JPH034160A - Measurement end point deciding method in water measuring instrument - Google Patents

Measurement end point deciding method in water measuring instrument

Info

Publication number
JPH034160A
JPH034160A JP13991189A JP13991189A JPH034160A JP H034160 A JPH034160 A JP H034160A JP 13991189 A JP13991189 A JP 13991189A JP 13991189 A JP13991189 A JP 13991189A JP H034160 A JPH034160 A JP H034160A
Authority
JP
Japan
Prior art keywords
end point
amount
measurement
water
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13991189A
Other languages
Japanese (ja)
Other versions
JP2793841B2 (en
Inventor
Kiyozo Kinoshita
木下 喜代三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYOTO DENSHI KOGYO KK
Kyoto Electronics Manufacturing Co Ltd
Original Assignee
KYOTO DENSHI KOGYO KK
Kyoto Electronics Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYOTO DENSHI KOGYO KK, Kyoto Electronics Manufacturing Co Ltd filed Critical KYOTO DENSHI KOGYO KK
Priority to JP13991189A priority Critical patent/JP2793841B2/en
Publication of JPH034160A publication Critical patent/JPH034160A/en
Application granted granted Critical
Publication of JP2793841B2 publication Critical patent/JP2793841B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To decide a measurement end point with high reproducibility without any influence from the amount of a sample upon a measured value by finding the ratio of the current integral amount of water per unit time to the integral amount of water from the start of measurement to the current point. CONSTITUTION:The total amount M of water up to the current point is found from the total titration amount of a reagent. Those amounts M and M1 of water are substituted in M-M1/MX100 and a measurement end point is decided when the value exceeds a constant value, i.e. when M1/M becomes less than the constant value. When the amount of the sample is equal for the same mate rial, an end point judgement depends not only upon the integral amount M1 of water per unit time, but also on the integral amount M of water, so, spe cially, a titration curve becomes effective to slow measurement and the end point is decided with high reproducibility.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は水分測定装置における、測定終点の判定方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for determining the end point of a measurement in a moisture measuring device.

〔従来技術〕[Prior art]

一般に固体、液体又は気体中に含まれる微量水分を測定
する方法としてカールフィッシャー測定法が知られてい
る。この測定法はメタノール及びピリジンの存在下(該
メタノール、ピリジン含有液を発生液という)で、水が
ヨウ素及び亜硫酸ガスと次の化学式に示すように定量的
に反応することを利用したものである。
Karl Fischer measurement is generally known as a method for measuring trace amounts of moisture contained in solids, liquids, or gases. This measurement method utilizes the fact that water reacts quantitatively with iodine and sulfur dioxide gas in the presence of methanol and pyridine (the solution containing methanol and pyridine is called the generated solution) as shown in the following chemical formula. .

so、+l、+H1o+3cs  1−rs  N→2
Cs  Hs  N −HI +Cs  Hs  N 
−5oilCs  Hs  N−5Os  + CH2
0H→C% Hs  N −H304CH。
so, +l, +H1o+3cs 1-rs N→2
Cs Hs N -HI +Cs Hs N
-5oilCs Hs N-5Os + CH2
0H→C% Hs N -H304CH.

上記ヨウ素は、滴定液またはヨウ素イオンを含む発生液
の電気分解によって与えられ、該滴定量または電気量に
よって水分量が計算できることになる。
The above-mentioned iodine is provided by electrolysis of a titrant solution or a generated solution containing iodine ions, and the amount of water can be calculated from the titration amount or amount of electricity.

測定の終点は発生液に浸した2本の白金電極間に微少な
電流を流して分極させ、ヨウ素の過剰によって生ずる電
位変化を検出するいわゆるデッド・ストップ(Dead
 5top )法により検出する。
The end point of the measurement is the so-called dead stop, in which a minute current is passed between two platinum electrodes immersed in the generated solution to polarize them, and the change in potential caused by excess iodine is detected.
5top) method.

