JPH0341788A - Laser - Google Patents

Laser

Info

Publication number
JPH0341788A
JPH0341788A JP17642889A JP17642889A JPH0341788A JP H0341788 A JPH0341788 A JP H0341788A JP 17642889 A JP17642889 A JP 17642889A JP 17642889 A JP17642889 A JP 17642889A JP H0341788 A JPH0341788 A JP H0341788A
Authority
JP
Japan
Prior art keywords
laser
laser beam
plane
laser medium
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17642889A
Other languages
Japanese (ja)
Inventor
Nobunori Izawa
井澤 信紀
Satoru Amano
覚 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP17642889A priority Critical patent/JPH0341788A/en
Publication of JPH0341788A publication Critical patent/JPH0341788A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1123Q-switching
    • H01S3/115Q-switching using intracavity electro-optic devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/0813Configuration of resonator
    • H01S3/0817Configuration of resonator having 5 reflectors, e.g. W-shaped resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/083Ring lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10038Amplitude control

Abstract

PURPOSE:To obtain a laser capable of performing a laser oscillation and a light amplification by one laser medium by a method wherein the laser is provided with an optical path modifying means to form the optical path of such a laser beam as to be able to lead out to the outside after the laser beam having a plane of polarization modified by a plane-of-polarization modifying means is directed again into the laser medium utilizing the reflection action of a polarizer and is amplified. CONSTITUTION:When a Pockels element control device 7a receives a delay pulse from a central control device 13, a voltage which is applied to a Pockels element 7 is made zero. If so, the action of a laser beam, whose plane of polarization has been modified by 90 deg. by the element 7, is stopped during the time when the voltage is zero. Thereby, a laser beam r0 having a plane of polarization parallel to the plane of the paper when it passes through a polarizer 6 is reflected by a totally reflecting mirror 4 and when the beam r0 is returned to the polarizer 6, it receives the action only of a lambda/4 plate 10 and is turned into a laser beam r1 (whose plane of polarization is vertical to the plane of paper), which is a linearly polarized light having a plane of polarization shifted by 90 deg. to that of the former laser beam. Therefore, this laser beam r1 is reflected by the polarizer 6, goes through a reflecting mirror 8, a beam expander 12, a reflecting mirror 9 and a polarizer 5, is directed into a laser medium 1, is light-amplified by the laser medium 1 to become a strong laser beam r2 and the laser beam r2 is reflected by the polarizer 6 and is led out to the outside.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、レーザ発振とこの発振によって得られたレー
ザ光の光増幅とを1つのレーザ媒体で行うようにしたレ
ーザ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a laser device in which a single laser medium performs laser oscillation and optical amplification of the laser light obtained by the oscillation.

[従来の技術] 発振したレーザ光を光増幅して強力なレーザ光として取
り出すようにしたレーザ装置は従来より知られている。
[Prior Art] Laser devices that optically amplify oscillated laser light and output it as a powerful laser light have been known.

従来のこの種のレーザ装置は、一般に、複数のレーザ媒
体を用い、1つのレーザ媒体で発振したレーザ光を他の
レーザ媒体に通過させて光増幅を行うものであった。
Conventional laser devices of this type generally use a plurality of laser media, and perform optical amplification by passing laser light oscillated by one laser medium to another laser medium.

また、他の例として特開昭62189778号公報に記
載のものがある。
Further, as another example, there is one described in Japanese Patent Application Laid-Open No. 62189778.

この例は、幅の広いスラブ型レーザ媒体を用い、このレ
ーザ媒体の一部でレーザ発振を行うとともに、この発振
したレーザ光を前記レーザ媒体の他の部位に入射させる
ことによりこの他の部位で光増幅を行うようにしたもの
である。
In this example, a wide slab-type laser medium is used, laser oscillation is performed in a part of this laser medium, and the oscillated laser beam is made incident on another part of the laser medium. It is designed to perform optical amplification.

[発明が解決しようとする課題] ところで、上述の複数のレーザ媒体を用いる従来のレー
ザ装置は、光増幅段を1段設ける毎に、レーザ発振段と
別個に、該レーザ発振段とほぼ同程度かそれ以上の設備
が必要となる。すなわち、光増幅段を構成するためには
、少なくともレーザ発振段と同様のレーザ媒体、励起用
ランプ及び励起用ランプ駆動用電源等が必要となる。
[Problems to be Solved by the Invention] Incidentally, in the conventional laser device using the plurality of laser media described above, each stage of optical amplification stage has an optical amplification stage that is approximately the same as that of the laser oscillation stage. or more equipment is required. That is, in order to configure the optical amplification stage, at least the same laser medium as the laser oscillation stage, an excitation lamp, a power source for driving the excitation lamp, etc. are required.

