JPH0341402A - Transparent antifogging material - Google Patents

Transparent antifogging material

Info

Publication number
JPH0341402A
JPH0341402A JP1176407A JP17640789A JPH0341402A JP H0341402 A JPH0341402 A JP H0341402A JP 1176407 A JP1176407 A JP 1176407A JP 17640789 A JP17640789 A JP 17640789A JP H0341402 A JPH0341402 A JP H0341402A
Authority
JP
Japan
Prior art keywords
base material
transparent
silicon oxide
antifogging
synthetic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1176407A
Other languages
Japanese (ja)
Inventor
Michiharu Uenishi
理玄 上西
Masatoshi Takei
武居 正俊
Mitsuharu Morita
森田 光治
Yukio Kobayashi
幸男 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP1176407A priority Critical patent/JPH0341402A/en
Publication of JPH0341402A publication Critical patent/JPH0341402A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

PURPOSE:To obtain the transparent antifogging material which simultaneously satisfies the improvement in an antifogging property and surface hardness by forming a porous layer of 3000Angstrom to 10mum thickness consisting of silicon oxide on a transparent synthetic resin base material on which a surface layer satisfying specific formula is provided. CONSTITUTION:The transparent synthetic resin base material 1 consists of the base material 10, such as transparent acrylic resin, and the surface layer 11 which is provided on the surface thereof and satisfies the formula I. In the formula, F is the value of the molar number (mumol/cm<2>) at which a basic dye can react or stick per unit area of the base material surface and Hv is the value of the Vickers hardness measured by a method complying with JIS-Z-2244. The thickness of the porous layer 3 consisting of the silicon oxide formed on this base material 1 is specified to 3000 deg. to 10mum thickness. The adhesive property of the porous layer 2 consisting of the silicon oxide is enhanced and the improvement in the antifogging property and the surface hardness is simultaneously attained if the compd. satisfying the formula I is used as the surface layer 11. In addition, the transparent antifogging material with which the high adhesive property is obtainable is obtd. without being affected by the kind of the resin material used as the base material.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、鏡、メガネレンズ、窓等の防曇性が要求され
る透明材料、あるbは水分吸収に伴うインピーダンス変
化を利用した湿度センサー等に好適な透明で表面硬度の
高い防曇材料に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to transparent materials such as mirrors, eyeglass lenses, windows, etc. that require antifogging properties, and a humidity sensor that utilizes impedance changes due to moisture absorption. The present invention relates to an anti-fogging material that is transparent and has a high surface hardness, and is suitable for applications such as the following.

(従来の技術) 透明合成樹脂材料に防曇性を付与することは、特に上記
の如き分野にかいて要求が高く、古くから多くの方法が
開発され、実用化が試みられてしるが、代表的なものを
挙げると次の通りである。
(Prior Art) There is a high demand for imparting antifogging properties to transparent synthetic resin materials, especially in the fields mentioned above, and many methods have been developed and attempts have been made to put them into practical use for a long time. Representative examples are as follows.

■ 親水性有機薄膜を透明合成樹脂にコーティングする
方法、 ■ 透明合成樹脂中にシリカゲル等の吸水性無機微粒子
を添加する方法、 ■ 透明合成樹脂表面をプラズマ放電処理等の物理的方
法で親水化する方法、 ■ 透明合成樹脂表面に表面加水分解等により親水基を
生成させる化学的方法、 ■ 透明合成樹脂表面に親水性無機化合物層を形成する
方法(特開昭60−210641号公報参照)。
■ A method of coating a transparent synthetic resin with a hydrophilic organic thin film, ■ A method of adding water-absorbing inorganic particles such as silica gel into a transparent synthetic resin, ■ A method of making the surface of a transparent synthetic resin hydrophilic by a physical method such as plasma discharge treatment. Methods: (1) A chemical method of generating hydrophilic groups on the surface of a transparent synthetic resin by surface hydrolysis, etc. (2) A method of forming a hydrophilic inorganic compound layer on the surface of a transparent synthetic resin (see JP-A-60-210641).