第4図は上記原理に基づいた水分測定装置の要部を示す
ものである。第4図において測定フラスコlに対して滴
定液の注入口2が設けられ、滴定液がビユレット5から
パルプ6を介して測定フラスコ1に注入される。このビ
ユレット5はマイクロコンピュータ20で作動されるビ
ユレット制御部21によって制御されている。また該測
定フラスコlには測定終点検出用の戻口金電極3が設け
られ、この電極3による検出電圧は検出部22を介して
マイクロコンピュータ20に入力され、上記滴定の制御
に利用される。測定フラスコ1には試料注入口4が設け
られ、以下のようにして試料が注入される。
FIG. 4 shows the main parts of a moisture measuring device based on the above principle. In FIG. 4, the measuring flask 1 is provided with an inlet 2 for the titrant, and the titrant is injected into the measuring flask 1 from the billet 5 through the pulp 6. This billet 5 is controlled by a billet control section 21 operated by a microcomputer 20. The measuring flask 1 is also provided with a return cap electrode 3 for detecting the end point of the measurement, and the voltage detected by this electrode 3 is inputted to the microcomputer 20 via the detecting section 22 and used for controlling the above-mentioned titration. The measurement flask 1 is provided with a sample injection port 4, and a sample is injected in the following manner.

固体に含有される水分、あるいは結晶水等を測定する場
合は直接発生液に試料を投入しても発生液中に測定すべ
き水分が溶出拡散し難いので、測定可能な状態にならな
い、そのため第4図に示すように加熱炉11に試料を入
れ、加熱して水分を分離し、乾燥キャリアーガスAによ
って上記測定フラスコ1に導く、いわゆる間接法が用い
られている。また液体に含有される水分のように発生液
中に拡散し易い場合には上記注入口4から注射器を用い
て測定フラスコ1内に注入される、いわゆる直接法が用
いられている。
When measuring water contained in solids or water of crystallization, even if the sample is directly poured into the generated liquid, the water to be measured is difficult to elute and diffuse into the generated liquid, making it impossible to measure. As shown in FIG. 4, a so-called indirect method is used in which a sample is placed in a heating furnace 11, heated to separate moisture, and introduced into the measuring flask 1 using a dry carrier gas A. In addition, when water is easily diffused into the generated liquid, such as water contained in the liquid, a so-called direct method is used in which the water is injected into the measurement flask 1 through the injection port 4 using a syringe.

そして、戻口金電極3に直流、交流、あるいはパルス信
号を印加して微弱電流を流し電極3間の分極電位を測定
する0滴定試薬の滴定量(あるいは電気量)に対する白
金電極間の電位の変化を滴定曲線として描けば、その形
状は直接法においては第5図で示す曲wA(C)のよう
になる、そこで、滴定の際、予め曲線(C)を推定し、
さらに測定終点電位(Vo)を設定しておいて(VO)
に達するまでカールフィッシャー試薬を滴定していけば
よい。
Then, a direct current, alternating current, or pulse signal is applied to the return port gold electrode 3 to flow a weak current and measure the polarization potential between the electrodes 3. Changes in the potential between the platinum electrodes with respect to the titration amount (or quantity of electricity) of the zero titration reagent If is drawn as a titration curve, its shape will be like the curve wA(C) shown in Figure 5 in the direct method.Therefore, during titration, estimate the curve (C) in advance,
Furthermore, set the measurement end point potential (Vo) (VO)
Simply titrate the Karl Fischer reagent until it reaches .

