and a second magnetic field region that is weaker than the first magnetic field region is created, thereby doubling the effective range of magnetic field orientation in this example. This effect can be further promoted by making the drying process easier and by blowing drying air from the area between the magnetic poles.

磁極1,1′,2,2′…n,n′は電磁石、又は
空心ソレノイド、又はALNICO、コバルト・レ
アーアース磁石などの永久磁石で形成してもよ
い。
The magnetic poles 1, 1', 2, 2'...n, n' may be formed by electromagnets, air-core solenoids, or permanent magnets such as ALNICO, cobalt rare earth magnets.

磁場の強さは第1図、第2図を参照すると使用
する磁性体の抗磁力の倍より大きく望ましくはそ
の3倍以上が更に望ましい。通常の長手方向磁化
の場合にくらべ、磁性塗膜内に発生する大きな反
磁場のため、より大きな配向磁場が必要とされ
る。抗磁力が800〜1000エルステツド(Oe)の磁
性粉を用いるとき、1000Oe以上望ましくは3000
〜5000Oe又はそれ以上の磁場が用いられる。
Referring to FIGS. 1 and 2, the strength of the magnetic field is greater than twice the coercive force of the magnetic material used, preferably three times or more. Due to the large demagnetizing field generated within the magnetic coating, a larger orienting field is required compared to the case of normal longitudinal magnetization. When using magnetic powder with a coercive force of 800 to 1000 Oe, it is preferably 1000 Oe or more, preferably 3000 Oe.
A magnetic field of ~5000 Oe or more is used.

磁極の長さXは、上下の一対は同一の大きさ、
材質、形状を基本とする。しかし、隣り合うXi,
Xi+1の大きさは必要に応じて変えてもよい。
The length X of the magnetic poles is the same size for the upper and lower pair,
Based on material and shape. However, the neighboring Xi,
The size of Xi +1 may be changed as necessary.

磁極を永久磁石板でつくるときには、これを適
宜積層してXiを変えてもよく、磁極が電磁石で
つくられるときには、Xiの異なる電磁石をなら
べてもよく、又は電磁石の磁極にウエブ巾以上の
巾方向の空孔でその巾がYiとなるものを設けて
もよい。
When the magnetic poles are made of permanent magnet plates, they may be laminated as appropriate to change the Xi. When the magnetic poles are made of electromagnets, electromagnets with different Xi may be lined up, or the magnetic poles of the electromagnets may have a width equal to or greater than the web width. A hole with a width Yi in the direction may be provided.

以下、実施例につき本発明の効果を説明する。Hereinafter, the effects of the present invention will be explained with reference to Examples.

実施例 Coを置換したBaフエライト〔平均粒径0.1ミクロ
ン、平均厚さ0.03ミクロンの平板粒子、抗磁力
1320エルステツド〕 300部 グラフアイト粉末(平均粒径、約5ミクロン)
15部 塩化ビニル−塩化ビニリデン共重合体(共重合比
80:20、分子量45000) 45部 ステアリン酸アミル 10部 シリコーンオイル 4部 レシチン 3部 シメチルエチルケトン 300部 トルエン 300部 上記の組成の各成分をボールミルに入れて混合
分散させた。次にポリエステルポリオール50部を
加え、均一になる様に混合してから、ポリイソシ
アネート30部を加えて、再び混合分散させて硬化
性の磁性塗料とした。
Example Ba ferrite substituted with Co [tabular grains with an average grain size of 0.1 μm and an average thickness of 0.03 μm, coercive force
1320 Oersted] 300 parts graphite powder (average particle size, approximately 5 microns)
15 parts vinyl chloride-vinylidene chloride copolymer (copolymerization ratio
80:20, molecular weight 45000) 45 parts amyl stearate 10 parts silicone oil 4 parts lecithin 3 parts dimethyl ethyl ketone 300 parts toluene 300 parts The components of the above composition were placed in a ball mill and mixed and dispersed. Next, 50 parts of polyester polyol was added and mixed uniformly, and then 30 parts of polyisocyanate was added and mixed and dispersed again to obtain a curable magnetic paint.

なお、この塗布液の一部をとり前記した実験に
供した。
Incidentally, a portion of this coating liquid was taken and used in the experiment described above.