(発明が解決しようとする課M) ところが上記の従来の方法のうち、■は防曇性の耐久性
に問題があり、しかも同時に表面の硬度を高めて耐擦傷
性を向上することができず、■の方法も十分な防曇効果
が期待できず、しかも表面硬度の向上が望めない。また
■や■の物理的あるいは化学的方法も、やばり防曇性と
表面硬度の向上とを満足させることができない。
(Problem M that the invention seeks to solve) However, among the above conventional methods, method (2) has a problem with the durability of the anti-fog property, and at the same time, it is not possible to increase the hardness of the surface and improve the scratch resistance. Methods (2) and (2) cannot be expected to have a sufficient antifogging effect, nor can they be expected to improve surface hardness. Furthermore, the physical or chemical methods described in (1) and (2) are also unable to satisfy the requirements of anti-fogging properties and improvement of surface hardness.

■の方法は、透明合成樹脂の表面に真空蒸着法やスパッ
タリング法で直接ケイ素系化合物を形成させるもので、
これにより処理された面の表面硬度の向上は期待しうる
が、この方法では基材の合成樹脂の種類とりわけ透明性
の高いアクリル樹脂に対し密着性が得られなしという難
点があった。
Method (2) involves forming a silicon-based compound directly on the surface of a transparent synthetic resin using vacuum evaporation or sputtering.
This method can be expected to improve the surface hardness of the treated surface, but this method has the disadvantage that it is difficult to obtain adhesion to the type of synthetic resin used as the base material, especially the highly transparent acrylic resin.

本発明はこのような状況に鑑み、防曇性と表面硬度の向
上とを同時に発揮でき、しかも基材となる透明合成樹脂
の種類に影響を受けずに高し密着性の得られる透明防曇
材料を得んとするものである。
In view of these circumstances, the present invention has been developed to provide a transparent anti-fog that can simultaneously exhibit anti-fog properties and improved surface hardness, and that also provides high adhesion without being affected by the type of transparent synthetic resin used as the base material. The purpose is to obtain materials.

(課題を解決するための手段) すなわち本発明は上記の如き課題を達成するために々さ
れたもので、その要旨とするところは、少なくとも表面
部分が下記式を満す透明合成樹脂基材に、厚さ3000
Å〜10μmの酸化ケイ素から々る多孔質層が形成され
ていることを特徴とする透明防曇材料 F’ X Hv≧0.3 (式中、Pは塩基性染料が基材表面の単位面積当りに反
応または付着しうるモル数(μmot/crl?)の値
で、HvばJ工5−Z−2244に準拠した方法で測定
したビッカース硬度の値である)にある。
(Means for Solving the Problems) That is, the present invention has been made to achieve the above-mentioned problems. , thickness 3000
Transparent antifogging material F' X Hv≧0.3 (where P is the unit area of the base material surface where the basic dye is It is the value of the number of moles (μmot/crl?) that can react or adhere per contact, and is the value of Vickers hardness measured by a method based on Hv J Engineering 5-Z-2244).

以下、本発明を図面に従って説明する。The present invention will be explained below with reference to the drawings.

第1図は本発明の透明防曇材料の一例を示す断面図であ
り、図中(1)が透明合成樹脂基材、(2)が酸化ケイ
素からなる多孔質層である。そしてこの例では透明合成
樹脂基材(1)が透明アクリル樹脂をはじめとする基材
(10)と、この表面に設けられた下記式を満足する表
層(11)とからなっている。
FIG. 1 is a sectional view showing an example of the transparent antifogging material of the present invention, in which (1) is a transparent synthetic resin base material and (2) is a porous layer made of silicon oxide. In this example, the transparent synthetic resin base material (1) consists of a base material (10) made of transparent acrylic resin, and a surface layer (11) provided on the surface of the base material (10) that satisfies the following formula.