このため、増幅段を複数にして、所望の大出力を有し、
良質のレーザ光を得るレーザ装置を構成しようとすると
、装置が複雑・大型となり、設置及び調整が困難となる
とともに、製造価格も著しく高価なものになるという問
題点があった。
For this reason, multiple amplification stages are used to achieve the desired high output.
When attempting to construct a laser device that produces high-quality laser light, there are problems in that the device becomes complicated and large, difficult to install and adjust, and the manufacturing cost becomes extremely high.

また、特開昭62−189778号公報に記載のものは
、レーザ媒体として通常のレーザ発振用のレーザ媒体よ
り著しく幅の広い特殊な形状のものが必要になるととも
に、このレーザ媒体を励起するためには、励起用ランプ
として前記レーザ媒体の幅に応じて特殊なものを用いる
か、あるいは、複数のランプを用いることなどが必要と
なり、結局、前記複数のレーザ媒体を用いる例と同様の
不都合が生じてしまう。
Furthermore, the method described in JP-A-62-189778 requires a special shaped laser medium that is significantly wider than a normal laser medium for laser oscillation, and in order to excite this laser medium, In this case, it is necessary to use a special excitation lamp depending on the width of the laser medium, or to use a plurality of lamps, resulting in the same inconvenience as in the case of using a plurality of laser media. It will happen.

本発明は、上述の背景のもとでなされたものであり、1
つのレーザ媒体でレーザ発振と光増幅とを行うことがで
きるレーザ装置を提供することを目的としたちのて゛あ
る。
The present invention has been made under the above-mentioned background, and includes:
The object of the present invention is to provide a laser device that can perform laser oscillation and optical amplification using a single laser medium.

[課題を解決するための手段] 本発明は、以下の構成とすることで上述の課題を解決し
ている。
[Means for Solving the Problems] The present invention solves the above problems by having the following configuration.

レーザ媒体と、 このレーザ媒体を励起する励起光源と、前記レーザ媒体
を通じてレーザ共振光路を形成するために該レーザ媒体
を挾んで相対向して配置される一対の光反射手段とを有
し、 特定の直M、偏光は通過し、一方、この特定の直線偏光
以外の直線偏光を反射する偏光素子を、前記共振光路中
において前記一対の光反射手段の各々と前記レーザ媒体
d各端面との間にそれぞれ配置し、 前記偏光素子間以外のレーザ光進路中に、レーザ発振光
を外部に取り出す際に該レーザ光の偏光面を変更する偏
光面変更手段を設け、 さらに、前記偏光面変更手段によって偏光面が変更され
たレーザ光を前記偏光素子の反射作用を利用して前記レ
ーザ媒体に再度入射させて増幅した後外部に取り出すこ
とができるような光路を形成する光線進路変更手段を設
けたことを特徴とする 構成。
comprising a laser medium, an excitation light source that excites the laser medium, and a pair of light reflecting means disposed opposite to each other with the laser medium sandwiched therebetween in order to form a laser resonant optical path through the laser medium; A polarizing element that reflects linearly polarized light other than this particular linearly polarized light is inserted between each of the pair of light reflecting means and each end face of the laser medium d in the resonant optical path. and a polarization plane changing means for changing the polarization plane of the laser beam when extracting the laser oscillation light to the outside is provided in the laser beam path other than between the polarizing elements, and further, the polarization plane changing means A beam path changing means is provided for forming an optical path such that the laser beam whose polarization plane has been changed can be made to enter the laser medium again by utilizing the reflection action of the polarizing element, amplified, and then taken out to the outside. A configuration characterized by.

[作用] 前記構成において、前記レーザ励起光源によってレーザ
媒体を励起すると、前記共振光路内でレーザ発振が生ず
る。この場合、この発振レーザ光は、前記偏光素子の作
用によって特定の偏光となっている。次に、レーザ光を
外部に収り出す操作を行うと、前記偏光面変更手段によ
って前記偏光素子間以外のレーザ光進路中を進行するレ
ーザ光の偏光面が変更される。その結果、このレーザ光
は前記特定の偏光に対してその偏光面が異なる直線偏光
となる。そして、この直!!偏光は、前記光線進路変更
手段により、前記偏光素子の反射作用を利用して前記レ
ーザ媒体に再度入射させられて増幅した後外部に取り出
される。すなわち、これにより、レーザ発振と光増幅と
が1つのレーザ媒体で行なわれるから、光増幅のために
別個のレーザ媒体や励起用ランプ等を設ける必要がなく
なる。
[Operation] In the above configuration, when the laser medium is excited by the laser excitation light source, laser oscillation occurs within the resonant optical path. In this case, this oscillated laser light becomes a specific polarized light due to the action of the polarizing element. Next, when an operation is performed to direct the laser beam to the outside, the polarization plane of the laser beam traveling in the laser beam path other than between the polarizing elements is changed by the polarization plane changing means. As a result, this laser light becomes linearly polarized light whose plane of polarization is different from that of the specific polarized light. And this straight! ! The polarized light is made to enter the laser medium again by the light beam path changing means using the reflection effect of the polarizing element, is amplified, and then taken out to the outside. That is, since laser oscillation and optical amplification are performed using one laser medium, there is no need to provide a separate laser medium, excitation lamp, etc. for optical amplification.