一方、コロナ放電処理をほどこした25ミクロン
のポリエチレンテレフタレートフイルムに乾燥厚
み4ミクロンとなるようにグラビアロールを用い
て上記塗料を塗工した。
On the other hand, the above paint was applied to a polyethylene terephthalate film of 25 microns which had been subjected to a corona discharge treatment using a gravure roll to a dry thickness of 4 microns.

磁場配向は、第3図に示す配置で行つた。 The magnetic field orientation was performed in the arrangement shown in FIG.

この例ではX=Y=Zとした。 In this example, X=Y=Z.

次に、比較のためにY=O、X=Z、つまり磁
極を一体化させた配置をつくり、この中で磁場配
向と乾燥を行つた。比較例の場合磁場の及ぶ長さ
は実施例の約半分となる。
Next, for comparison, an arrangement in which Y=O and X=Z, that is, the magnetic poles were integrated, was created, and magnetic field orientation and drying were performed in this arrangement. In the case of the comparative example, the length covered by the magnetic field is approximately half that of the example.

このようにしてウエブのスピードをかえてえら
れた塗膜の垂直方向の配向度をしらべた結果を表
に示す。
The table shows the results of examining the degree of vertical orientation of the coating film obtained by changing the web speed in this manner.

表 ウエブ・スピード SQ⊥ 実施例 比較例 20m/分 0.51 0.46 25 〃 0.51 0.42 30 〃 0.50 0.39 35 〃 0.46 0.39 table Web Speed SQ⊥ Example Comparative example 20m/min 0.51 0.46 25 〃 0.51 0.42 30 〃 0.50 0.39 35 〃 0.46 0.39

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は乾燥に約10秒を要した時の磁場の強さ
と垂直方向の配向度(SQ⊥)の関係を示すグラ
フ、第2図は最初約2秒間と5000ガウスの磁場で
配向し、次いで磁場を下げて乾燥を終了させたと
きの配向維持磁場とSQ⊥の関係を示すグラフ、
第3図は本発明における磁極の配置を示す略図、
第4図及び第5図は磁極対間の間隙の変化に対す
る間隙間の磁場の強さの変化を示す図である。
Figure 1 is a graph showing the relationship between the magnetic field strength and the degree of vertical orientation (SQ⊥) when drying takes about 10 seconds. A graph showing the relationship between the orientation maintaining magnetic field and SQ⊥ when the magnetic field is then lowered to finish drying.
FIG. 3 is a schematic diagram showing the arrangement of magnetic poles in the present invention,
4 and 5 are diagrams showing changes in the strength of the magnetic field in the gap with respect to changes in the gap between the pair of magnetic poles.

Claims (1)