第6図は上記間接法で水分量を測定した場合の時間と水
分量/時間の関係を示すものである。間接法は前述のよ
うに固形物を炉に入れ該固形物に含まれる水分を加熱し
、分離させて発生液に乾燥キャリアーガスと共に注入さ
れるようになっている。従って、滴定曲線は第6図に示
すように、初期には水分が大量に分離されが、時間とと
もにその後徐々に減少する傾向を示す、この測定方法に
於いて、単位時間to当たりの積分水分量M、が所定値
以下になったときを測定の終点として、測定を自動的に
打ち切るようになっている。
FIG. 6 shows the relationship between time and moisture content/time when the moisture content is measured by the above-mentioned indirect method. In the indirect method, as described above, the solid material is placed in a furnace, the water contained in the solid material is heated, separated, and injected into the generated liquid together with a dry carrier gas. Therefore, as shown in Figure 6, the titration curve shows a tendency for a large amount of water to be separated at the beginning, but then to gradually decrease over time.In this measurement method, the integrated water amount per unit time to The measurement is automatically terminated when M becomes less than a predetermined value as the end point of the measurement.

(発明が解決しようとする課題〕 第2図(b)は上記方法(従来法)によって同一物質(
含水量一定)に対して、試料量を異にした場合(試料量
a<b<c)の測定結果である。
(Problem to be solved by the invention) Figure 2(b) shows that the same material (
These are the measurement results when the sample amount was varied (sample amount a<b<c) with respect to the case where the water content was constant).

元来試料の量は変化しても測定結果は同じでなければな
らないが、上記のように単位時間to当たりの積分水分
量M1が所定値以下となるように測定終点を決定すると
試料量の影響をうけて水分測定結果がa<b<cとなる
。なぜならば、測定終点での積算水分量Mと単位時間当
たりの積分水分量M1との関係を考えると各試料の積算
水分量はM a < M b < M cであるため、
となることからも明らかである。
Originally, the measurement result must be the same even if the sample amount changes, but if the measurement end point is determined so that the integrated moisture content M1 per unit time to is less than a predetermined value as described above, the sample amount will affect the measurement result. As a result, the moisture measurement result becomes a<b<c. This is because, considering the relationship between the cumulative moisture content M at the measurement end point and the integral moisture content M1 per unit time, the cumulative moisture content of each sample is M a < M b < M c.
It is clear from this.

また、第3図(b)は同一物質に対して試料量を同一に
した場合(試料量a=b=c)の測定結果である0元来
同一時間で測定が終了するはずであるが、上記方法(従
来法)によると終点にばらつきが生じ、測定結果もばら
ついた状態になる。
In addition, Fig. 3(b) shows the measurement results when the sample amount is the same for the same substance (sample amount a = b = c).Originally, the measurement should have finished in the same time. According to the above method (conventional method), variations occur in the end points, and the measurement results also vary.

特にこの傾向は滴定曲線が緩やかな測定に於いて顕著で
ある。なぜならば、従来の終点判断は積算水分量Mの大
きさに依存することなく単位時間当たりの積分水分量M
1だけで判断しているためである。
This tendency is particularly noticeable in measurements where the titration curve is gentle. This is because the conventional end point determination does not depend on the size of the integrated water content M, but rather the integrated water content M per unit time.
This is because the judgment is based on only 1.

この発明は上記従来の事情に鑑みて提案されたものであ
って、測定値が試料の量に影響を受けることなく、また
再現性が高い終点判別方法を提供することを目的とする
ものである。
This invention was proposed in view of the above-mentioned conventional circumstances, and aims to provide an end point determination method in which the measured value is not affected by the amount of sample and has high reproducibility. .

〔作用〕[Effect]

同一物質に対して試料量を異にした場合、本発明の方法
によると現時点までの単位重量当たりの積算水分量をm
、現時点での単位時下to当たりで、且つ単位重量当た
りの積分水分量をml、試料の量(重りをNとするとき
、(11式にあてはめると、 mXN × 100 従って、 となって、本発明の終点判断には重量の要素は相殺され
、影響されないことが明らかである。
When different sample amounts are used for the same substance, according to the method of the present invention, the accumulated water content per unit weight up to the present time can be calculated as follows:
, when the current integral water content per unit time is ml, and the amount of sample (weight is N), (applying to equation 11, mXN × 100, so, It is clear that the weight factor cancels out and is unaffected in determining the endpoint of the invention.