[実施例] (第1実施例) 第1図は本発明の第I実施例にがかるレーザ装置を示す
ブロック図、第2図は第I実施例の動作を示すタイムチ
ャートである。以下、図面を参照しながら第1実施例を
詳述する。
[Embodiments] (First Embodiment) FIG. 1 is a block diagram showing a laser device according to the first embodiment of the present invention, and FIG. 2 is a time chart showing the operation of the first embodiment. The first embodiment will be described in detail below with reference to the drawings.

第1図において、符号上はロッド型レーザ媒体、符号2
は励起光源、符号3及び4は、ともにレーザ共振光路を
形成するための全反射鏡、符号5及び6は偏光素子、符
号7は偏光面変更手段たるポッケルス素子、符号8及び
9は光線進路変更手段たる反射鏡である。
In FIG. 1, the symbol above is a rod-shaped laser medium, and the symbol 2 is a rod-shaped laser medium.
is an excitation light source, 3 and 4 are total reflection mirrors for forming a laser resonant optical path, 5 and 6 are polarizing elements, 7 is a Pockels element as a means for changing the plane of polarization, and 8 and 9 are beam path changing devices. It is a reflecting mirror that is a means.

前記ロッド型レーザ媒体上は、直径4m、m、長さ80
mmの円柱状のNd:YAG結晶〈米国アライド・シグ
ナル社製)で、両端面を長さ方向、すなわち、光軸方向
に直交する面に対して3°なすようにカットしたもので
ある。なお、この両端面は無反射コーティング(ARコ
コ−ィング)を施しである。
The diameter of the rod-shaped laser medium is 4 m, and the length is 80 m.
It is a cylindrical Nd:YAG crystal (manufactured by Allied Signal, Inc., USA) with both end faces cut at an angle of 3° with respect to the longitudinal direction, that is, the plane perpendicular to the optical axis direction. Note that both end faces are coated with anti-reflection coating (AR coating).

前記励起光源2はフラッシュランプであり、前記レーザ
媒体1の近傍に配置され、該レーザ媒体1にパルス状の
励起光を照射して該レーザ媒体lを励起する。なお、こ
の励起光源2は励起光源制御装置2aによって制御駆動
される。
The excitation light source 2 is a flash lamp, and is disposed near the laser medium 1, and irradiates the laser medium 1 with pulsed excitation light to excite the laser medium 1. Note that this excitation light source 2 is controlled and driven by an excitation light source control device 2a.

前記全反射鏡3及び4は、前記レーザ媒体1の光軸方向
において互いに反射面が相対向するように前記レーザ媒
体lの両側に配置されている。
The total reflection mirrors 3 and 4 are arranged on both sides of the laser medium 1 so that their reflective surfaces face each other in the optical axis direction of the laser medium 1.

前記偏光素子5及び6は、偏光面が第1図における紙面
に平行な直線偏光(P偏光〉は通過させ、一方、紙面と
垂直な偏光面の直線偏光(S偏光〉は反射するもので、
例えば、ガラス基板に多層の誘電体膜を形成したもので
構成される。
The polarizing elements 5 and 6 allow linearly polarized light (P polarized light) whose polarization plane is parallel to the plane of the paper in FIG. 1 to pass through, while reflecting linearly polarized light (S polarized light) whose polarization plane is perpendicular to the plane of the paper,
For example, it is constructed by forming a multilayer dielectric film on a glass substrate.

これら偏光索子5及び6は前記レーザ媒体1の光軸方向
、すなわち、レーザ光路上において前記レーザ媒体1の
両側に、前記レーザ光路と直交する面に対してブリュー
スター角(約57°)をなすように配置されている。
These polarization cables 5 and 6 are arranged on both sides of the laser medium 1 in the optical axis direction of the laser medium 1, that is, on the laser optical path, and form a Brewster angle (approximately 57°) with respect to a plane orthogonal to the laser optical path. It is arranged like an eggplant.

前記ポッケルス素子7は、ポッケルス素子制御装置7a
によって制御され、該制御装置7aに土って所定の電圧
(例えば、3.3KV)が印加されたとき、このポッケ
ルス素子7を往復した直線偏光のレーザ光の偏光面を9
0°変更し、電圧が印加されていないときはそのまま透
過する。なお、前記ポッケルス素子制御装置7aと前記
励起光源2aとは、中央制御装置13によって駆動タイ
ミング等の制御がなされる。
The Pockels element 7 is controlled by a Pockels element control device 7a.
When a predetermined voltage (for example, 3.3 KV) is applied to the control device 7a, the polarization plane of the linearly polarized laser light that has traveled back and forth through the Pockels element 7 is set to 9.
0°, and when no voltage is applied, it passes through as is. Note that the drive timing and the like of the Pockels element control device 7a and the excitation light source 2a are controlled by a central control device 13.