【特許請求の範囲】 1 平板状の形状を有し、その磁化容易方向が平
板面に垂直である強磁性微粒子をバインダー中に
分散し、これを非磁性支持体上に塗布したウエブ
を支持体面に垂直な磁場中で配向しつつ乾燥する
ことからなる支持体面に垂直な方向に配向された
磁気記録媒体の製造方法において、未乾燥状態の
磁性塗布層を有するウエブを、平板状強磁性粒子
を垂直方向に配向させる第1磁場域と、第1磁場
域の磁場より小さい磁場を有し、該平板状強磁性
粒子の配向状態を保持するための第2磁場域とを
連続的に順次通過させつつ乾燥することを特徴と
する磁気記録媒体の製造方法。 2 第1磁場域及び第2磁場域が夫々直列に配列
した複数対の異極対向型磁極により構成されてい
る特許請求の範囲第1項記載の磁気記録媒体の製
造方法。 3 複数対の異極対向型磁極が適当な間隙をもつ
て配置され、該間隙から乾燥風を走行するウエブ
に送る特許請求の範囲第2項記載の磁気記録媒体
の製造方法。 4 第1磁場域の磁場の強さが強磁性微粒子の抗
磁力の2倍以上である特許請求の範囲第1項乃至
第3項の何れか1項に記載の磁気記録媒体の製造
方法。 5 第2磁場域の磁場の強さが強磁性微粒子の抗
磁力より大である特許請求の範囲第1項乃至第4
項の何れか1項に記載の磁気記録媒体の製造方
法。
[Scope of Claims] 1. Ferromagnetic fine particles having a flat plate shape and whose easy magnetization direction is perpendicular to the flat plate surface are dispersed in a binder, and a web in which the ferromagnetic particles are coated on a non-magnetic support is placed on the support surface. In a method for manufacturing a magnetic recording medium oriented in a direction perpendicular to a support surface, which comprises drying while being oriented in a magnetic field perpendicular to Continuously passing through a first magnetic field region for vertically aligning the particles and a second magnetic field region having a smaller magnetic field than the first magnetic field region and for maintaining the oriented state of the flat ferromagnetic particles. A method for manufacturing a magnetic recording medium, characterized by drying the medium while drying the medium. 2. The method of manufacturing a magnetic recording medium according to claim 1, wherein each of the first magnetic field region and the second magnetic field region is constituted by a plurality of pairs of opposite magnetic poles arranged in series. 3. The method of manufacturing a magnetic recording medium according to claim 2, wherein a plurality of pairs of opposite magnetic poles are arranged with appropriate gaps, and drying air is sent from the gaps to the running web. 4. The method for manufacturing a magnetic recording medium according to any one of claims 1 to 3, wherein the magnetic field strength in the first magnetic field region is at least twice the coercive force of the ferromagnetic fine particles. 5 Claims 1 to 4, wherein the strength of the magnetic field in the second magnetic field region is greater than the coercive force of the ferromagnetic fine particles.
A method for manufacturing a magnetic recording medium according to any one of Items 1 and 2.
JP8492082A 1982-05-21 1982-05-21 Production of magnetic recording medium Granted JPS58203633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8492082A JPS58203633A (en) 1982-05-21 1982-05-21 Production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8492082A JPS58203633A (en) 1982-05-21 1982-05-21 Production of magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS58203633A JPS58203633A (en) 1983-11-28
JPH0341894B2 true JPH0341894B2 (en) 1991-06-25

Family

ID=13844142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8492082A Granted JPS58203633A (en) 1982-05-21 1982-05-21 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS58203633A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60109166A (en) * 1983-11-17 1985-06-14 ウシオ電機株式会社 Tubular bulb
JPS60129700A (en) * 1983-12-16 1985-07-10 日新ハイボルテ−ジ株式会社 Electron ray projector
JPH0687305B2 (en) * 1986-08-07 1994-11-02 東京磁気印刷株式会社 Perpendicular magnetic recording medium manufacturing equipment
JP2011138566A (en) * 2009-12-25 2011-07-14 Fujifilm Corp Method and apparatus for manufacturing magnetic recording medium

Also Published As

Publication number Publication date
JPS58203633A (en) 1983-11-28

Similar Documents

Publication Publication Date Title
US4678682A (en) Process for producing magnetic recording medium
JPH0341894B2 (en)
JPH0344380B2 (en)
JPH06103530B2 (en) Manufacturing method of magnetic recording medium
JPH0127487B2 (en)
JPH03203814A (en) Magnetic recording medium and its production
JPS62208415A (en) Magnetic recording medium and its production
JPS60129700A (en) Electron ray projector
JPH0250531B2 (en)
JP3146906B2 (en) Manufacturing method of magnetic recording medium
JPS6342031A (en) Method and apparatus for production of perpendicular magnetic recording medium
JP2822212B2 (en) Oblique orientation method and oblique orientation device
JPH05197954A (en) Diagonal orientation method for magnetic recording medium and diagonal orienting device thereof
JPH0370854B2 (en)
JPH01185835A (en) Manufacture of magnetic recording medium
JPH0354725A (en) Manufacture of magnetic tape
JPH01235029A (en) Production of magnetic recording medium
JPH03224133A (en) Production of perpendicular magnetic recording medium
JPH02257429A (en) Device for orienting perpendicular magnetic recording medium
JPH01251319A (en) Manufacture of magnetic recording medium
JPH03201214A (en) Magnetic recording medium and its production
JPH07235053A (en) Production of magnetic recording medium
JPH03295030A (en) Magnetic field orientation processing method
JPS58146033A (en) Manufacture of magnetic recording medium
JPH0969229A (en) Method and apparatus for manufacturing magnetic recording medium