F X Hv≧α3 (式中、Fは塩基性染料が基材表面の単位面積当りに反
応または付着しうるモル数(μmot/c1r?)の値
で、HvはJ工5−Z−2244に準拠したビッカース
硬度の値である) この式を満足する化合物を用すると、酸化ケイ素からな
る多孔質層(11)の密着性が高められるが、具体例と
しては、1・6ヘキサンジオールジ(メタ)アクリレー
ト、ネオペンチルアルコールジ(メタ)アクリレート、
トリエチレングリコールジ(メタ)アクリレート、トリ
メチロールプロパントリ(メタ)アクリレート、ジエチ
レングリコールジ(メタ)アクリレート、2−ヒドロキ
シエチル(メタ)アクリレート、テトラヒドロフルフリ
ル(メタ)アクリレート、N−ビニールピロリドン、シ
クロヘキシル(メタ)アクリレート、ジペンタエリスリ
トールへキサアクリレート、ベンタエリスυトールトリ
アクリレート、トリプロピレングリコールジアクリレー
ト等が挙げられる。このような化合物単独によって透明
台5ffialt脂基材を構成してもよいが、図のよう
にアクリル樹脂等の基材表面に薄層として形成すること
が好ましい。このときの表層(11)の厚さは特に限定
されるものではないが、2μm以上あれば十分であり、
基材(1o)がアクリル樹脂の場合、2〜30μm程度
にするとよい。な訟基材(10)に用いるアクリル樹脂
は、メチルメタクリレート単独の重合体あるいはメチル
メタクリレートを主成分とし他のビニル糸モノマーと共
重合させた共重合体等広くアクリル樹脂として用いられ
るものが使用しうる。
F By using a compound that satisfies this formula, the adhesion of the porous layer (11) made of silicon oxide can be improved. ) acrylate, neopentyl alcohol di(meth)acrylate,
Triethylene glycol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, diethylene glycol di(meth)acrylate, 2-hydroxyethyl(meth)acrylate, tetrahydrofurfuryl(meth)acrylate, N-vinylpyrrolidone, cyclohexyl(meth)acrylate ) acrylate, dipentaerythritol hexaacrylate, bentaerythritol triacrylate, tripropylene glycol diacrylate, and the like. Although the transparent resin base material may be composed of such a compound alone, it is preferable to form it as a thin layer on the surface of a base material such as acrylic resin as shown in the figure. The thickness of the surface layer (11) at this time is not particularly limited, but it is sufficient if it is 2 μm or more,
When the base material (1o) is an acrylic resin, the thickness is preferably about 2 to 30 μm. The acrylic resin used for the suit base material (10) is one that is widely used as an acrylic resin, such as a polymer of methyl methacrylate alone or a copolymer made of methyl methacrylate as the main component and copolymerized with other vinyl thread monomers. sell.

次に多孔質層(2)について説明すると、この層は酸化
ケイ素からなってかり、その厚さとしては3000 A
 〜10 pm、より好筐しくは5000未満であると
防曇効果が不十分であう、逆に10μmを超えるとクラ
ックが入り易く取扱す性に問題が生ずる。そしてこの酸
化ケイ素が優れた防曇性を示すためには、酸化ケイ素が
きわめて微小な粒子形状となり、それらが集合して多孔
質の薄膜層を形成しているような構造が好筐しく、平均
粒子径は200OA以下であることがより好ましい。
Next, the porous layer (2) is made of silicon oxide and has a thickness of 3000 Å.
-10 pm, more preferably less than 5,000, the antifogging effect will be insufficient; conversely, if it exceeds 10 pm, cracks will easily occur, causing problems in handling. In order for this silicon oxide to exhibit excellent antifogging properties, it has a favorable structure in which the silicon oxide has an extremely fine particle shape that aggregates to form a porous thin film layer. More preferably, the particle size is 200OA or less.

以上のような多孔質層を形成するのは、スパッタリング
やイオンブレーティング等の真空中でのP、 V、D、
法が使用しうるが、より好壕しくはSlをターゲットと
するRFスパッタリング法であり、活性ガスとして酸素
を用しることにより、所望の多孔質酸化ケイ素の膜が得
られる。
The above porous layer is formed by using P, V, D,
More preferably, an RF sputtering method targeting Sl is used, and by using oxygen as the active gas, the desired porous silicon oxide film can be obtained.

(実施例) 以下本発明の実施例について説明するが、物性の評価は
次の方法で測定した。
(Example) Examples of the present invention will be described below, and evaluation of physical properties was measured by the following method.