また、前記ポッケルス素子7と全反射鏡4との間にはλ
/4Fi10が配置され、他方、前記ポッケルス素子7
と偏光素子6との間にはモードセレクタ)■が配置され
ている。前記λ/4板上○は、該λ/4板10を往復し
た直線偏光のレーザ光の偏光面を90’変更する。また
、前記モードセレクタ11は、レーザ光の出力横モード
を制御する。
Moreover, between the Pockels element 7 and the total reflection mirror 4, λ
/4Fi10 is arranged, and on the other hand, the Pockels element 7
A mode selector (2) is arranged between the polarizing element 6 and the polarizing element 6. The circle on the λ/4 plate changes the polarization plane of the linearly polarized laser beam that has reciprocated on the λ/4 plate 10 by 90'. Further, the mode selector 11 controls the output transverse mode of the laser beam.

前記反射鏡8及び9は、前記全反射鏡4で反射されたレ
ーザ光のうち前記偏光素子6で反射されたレーザ光を反
射してその光線進路を変更し、前記偏光素子5の反射面
に入射させるものである。
The reflecting mirrors 8 and 9 reflect the laser beam reflected by the polarizing element 6 among the laser beams reflected by the total reflecting mirror 4, change the course of the beam, and direct the laser beam to the reflecting surface of the polarizing element 5. It is made incident.

この場合、前記偏光素子5の反射面で反射されたレーザ
光が前記レーザ媒体lの光軸方向に進行するようになっ
ている。
In this case, the laser light reflected by the reflective surface of the polarizing element 5 travels in the optical axis direction of the laser medium l.

なお、前記反射鏡8と9との間には、レーザ光のビーム
断面積を拡大するビームエクスパンダ−が配置されてい
る。
Note that a beam expander is arranged between the reflecting mirrors 8 and 9 to expand the beam cross-sectional area of the laser beam.

上述の構成において、前記中央制御装置]、3の指令に
基づき、前記ポッケルス素子制御装置7aによって前記
ポッケルス素子7に電圧を印加した状態で、前記励起光
源2を前記励起光源制御装置2aによって駆動し、前記
レーザ媒体上にフラッシュ光を照射して該レーザ媒体1
を励起する。第2図(a)はこのときに前記励起光源2
にフラッシュ発光を開始させるために前記中央制御装置
13から前記励起光源制御装置2aに送られるトリガー
パルスを示すもので、このI・リガーパルスの立ち上が
り時点から、第2図(b)に示されるように、前記励起
光源2は数百μsecの開発光する。
In the above configuration, the excitation light source 2 is driven by the excitation light source control device 2a while a voltage is applied to the Pockels device 7 by the Pockels device control device 7a based on the command of the central control device]. , the laser medium 1 is irradiated with a flash light onto the laser medium.
excite. FIG. 2(a) shows the excitation light source 2 at this time.
This shows a trigger pulse sent from the central controller 13 to the excitation light source controller 2a in order to start flash emission.From the rising point of this I rigger pulse, as shown in FIG. 2(b), , the excitation light source 2 emits development light for several hundred μsec.

したがって、前記レーザ媒体1は励起され、レーザ共振
光roが生ずる。このレーザ共振光r。は、前記全反射
鏡3及び4の間を往復するが、前記偏光素子5及び6を
通過することにより紙面に平行な偏光面を有するM線偏
光となっている。このとき、前記ポッケルス素子7には
電圧が印加されているので、該ポッケルス素子7に入射
後、該ポッケルス素子7と前記λ/4板とを通過し、前
記全反射鏡4によって反射されて再度前記λ/4とポッ
ケルス素子7とを通過して戻ってきたレーザ光は、前記
ポッケルス素子7とλ/4板上0とによってそれぞれ9
0°偏光面を変更させられ、結局、前記ポッケルス素子
7に入射する前と同じ偏光面を有する直線偏光となる。
Therefore, the laser medium 1 is excited and laser resonance light ro is generated. This laser resonance light r. The light reciprocates between the total reflection mirrors 3 and 4, but by passing through the polarizing elements 5 and 6, it becomes M-line polarized light having a plane of polarization parallel to the plane of the paper. At this time, since a voltage is applied to the Pockels element 7, the voltage enters the Pockels element 7, passes through the Pockels element 7 and the λ/4 plate, is reflected by the total reflection mirror 4, and is reflected again by the total reflection mirror 4. The laser light that has passed through the λ/4 and Pockels element 7 and returned is 9.
The 0° polarization plane is changed, and in the end, the light becomes linearly polarized light having the same polarization plane as before entering the Pockels element 7.

したがって、この状態では、前記レーザ光r□は前記全
反射鏡3と4との間を往復し続ける。
Therefore, in this state, the laser beam r□ continues to reciprocate between the total reflection mirrors 3 and 4.