また、同一物質に対して試料量を同一にした場合、終点
判断は単位期間当たりの積分水分量M。
In addition, when the sample amount is the same for the same substance, the end point judgment is the integral moisture content M per unit period.

たけてなく積算水分量Mの大きさに依存するため、特に
滴定曲線が緩やかな測定に於いて有効となり、実験上良
好な再現性が得られている。
Since it is extremely dependent on the magnitude of the cumulative water content M, it is particularly effective in measurements where the titration curve is gentle, and good reproducibility has been obtained experimentally.

〔実施例〕〔Example〕

第1図はこの発明の一実施例を示す図である。 FIG. 1 is a diagram showing an embodiment of the present invention.

測定曲線そのものは従来と変わるところはない。The measurement curve itself remains the same as before.

まず、滴定試薬の滴定総量から現時点までの総水分量M
が求められる。同時に現時点での単位時間to当たりの
積分水分量(Ml)を測定する。これらの水分量M%M
、より を計算してこの値がR(一定値)以上になったとき、す
なわち、Ml /Mが一定値以下になったときに測定終
点とするものである。
First, from the total amount of titration reagent to the current amount of water M
is required. At the same time, the integral moisture content (Ml) per unit time to is measured at the present time. These moisture contents M%M
, twist is calculated, and when this value becomes equal to or greater than R (a constant value), that is, when Ml /M becomes less than a constant value, the measurement end point is determined.

第2図(a)はこの発明を用いて同一物質(含水量一定
)に対して重量(試料量)を変えて(試料1ia<b<
c)測定したものである。上記総積算水装置Mは単位重
量当たりの総積算水分量をm、重量をNとしたときmX
Nで表すことができ、現時点での単位時間to当たりの
積分水分量は単位重量あたりで且つ単位時間to当たり
の積分水分量をmlとしたときm、XNで表すことがで
き、従って(1)式は となり重量の要素は相殺される。従って、測定結果も試
料の量に依存することはなくなる。
FIG. 2(a) shows that using this invention, the weight (sample amount) of the same material (constant water content) was changed (sample 1ia<b<
c) It was measured. The above total integrated water device M is mX when the total integrated water content per unit weight is m and the weight is N.
It can be expressed as N, and the current integral moisture content per unit time to can be expressed as m, XN when the integral moisture content per unit weight and per unit time to is ml, and therefore (1) The equation becomes: The weight factor cancels out. Therefore, the measurement results are no longer dependent on the amount of sample.

例えば、試料aの終点判断は11)式に当てはめると、 a の計算値がR(一定値)以上になったときである。For example, when determining the end point of sample a, applying equation 11), a This is when the calculated value of is equal to or greater than R (constant value).

測定結果は試料量に影響されることなく、再現性が得ら
れている。
The measurement results are not affected by the amount of sample and are reproducible.

次に、第3図(a)は滴定曲線が緩やかな同一物質に対
して試料量を同一にした場合に、ついての3回(a+ 
*  az r  as )の水分測定結果を示すもの
である。3回の終点はほぼ同一時刻になっており、従来
のようなばらつきがなくなり、測定結果は再現性が得ら
れている。
Next, Fig. 3(a) shows three times (a+
* Shows the results of moisture measurement of az ra as ). The end points of the three measurements were at almost the same time, eliminating the conventional variations and ensuring reproducibility of the measurement results.

上記に於いて単位時間toは、例えば10Sec”12
0secの間で任意に設定できるが、時間が短いほど、
精度が低くなる。更に、上記所定値Rは例えば99.9
以上100までの値が採られる。
In the above, the unit time to is, for example, 10Sec”12
It can be set arbitrarily between 0 seconds, but the shorter the time, the
Accuracy decreases. Further, the predetermined value R is, for example, 99.9.
Values above 100 are taken.

以上間接法についてのみ説明したが、直接法でも試料か
ら発生液への水分の溶出拡散に時間がかかるときには、
間接法と同様な滴定曲線を描くこととなり、この方法を
適用できる。
Although only the indirect method has been explained above, when the elution and diffusion of water from the sample to the generated liquid takes time even with the direct method,
A titration curve similar to that of the indirect method will be drawn, and this method can be applied.