(111P(塩基性染料が基材表面の単位面積当りに反
応または付着しうるモル数)の値 Q、IN酢酸ナトリウム緩衝液(pH4,5)を用いて
アイゼンメチルバイオレットの濃度が1.0り/lの溶
液を調製した。この溶液に50×50簡の大きさの透明
合成樹脂基板を48時間浸漬し、水−99係エタノール
液−水による洗浄を行ない、水分を拭きとった後、58
0 nmの光の吸光度を測定した。
(The value Q of 111P (the number of moles that a basic dye can react or adhere to per unit area of the substrate surface), the concentration of Eisen methyl violet was set to 1.0 using IN sodium acetate buffer (pH 4, 5). A transparent synthetic resin substrate with a size of 50 x 50 sheets was immersed in this solution for 48 hours, washed with water-99 ethanol solution-water, and wiped with water.
The absorbance of light at 0 nm was measured.

一方上記染料溶液より染料濃度の検量線を求め、塩基性
染料と反応會たは付着しうる官能基のモル数を計算した
On the other hand, a calibration curve of dye concentration was determined from the above dye solution, and the number of moles of functional groups that could react with or adhere to the basic dye was calculated.

(2)  Hv(ビッカース硬度)の値、T工5−Z−
2244に準拠して測定(3)全光線透過率 ASTM  D−1003に準拠して測定(4)密着性 クロスカットによるセロハンテープの剥離テスト、すな
わち多孔質膜に基材に達するまでの切込みを、1m間隔
で縦、横11本人れて100個のます目をつ<b、セロ
ハンテープを接着し上方に急激に剥離し、その状況を調
べた。評価は次の通り。
(2) Value of Hv (Vickers hardness), T-work 5-Z-
(3) Total light transmittance Measured in accordance with ASTM D-1003 (4) Adhesion Peeling test of cellophane tape by cross-cutting, that is, cutting into the porous membrane until it reaches the base material. Cellophane tape was adhered to 100 squares, spaced 1 meter apart by 11 people vertically and horizontally, and then rapidly peeled upward to examine the situation. The evaluation is as follows.

・5級  剥離なし ・4級  1〜24個剥離 ・3級  25〜49個剥離 ・2級  50〜74個剥離 ・1級  75個以上剥離 (5)防曇性 温度20℃、湿度65係の室で、水温度が60℃である
恒温水槽内の蒸気を直接吹きつけて観察し、試料表面が
曇る場合を×、多少曇る場合を△、全く級らない場合を
○と判定した。
・5th grade: No peeling ・4th grade: 1 to 24 pieces peeling ・3rd grade: 25 to 49 pieces peeling ・2nd grade: 50 to 74 pieces peeling ・1st grade: 75 or more pieces peeling (5) Anti-fogging temperature 20℃, humidity 65% In a room, the sample was observed by directly blowing steam in a constant temperature water bath with a water temperature of 60°C, and the sample surface was judged as × if it became cloudy, △ if it was slightly cloudy, and ○ if it was not cloudy at all.

実施例1 三菱レイヨン社製アクリル樹脂板「アクリライトLj(
厚さ2IIIII+1縦、横50X50閣)に、次の組
成の液をスピンコードし、15crnの距離で高圧水銀
灯(20W)を用いて15分間照射して厚さ2μmの表
層を形成させた。
Example 1 Acrylic resin plate “Acrylite Lj” manufactured by Mitsubishi Rayon Co., Ltd.
A liquid having the following composition was spin-coded onto a sample having a thickness of 2III+1 (vertical and horizontal: 50 x 50) and irradiated for 15 minutes using a high-pressure mercury lamp (20 W) at a distance of 15 crn to form a surface layer with a thickness of 2 μm.