次に、前記中央制御装置13より前記ポッケルス素子制
御装置7aに対して、前記トリガーパルスの立ち上がり
時点から約250μsec遅れた時点に立ち上がるデイ
レイパルスが送出される。第2図(C)はこのデイレイ
パルスを示すものである。
Next, the central controller 13 sends to the Pockels element controller 7a a delay pulse that rises approximately 250 μsec after the rise of the trigger pulse. FIG. 2(C) shows this delay pulse.

前記ポッケルス素子制御装W7aがこのデイレイパルス
を受信すると、第2図(d)に示されように、該デイレ
イパルスの立ち上がり時点から約10Orlsecの間
、前記ポッケルス素子7に印加する電圧をゼロにする。
When the Pockels element control unit W7a receives this delay pulse, as shown in FIG. 2(d), the voltage applied to the Pockels element 7 is set to zero for about 10 Orlsec from the rising point of the delay pulse. .

そうすると、その間、前記ポッケルス素子7によって偏
光面が90°変更されていた作用が停止される。これに
より、前記偏光素子6を通過したときには紙面に平行な
偏光面を有していたレーザ光r□は、前記全反射鏡4に
至り、該全反射鏡4に反射されて前記偏光素子6に戻っ
たときには前記λ/4板10の作用だけを受けて、元の
レーザ光に対して偏光面が90’ずれた直線偏光である
レーザ光rt  (偏光面が紙面と垂直)となっている
Then, during that time, the action of changing the polarization plane by 90° by the Pockels element 7 is stopped. As a result, the laser beam r□, which had a polarization plane parallel to the plane of paper when passing through the polarizing element 6, reaches the total reflecting mirror 4, is reflected by the total reflecting mirror 4, and is directed to the polarizing element 6. When it returns, it is subjected only to the action of the λ/4 plate 10 and becomes a linearly polarized laser beam rt whose plane of polarization is shifted by 90' with respect to the original laser beam (the plane of polarization is perpendicular to the plane of the paper).

それゆえ、このレーザ光r1は前記偏光素子6によって
反射され、反射鏡8、ビームエクスパンダー12、反射
鏡9、偏光素子5を通じて前記レーザ媒体1に入射され
、該レーザ媒体1によって光増幅されて強力なレーザ光
r2となり、前記偏光素子6によって反射されて外部に
取り出される。
Therefore, this laser beam r1 is reflected by the polarizing element 6, enters the laser medium 1 through the reflecting mirror 8, beam expander 12, reflecting mirror 9, and polarizing element 5, and is optically amplified by the laser medium 1. It becomes a powerful laser beam r2, which is reflected by the polarizing element 6 and taken out to the outside.

第2図(e)は、このとき、取り出されたレーザ光r2
のパルス波形を示すものである。
FIG. 2(e) shows the laser beam r2 taken out at this time.
This shows the pulse waveform of .

なお、第2図(f)及び(g)は、それぞれ、第2図(
d)及び(e)の時間軸を拡大して示しもので、第2図
(g>に示されように、前記レーザ光r2は、約ton
secという極めて幅の狭いパズル光である。また、前
記レーザ光r1は、前記モードセレクタ11によって、
例えば、T E M 00のモードとされた良質のレー
ザ光であり、これが前記レーザ媒体lに入射する前に、
前記ビームエクスパンダ−12によってビーム径が所定
の大きさに拡大され、前記レーザ媒体上に入射されるこ
とになる。すなわち、良質のレーザ光が前記レーザ媒体
1の励起領域をフルに利用して増幅されることになる。
In addition, Fig. 2(f) and (g) are respectively shown in Fig. 2(f) and (g).
This is an enlarged view of the time axis in d) and (e), and as shown in FIG.
It is a puzzle light with an extremely narrow width of sec. Further, the laser beam r1 is controlled by the mode selector 11 to
For example, a high quality laser beam with a mode of T E M 00, before it enters the laser medium l,
The beam diameter is expanded to a predetermined size by the beam expander 12, and the beam is made incident on the laser medium. That is, high-quality laser light is amplified by fully utilizing the excitation region of the laser medium 1.

したがって、得られるレーザ光r2は極め強力かつ良質
で鋭いパルス幅を有するものである。
Therefore, the obtained laser beam r2 is extremely powerful, of good quality, and has a sharp pulse width.

(第2実施例) 第3図は本発明の第2実施例に係るレーザ装置の構成を
示すブロック図である この実施例は、レーザ媒体を通じてレーザ共振光路を形
成するために該レーザ媒体を挾んで相対向して配置され
る一対の光反射手段の一方を一部透過鏡で構成し、この
一部透過鏡を通じて特定の偏光面を持つ直!!偏光から
なる発振レーザ光を取り出すようにした点、並びに、こ
の取り出したレーザ光の偏光面を変更して再度前記レー
ザ媒体に入射させて増幅するようにした点を除き、前記
第1実施例とほぼ同様の楕或を有する。したがって、以
下、これら相違点を中心に説明する。
(Second Embodiment) FIG. 3 is a block diagram showing the configuration of a laser device according to a second embodiment of the present invention. In this embodiment, a laser medium is sandwiched in order to form a laser resonant optical path through the laser medium. One of the pair of light reflecting means arranged opposite to each other is partially composed of a transmissive mirror, and through this partially transmissive mirror, a light beam having a specific plane of polarization is transmitted. ! This is different from the first embodiment, except that an oscillated laser beam consisting of polarized light is extracted, and the polarization plane of the extracted laser beam is changed and the laser beam is made to enter the laser medium again for amplification. They have almost similar ellipses. Therefore, the following description will focus on these differences.

第2図において、符号201はロッド型レーザ媒体、符
号202は励起光源、符号203は一部透過鏡、符号2
04は全反射鏡、符号205及び206は偏光素子、符
号207はポッケルス素子、符号208.209及び2
19は光線進路変更手段たる反射鏡、符号210は偏光
面変更手段たるλ/2板、符号211はモードセレクタ
、符号212はビームエクスパンダーである。なお、こ
れら、各部材のうち、前記一部透過鏡203およびλ/
2板210を除く部材は、前記第1実施例の対応する各
部材と同様の作用をなすものであるからその詳細説明は
省略する。
In FIG. 2, numeral 201 is a rod-shaped laser medium, numeral 202 is an excitation light source, numeral 203 is a partially transmitting mirror, and numeral 2 is a rod-shaped laser medium.
04 is a total reflection mirror, 205 and 206 are polarizing elements, 207 is a Pockels element, 208, 209 and 2
Reference numeral 19 is a reflecting mirror serving as a beam path changing means, reference numeral 210 is a λ/2 plate serving as a polarization plane changing means, reference numeral 211 is a mode selector, and reference numeral 212 is a beam expander. Note that among these members, the partially transmitting mirror 203 and the λ/
Since the members other than the second plate 210 have the same functions as the corresponding members of the first embodiment, detailed explanation thereof will be omitted.

また、前記励起光源202およびポッケルス素子207
を制御するそれぞれの制御装置並びにこれら各制御装置
を制御する中央制御装置も前記第I実施例と同様にある
が、これらについては、図示並びに説明を省略する。
Furthermore, the excitation light source 202 and the Pockels element 207
There are also control devices for controlling the respective control devices and a central control device for controlling these control devices as in the first embodiment, but illustration and explanation of these will be omitted.

さらに、この実施例では、レーザ共振系の配置は、前記
第1実施例における全反射鏡3の代わりに一部透過鏡2
03を配置し、前記第上実施例におけるλ/4板l○を
レーザ共振系から収り除いた点を除くと全く同一の構成
を有する。なお、この実施例では、前記ポッケルス素子
207はレーザ発振を得るQスイッチの作用を行わせて
いる点で前記第1実施例とその役割がやや異なるが、動
作タイミング等は前記第2図に示される第1実施例の場
合と同じである。 前記光線進路変更手段たる反射鏡2
08.209および219は、前記ボッケル素子207
を動作させてQスイッチによるパルス発振レーザ光rO
が前記一部透過鏡203を通じて取り出されたとき、こ
れを反射して進路をかえ、前記偏光素子205の反射面
に所定の角度で入射するように導くものである。
Furthermore, in this embodiment, the laser resonant system is arranged such that a partially transmitting mirror 2 is used instead of the total reflecting mirror 3 in the first embodiment.
03 and the λ/4 plate l○ in the first embodiment is removed from the laser resonant system. In this embodiment, the role of the Pockels element 207 is slightly different from that of the first embodiment in that it performs the function of a Q switch to obtain laser oscillation, but the operation timing etc. are shown in FIG. This is the same as in the first embodiment. Reflector 2 serving as the beam path changing means
08.209 and 219 are the Bockel elements 207
Pulse oscillation laser beam rO is generated by operating the Q switch.
When the light is taken out through the partially transmitting mirror 203, it is reflected to change its course, and is guided to be incident on the reflective surface of the polarizing element 205 at a predetermined angle.

前記反射鏡209と219との間にはλ/2板210が
介在され、また、前記反射鏡208と209との間には
ビームエクスパンダー212が介在されている。
A λ/2 plate 210 is interposed between the reflecting mirrors 209 and 219, and a beam expander 212 is interposed between the reflecting mirrors 208 and 209.

前記λ/2板210は、紙面に平行な偏光面を持つ直線
偏光たるレーザ光roの偏光面を90°変更して紙面に
垂直な偏光面を持つレーザ光r1に変更する。したがっ
て、このレーザ光r1は前記偏光素子205によって反
射されて再度前記レーザ媒体1に入射し、増幅作用を受
けて強力レーザ光r2になる。このレーザ光r2は紙面
に垂直な偏光面を持つ直線偏光であるから、前記偏光素
子206によって反射されて外部に取り出される。
The λ/2 plate 210 changes the polarization plane of the linearly polarized laser beam ro having a polarization plane parallel to the plane of the paper by 90° to change it into laser light r1 having a polarization plane perpendicular to the plane of the paper. Therefore, this laser beam r1 is reflected by the polarizing element 205, enters the laser medium 1 again, and is amplified to become an intense laser beam r2. Since this laser beam r2 is linearly polarized light having a polarization plane perpendicular to the plane of the paper, it is reflected by the polarizing element 206 and taken out to the outside.

これによって、前記第1実施例と同様に、強力かつ良質
で鋭いパルス幅を有するレーザ光r2を得ることができ
るものである。
As a result, as in the first embodiment, it is possible to obtain the laser beam r2 that is strong, of good quality, and has a sharp pulse width.

なお、前記各実施例では、レーザ媒体としてロッド型レ
ーザ媒体を用いる例を掲げたが、これはスラブ型レーザ
媒体であってもよい。また、その材質もNd :YLF
、Nd : GLassもしくはNd:GGGでもよい
In each of the above embodiments, a rod-type laser medium is used as the laser medium, but a slab-type laser medium may also be used. Also, the material is Nd:YLF
, Nd:GLass or Nd:GGG.

また、前記第1実施例において、前記λ/4板10を取
り除き、一方、前記ポッケルス素子7に電圧を印加する
タイミングを前記第1実施例の場合とちょうど逆にする
ようにしてもよい。
Further, in the first embodiment, the λ/4 plate 10 may be removed, and the timing at which voltage is applied to the Pockels element 7 may be reversed to that in the first embodiment.

すなわち、常時は電圧を印加しないでおいて、レーザ光
を取り出す瞬間だけ電圧を印加するようにしても同様の
作用を得ることができる。
That is, the same effect can be obtained even if the voltage is not applied all the time and the voltage is applied only at the moment when the laser beam is extracted.

[発明の効果] 以上詳述したように、本発明は、 レーザ媒体と、 このレーザ媒体を励起する励起光源と、前記レーザ媒体
を通じてレーザ共振光路を形成するために該レーザ媒体
を挾んで相対向して配置される一対の光反射手段とを有
し、 特定の直線偏光は通過し、一方、この特定の直線偏光以
外の直線偏光を反射する偏光素子を、前記共振光路中に
おいて前記一対の光反射手段の各々と前記レーザ媒体の
各端面との間にそれぞれ配置し、 前記偏光素子間以外のレーザ光進路中に、レーザ発振光
を外部に取り出す際に該レーザ光の偏光面を変更する偏
光面変更手段を設け、 さらに、前記偏光面変更手段によって偏光面が変更され
たレーザ光を前記偏光素子の反射作用を利用して前記レ
ーザ媒体に再度入射させて増幅した後外部に取り出すこ
とができるような光路を形成する光線進路変更手段を設
けたことを特徴とする槽底としたことにより、良質で大
出力のレーザ光が得られ、比較的単純な槽底で、小型に
形成でき、設置・調整等も容易であり、かつ、製造価格
も安価にすむレーザ装置を得ているものである。
[Effects of the Invention] As described in detail above, the present invention includes a laser medium, an excitation light source that excites the laser medium, and a laser medium that is sandwiched between the laser medium and facing each other in order to form a laser resonant optical path through the laser medium. a pair of light reflecting means disposed so that a specific linearly polarized light passes therethrough, and a polarizing element that reflects linearly polarized light other than this specific linearly polarized light is used in the resonant optical path to reflect the pair of light beams. Polarized light disposed between each of the reflecting means and each end face of the laser medium, and changing the polarization plane of the laser beam when the laser oscillation light is extracted to the outside during the laser beam path other than between the polarizing elements. A plane changing means is provided, and the laser light whose polarization plane has been changed by the polarization plane changing means can be made to enter the laser medium again by utilizing the reflection action of the polarizing element, amplified, and then taken out to the outside. The tank bottom is characterized by a light beam path changing means that forms an optical path such that a high-quality, high-output laser beam can be obtained, and the tank bottom can be formed compactly and easily installed. - A laser device is obtained that is easy to adjust and is inexpensive to manufacture.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例にかかるレーザ装置を示す
ブロック図、第2図は第1実施例の動作を示すタイムチ
ャート、第3図は本発明の第2実施例にがかるレーザ装
置を示すブロック図である。 1.201・・・ロッド型レーザ媒体、2.202・・
・励起光源、3,4,204・・・レーザ共振光路を形
成するための全反射鏡、203・・・一部透過鏡、5.
205,6,206・・・偏光素子、7,207・・・
ポッケルス素子、8,208,9,209,219・・
・光線進路変更手段たる反射鏡、11,211・・・モ
ードセレクタ、12,212・・・ビームエクスパンダ
FIG. 1 is a block diagram showing a laser device according to a first embodiment of the present invention, FIG. 2 is a time chart showing the operation of the first embodiment, and FIG. 3 is a laser device according to a second embodiment of the present invention. FIG. 1.201...Rod type laser medium, 2.202...
- Excitation light source, 3, 4, 204... Totally reflecting mirror for forming a laser resonant optical path, 203... Partially transmitting mirror, 5.
205, 6, 206... polarizing element, 7, 207...
Pockels element, 8,208,9,209,219...
・Reflector serving as a beam course changing means, 11,211...Mode selector, 12,212...Beam expander

Claims (1)

【特許請求の範囲】 レーザ媒体と、 このレーザ媒体を励起する励起光源と、 前記レーザ媒体を通じてレーザ共振光路を形成するため
に該レーザ媒体を挾んで相対向して配置される一対の光
反射手段とを有し、 特定の直線偏光は通過し、一方、この特定の直線偏光以
外の直線偏光を反射する偏光素子を、前記共振光路中に
おいて前記一対の光反射手段の各々と前記レーザ媒体の
各端面との間にそれぞれ配置し、 前記偏光素子間以外のレーザ光進路中に、レーザ発振光
を外部に取り出す際に該レーザ光の偏光面を変更する偏
光面変更手段を設け、 さらに、前記偏光面変更手段によつて偏光面が変更され
たレーザ光を前記偏光素子の反射作用を利用して前記レ
ーザ媒体に再度入射させて増幅した後外部に取り出すこ
とができるような光路を形成する光線進路変更手段を設
けたことを特徴とするレーザ装置。
[Scope of Claims] A laser medium, an excitation light source that excites the laser medium, and a pair of light reflection means that are disposed opposite to each other with the laser medium in between to form a laser resonant optical path through the laser medium. and a polarizing element that allows a specific linearly polarized light to pass through and reflects linearly polarized light other than the specific linearly polarized light, is provided in the resonant optical path between each of the pair of light reflecting means and each of the laser medium. A polarization plane changing means is provided between the end face and the laser beam path other than between the polarizing elements to change the polarization plane of the laser beam when extracting the laser oscillation light to the outside; A light beam path that forms an optical path in which the laser beam whose polarization plane has been changed by the plane changing means can be made to enter the laser medium again by utilizing the reflection action of the polarizing element, be amplified, and then taken out to the outside. A laser device characterized by being provided with a changing means.
JP17642889A 1989-07-07 1989-07-07 Laser Pending JPH0341788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17642889A JPH0341788A (en) 1989-07-07 1989-07-07 Laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17642889A JPH0341788A (en) 1989-07-07 1989-07-07 Laser

Publications (1)

Publication Number Publication Date
JPH0341788A true JPH0341788A (en) 1991-02-22

Family

ID=16013531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17642889A Pending JPH0341788A (en) 1989-07-07 1989-07-07 Laser

Country Status (1)

Country Link
JP (1) JPH0341788A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108767629A (en) * 2018-03-26 2018-11-06 中国科学院上海光学精密机械研究所 The active multi-way chirped pulse stretcher of big energy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108767629A (en) * 2018-03-26 2018-11-06 中国科学院上海光学精密机械研究所 The active multi-way chirped pulse stretcher of big energy

Similar Documents

Publication Publication Date Title
US20070164005A1 (en) Laser beam processing apparatus
EP2043205A1 (en) Optical amplifier
JP2019176119A (en) Solid-state laser device
KR101549363B1 (en) Co2 laser device and co2 laser processing device
KR100451115B1 (en) Wavelength selectable laser oscillator in wavelength tunable lasers
JP2006196866A (en) Solid-state laser device
JPH11233867A (en) Pulse laser light generator
JPH0341788A (en) Laser
KR100451116B1 (en) Wavelength selectable laser oscillator in wavelength tunable lasers
JP2001308426A (en) Pulse laser oscillating method and oscillating device
JP3176682B2 (en) Tunable laser device
US5230004A (en) Narrow beam oscillator and large volume amplifier utilizing same gain medium
JP2009238983A (en) Laser resonator
JPH02122581A (en) Laser oscillator
JP5024118B2 (en) Laser oscillation method, laser, laser processing method, and laser measurement method
CN115513759B (en) Laser device
JPH07131102A (en) Q-switch laser oscillator
JP2005209910A (en) Adjusting method of regenerative amplifier
JPH07235720A (en) Laser oscillation apparatus
JPH02260678A (en) Laser device
JPH0613685A (en) Feed back controller for solid-state laser
JPH0563269A (en) Pulse semiconductor laser-pumped solid-state laser device
JPH065953A (en) Solid state laser
JPH11289122A (en) Laser and method of controlling resonator length of the laser device
JPH08191168A (en) Q switch laser device