〔発明の効果〕〔Effect of the invention〕

以上説明したようにこの発明は現時点での単位時間当た
りの積分水分量と現時点までの積算水分量との比を採っ
ているので測定結果が試料の量に影響されることがなく
なり、また再現性も高くなる。
As explained above, this invention calculates the ratio between the current integrated moisture content per unit time and the cumulative moisture content up to the current time, so the measurement results are not affected by the amount of sample, and the reproducibility is It also becomes more expensive.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示すグラフ、第2図は試
料の量を変えた場合にこの発明の方法を従来の方法と対
比した状態を示すグラフ、第3図は同一量の複数回の試
料に対するこの発明の方法を従来の方法と対比した状態
を示すグラフ、第4図はこの発明が適用される装置の概
念図、第5図は直接法による測定結果を示すすグラフ、
第6図は間接法による従来の測定結果を示すグラフであ
2傅υ′時間 (a) 7に倒し補間 第 図 1、事件の表示 平成 1年特許願第139911号 2、発明の名称 水分測定装置における測定終点判定方法3、補正をする
者 事件との関係  特許出願人 住 所 京都市南区吉祥院新田二ノ段町684、代理人 補正の内容 2、特許請求の範囲 (1)測定開始から現時点までの積算水分量に対する、
現時点での単位時間当たりの積分水分量の比が所定値以
下であるとき測定終点とすることを特徴とする水分測定
装置における測定終点判定方法。 〔2〕測定開始から現時点までの積算水分量をM、現時
点での単位時間当たりの積分木立1奎M + としたと
き が所定値より大きくなったときを測定終点とする、が所
定値より大きくなつたときを測定装置における測定終点
判定方法。 明細書の「特許請求の範囲」の欄。
Fig. 1 is a graph showing an embodiment of the present invention, Fig. 2 is a graph showing a comparison between the method of the present invention and the conventional method when the amount of sample is changed, and Fig. 3 is a graph showing multiple samples of the same amount. FIG. 4 is a conceptual diagram of an apparatus to which this invention is applied; FIG. 5 is a graph showing measurement results by the direct method;
Figure 6 is a graph showing the conventional measurement results using the indirect method. Method for determining the end point of measurement in the device 3, Relationship with the case of the person making the amendment Patent applicant address: 684 Nitta Ninodan-cho, Kisshoin, Minami-ku, Kyoto City, Contents of amendment by agent 2, Claims (1) From the start of measurement Regarding the cumulative moisture content up to the present time,
A method for determining a measurement end point in a moisture measuring device, characterized in that the measurement end point is determined when the current ratio of the integrated moisture content per unit time is less than or equal to a predetermined value. [2] The measurement end point is when the cumulative moisture content from the start of the measurement to the present time is M, and the integral grove per unit time at the present time is M+, and the measurement end point is set to be greater than a predetermined value. A method for determining the end point of measurement using a temperature measuring device. The “Claims” column of the specification.

Claims (1)

【特許請求の範囲】 〔1〕測定開始から現時点までの積算水分量に対する、
現時点での単位時間当たりの積分水分量の比が所定値以
下であるとき測定終点とすることを特徴とする水分測定
装置における測定終点判定方法。 〔2〕測定開始から現時点までの積算水分量をM、現時
点での単位時間当たりの積分水分量の比をM_1とした
とき M−M_1/M×100・・・・・・・・・(1) が
所定値より大きくなったときを測定終点とする、請求項
1に記載の水分測定装置における測定終点判定方法。
[Claims] [1] Regarding the cumulative moisture content from the start of measurement to the present time,
A method for determining a measurement end point in a moisture measuring device, characterized in that the measurement end point is determined when the current ratio of the integrated moisture content per unit time is less than or equal to a predetermined value. [2] M-M_1/M×100 (1 2. The method for determining a measurement end point in a moisture measuring device according to claim 1, wherein the measurement end point is determined when .
JP13991189A 1989-05-31 1989-05-31 Determination method of measurement end point in moisture measurement device Expired - Fee Related JP2793841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13991189A JP2793841B2 (en) 1989-05-31 1989-05-31 Determination method of measurement end point in moisture measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13991189A JP2793841B2 (en) 1989-05-31 1989-05-31 Determination method of measurement end point in moisture measurement device