・テトラヒドロフルフリルアクリレート30重量部 ・コハク酸/トリメチロールエタン/アクリル酸の縮合
物          30重量部・ジペンタエリスリ
トールへキサアクリレート40重量部 ・「ダロキュア1173J(メルク社製光開始剤)2重
量部 との組成によって得られた表層のF X Hv値ば、1
.42(II’=0.063、HV=22.5)であっ
たが、念のため「アクリライトL」の表面を測定したと
ころ、F X Hv値は0.13 (F=lO06XH
v=22.4)であった。
- 30 parts by weight of tetrahydrofurfuryl acrylate - 30 parts by weight of a condensate of succinic acid/trimethylolethane/acrylic acid - 40 parts by weight of dipentaerythritol hexaacrylate - 2 parts by weight of Darocure 1173J (photoinitiator manufactured by Merck & Co.) The F X Hv value of the surface layer obtained with the composition is 1
.. 42 (II' = 0.063, HV = 22.5), but when we measured the surface of "Acrylite L" just to be sure, the F
v=22.4).

次いでこの表層上に、RFスパッタリング法によりター
ゲットをSiとし、Ar分圧を6 X 10−”TOr
r 、 02分圧を1.5 X 10−’ Torr、
 RF入力電力を200Wとし、各積厚さの酸化ケイ素
の膜を形成し、透明防曇板を作成した。このときの酸化
ケイ素は、平均粒子径が2000A以下の微細な多孔質
層であった。
Next, on this surface layer, the target was set to Si by RF sputtering method, and the Ar partial pressure was changed to 6×10-” TOr.
r, 02 partial pressure to 1.5 X 10-' Torr,
The RF input power was set to 200 W, and silicon oxide films of various thicknesses were formed to produce transparent antifogging plates. The silicon oxide at this time was a fine porous layer with an average particle size of 2000A or less.

これらの性能は第1表の通りであり、本発明品は防曇性
卦よび表面硬度に優れていることが確認された。
These performances are shown in Table 1, and it was confirmed that the product of the present invention was excellent in antifogging properties and surface hardness.

第 1 表 また比較のため、「アクリライトL」の表面に酸化ケイ
素を同一条件のRFスパッタリング法によって直接形成
したところ、層の厚さ1,000〜20. OD OA
にわたって密着性はすべて1級であった。
Table 1 For comparison, when silicon oxide was directly formed on the surface of "Acrylite L" by RF sputtering under the same conditions, the layer thickness was 1,000 to 20. OD OA
The adhesion was grade 1 in all cases.

実施例2 エチレングリコールジメタアクリレート(A)とメチル
メタアクリレ−) (B)の混合物に重合開始剤として
過酸化ベンゾイル0.03Ni部を加え、65℃で重合
させて厚さ2閣の基板を作成した。
Example 2 0.03 Ni part of benzoyl peroxide was added as a polymerization initiator to a mixture of ethylene glycol dimethacrylate (A) and methyl methacrylate (B), and the mixture was polymerized at 65°C to form a substrate with a thickness of 2 cm. It was created.

そしてこの基板上に、実施例1と同じ条件で酸化ケイ素
の多孔質層を形成した。得られた透明防曇材料の性能は
第2表の通りであり、性能が優れてしることが確認され
た。
Then, a porous layer of silicon oxide was formed on this substrate under the same conditions as in Example 1. The performance of the obtained transparent antifogging material is shown in Table 2, and it was confirmed that the performance was excellent.

第 表 (発明の効果) 本発明は以上詳述した如き構成からなるものであるから
、防曇性と表面硬度の向上による耐擦傷性とを同時に満
足した耐久性のある透明性のよい防曇材料が得られ、メ
ガネレンズや鏡をはじめとする各種光学材料や湿度セン
サー材料として好適に使用しうる利点がある。
Table 1 (Effects of the Invention) Since the present invention has the structure described in detail above, it is possible to obtain a durable and transparent anti-fog that satisfies both anti-fog properties and scratch resistance due to improved surface hardness. It has the advantage that it can be used as a material for various optical materials such as eyeglass lenses and mirrors, and as a humidity sensor material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す拡大断面図である。 (1) 透明合成樹脂基材、 (2) 多孔質層 FIG. 1 is an enlarged sectional view showing one embodiment of the present invention. (1) Transparent synthetic resin base material, (2) porous layer

Claims (1)

【特許請求の範囲】 少なくとも表面部分が下記式を満す透明合成樹脂基材に
、厚さ3000Å〜10μmの酸化ケイ素からなる多孔
質層が形成されていることを特徴とする透明防曇材料 FXH_v≧0.3 (式中、Fは塩基性染料が基材表面の単位面積当りに反
応または付着しうるモル数(μmol/cm^2)の値
で、H_vはJIB−Z−2244に準拠した方法で測
定したビッカース硬度の値である)。
[Claims] Transparent antifogging material FXH_v characterized in that a porous layer made of silicon oxide with a thickness of 3000 Å to 10 μm is formed on a transparent synthetic resin base material whose surface portion satisfies the following formula: ≧0.3 (wherein, F is the number of moles (μmol/cm^2) that the basic dye can react or adhere to per unit area of the substrate surface, and H_v is the value based on JIB-Z-2244. Vickers hardness measured by the method).
JP1176407A 1989-07-07 1989-07-07 Transparent antifogging material Pending JPH0341402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1176407A JPH0341402A (en) 1989-07-07 1989-07-07 Transparent antifogging material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1176407A JPH0341402A (en) 1989-07-07 1989-07-07 Transparent antifogging material

Publications (1)

Publication Number Publication Date
JPH0341402A true JPH0341402A (en) 1991-02-21

Family

ID=16013137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1176407A Pending JPH0341402A (en) 1989-07-07 1989-07-07 Transparent antifogging material

Country Status (1)

Country Link
JP (1) JPH0341402A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0871046A1 (en) * 1997-04-09 1998-10-14 Canon Kabushiki Kaisha Anti-fogging coating and optical part using the same
US5939182A (en) * 1994-05-19 1999-08-17 Minnesota Mining And Manufacturing Company Polymeric article having improved hydrophilicity and a method of making the same
JP2008014630A (en) * 1999-05-25 2008-01-24 Saint-Gobain Glass France Use in refrigerated enclosure door of heat insulation glazing, and refrigerated enclosure door including heat insulation glazing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5939182A (en) * 1994-05-19 1999-08-17 Minnesota Mining And Manufacturing Company Polymeric article having improved hydrophilicity and a method of making the same
EP0871046A1 (en) * 1997-04-09 1998-10-14 Canon Kabushiki Kaisha Anti-fogging coating and optical part using the same
JP2008014630A (en) * 1999-05-25 2008-01-24 Saint-Gobain Glass France Use in refrigerated enclosure door of heat insulation glazing, and refrigerated enclosure door including heat insulation glazing
JP4629705B2 (en) * 1999-05-25 2011-02-09 サン−ゴバン グラス フランス Use of insulated glazing in cold room doors and cold room doors including insulated glazing

Similar Documents

Publication Publication Date Title
CA1330141C (en) Fluorine containing soft contact lens hydrogels
US4427823A (en) Cured or uncured filled coating composition of polyfunctional acrylic-type acid ester and utilization thereof
JP5180204B2 (en) Rigid optical laminate and method for forming the same
TWI488910B (en) Photocurable resin composition, method of fabricating optical film using the same, and optical film including the same
CN107236143A (en) Cationically ampholytic ionic copolymer coating and its preparation method and application
JP2004516367A (en) High refractive index fine replication resin
JP2001287308A (en) Plastic laminate and image display protecting film
JP2009202456A (en) Laminate sheet
KR20070094184A (en) Hard coating film with high hardness, polarizing plate and display device having the same
JP4144143B2 (en) Anti-reflective film or sheet
JPH0341402A (en) Transparent antifogging material
JP2021105038A (en) Antibacterial composition, antibacterial film, and substrate with antibacterial film
TW201213462A (en) Hard coat film and front protection plate
KR100297952B1 (en) Coating Solution for Antifogging Properties
JP2016079267A (en) Water absorptive polymer sheet
WO1994023332A1 (en) Plastic optical article and process for producing the same
JPS6340283B2 (en)
JPS63280711A (en) Photocurable resin composition
JPH04168115A (en) Production of oxygen-permeable polymer
JP2006095927A (en) Fog resistance film
US5922459A (en) Plasma-polymerized DMDAS anti-fogging film and method for manufacturing the same
JP3484880B2 (en) Gas barrier film
JPH0735418B2 (en) Composition
JPH03281613A (en) Composition
KR20200037343A (en) Film production method