Publications (2)

Publication Number Publication Date
JPH034160A true JPH034160A (en) 1991-01-10
JP2793841B2 JP2793841B2 (en) 1998-09-03

Family

ID=15256509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13991189A Expired - Fee Related JP2793841B2 (en) 1989-05-31 1989-05-31 Determination method of measurement end point in moisture measurement device

Country Status (1)

Country Link
JP (1) JP2793841B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6026723A (en) * 1997-03-31 2000-02-22 Sharp Kabushiki Kaisha Roll paper feeding apparatus
WO2000011460A1 (en) * 1998-08-18 2000-03-02 Mitsubishi Chemical Corporation Method of constant-current polarization voltage and apparatus for karl-fischer technique

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6026723A (en) * 1997-03-31 2000-02-22 Sharp Kabushiki Kaisha Roll paper feeding apparatus
WO2000011460A1 (en) * 1998-08-18 2000-03-02 Mitsubishi Chemical Corporation Method of constant-current polarization voltage and apparatus for karl-fischer technique
US6315888B1 (en) 1998-08-18 2001-11-13 Mitsubishi Chemical Corporation Method of constant-current polarization voltage and apparatus for Karl-Fischer technique

Also Published As

Publication number Publication date
JP2793841B2 (en) 1998-09-03

Similar Documents

Publication Publication Date Title
US2621671A (en) Electrolytic titrimeter
Heegaard Determination of antigen—antibody affinity by immuno-capillary electrophoresis
Fujinaga et al. Ion selective electrodes responsive to anionic detergents
CA2021198A1 (en) System for measuring electrokinetic properties and for characterizing electrokinetic separations by monitoring current in electrophoresis
JPS6318664B2 (en)
Karlmark et al. The determination of bicarbonate in nanoliter samples
JPH034160A (en) Measurement end point deciding method in water measuring instrument
Koval et al. Determination of pKa values of diastereomers of phosphinic pseudopeptides by CZE
Ni et al. Simultaneous determination of mixtures of metal ions by complexometric titration and multivariate calibration
Haemmerli et al. A flow injection system for measurement of chemical response time of microelectrodes
US5246863A (en) Karl Fischer titration techniques
US4664756A (en) Method of detecting electrode potential in Karl Fischer moisture meter
Beckers et al. Calibrationless quantitative analysis by indirect UV absorbance detection in capillary zone electrophoresis: The concept of the conversion factor
Bailey et al. Limits of detection of gas-sensing probes
JP2523608B2 (en) Phase difference detection method in AC applied polarization reaction
JPS63179248A (en) Method for measuring concentration of chorine ion
Szökő et al. Equilibrium binding model of bile salt‐mediated chiral micellar electrokinetic capillary chromatography
US6315888B1 (en) Method of constant-current polarization voltage and apparatus for Karl-Fischer technique
JPH0477867B2 (en)
SU1642349A1 (en) Method of continuous monitoring of moisture content
Nagy et al. A novel titration technique for the analysis of streamed samples—the triangle-programmed titration technique: Part 3. Titrations with Electrically Generated Bromine
JP2000146943A (en) Titration method and device
JP3684930B2 (en) Constant current polarization voltage detection method and Karl Fischer moisture measuring device
Pohlmann et al. First-order phase transitions on electrodes: the role of surface diffusion
Björefors et al. Amperometric determination of the water content in acetone, butter and margarine using a wall-tube platinum microelectrode in a flow injection system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees