JPH034125B2 - - Google Patents

Info

Publication number
JPH034125B2
JPH034125B2 JP60020220A JP2022085A JPH034125B2 JP H034125 B2 JPH034125 B2 JP H034125B2 JP 60020220 A JP60020220 A JP 60020220A JP 2022085 A JP2022085 A JP 2022085A JP H034125 B2 JPH034125 B2 JP H034125B2
Authority
JP
Japan
Prior art keywords
waveguide
water
tube
short side
water pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60020220A
Other languages
Japanese (ja)
Other versions
JPS61179601A (en
Inventor
Atsushi Kashiwagi
Shigemi Hiraoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Koshuha Co Ltd
Original Assignee
Nihon Koshuha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Koshuha Co Ltd filed Critical Nihon Koshuha Co Ltd
Priority to JP2022085A priority Critical patent/JPS61179601A/en
Publication of JPS61179601A publication Critical patent/JPS61179601A/en
Publication of JPH034125B2 publication Critical patent/JPH034125B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/24Terminating devices
    • H01P1/26Dissipative terminations
    • H01P1/262Dissipative terminations the dissipative medium being a liquid or being cooled by a liquid

Landscapes

  • Non-Reversible Transmitting Devices (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 冷却水自身をマイクロ波帯の電力吸収体として
使用する水負荷導波管に係るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] This invention relates to a water-loaded waveguide that uses cooling water itself as a microwave band power absorber.

〔従来の技術とその問題点〕[Conventional technology and its problems]

一般に、水は良好な冷却媒体として機器の冷却
に多用されているが、500MHz以上の周波数帯で
は、水自身が良好な電力吸収体として使用するの
で、マイクロ波電力を直接冷却水に印加する水負
荷導波管が使用されていた。
In general, water is often used as a good cooling medium for cooling equipment, but in frequency bands above 500MHz, water itself is used as a good power absorber, so water is used to directly apply microwave power to the cooling water. A load waveguide was used.

第6図は従来広く使用されて来た水負荷導波管
の略図で、フランジ2の付いた方形導波管1の側
壁および終端板に貫通孔4,5を穿ち、テーパ状
のガラス管3の先端を図示の如く曲げて、導波管
内に挿入して使用していた。この際に広い周波数
帯で、入力波に対する反射を小さくするために
は、導波管内の各断面における負荷状況が進行方
向に沿つて、漸次ゆるやかに変化するようにすれ
ばよく、電気的には満足する性能が得られてい
る。
FIG. 6 is a schematic diagram of a water-loaded waveguide that has been widely used in the past. Through holes 4 and 5 are bored in the side wall and end plate of a square waveguide 1 with a flange 2, and a tapered glass tube 3 is formed. It was used by bending the tip of the waveguide as shown in the figure and inserting it into the waveguide. At this time, in order to reduce the reflection of input waves over a wide frequency band, the load condition at each cross section in the waveguide should gradually change gradually along the direction of propagation. Satisfactory performance has been obtained.

この方式では、電気的性能を良好ならしめるた
めに必然的に冷却管が長くなるが、その先端を側
壁から突き出すために、取り付け作業が困難で、
非常に破損し易かつた。また冷却水量が増すと、
水管の弯曲部で水泡を発生し、性能を劣化させる
こともあつた。
In this method, the cooling pipe is inevitably long to ensure good electrical performance, but its tip protrudes from the side wall, making installation difficult.
It was very easy to damage. Also, when the amount of cooling water increases,
Blisters were sometimes generated at the curved portion of the water pipe, deteriorating performance.

これを改良するために、本出願人は先に実願昭
57−392号(実開昭58−104002号公報)水負荷導
波管として、第7図の如く、導波管1を曲げて、
水管3を直線状とした改良を行つた。これによつ
て上記の水管の装着時の破損のおそれ等は一応消
滅したが、導波管を曲げるために大形となり、機
器内での占有体積が大きくなるという欠点があ
り、また大電力の印加時に水管挿入側先端部と導
波管壁との間に火花放電が発生するなどの欠点を
生じた。
In order to improve this, the applicant first applied
No. 57-392 (Utility Model Publication No. 58-104002) As a water-loaded waveguide, the waveguide 1 is bent as shown in FIG.
An improvement was made by making the water pipe 3 straight. Although this has eliminated the above-mentioned risk of damage when installing the water tube, it has the disadvantage that the waveguide has to be bent, making it larger and occupying a larger volume inside the equipment. There were drawbacks such as spark discharge occurring between the tip of the water tube insertion side and the waveguide wall when the voltage was applied.

本発明は上記2公知例の欠点を有しないで、使
用周波数帯域が広くとれ、大電力用の大形のもの
でも容易安価に得られる水負荷導波管を提供する
ことを目的とする。
It is an object of the present invention to provide a water-loaded waveguide that does not have the drawbacks of the above two known examples, can be used in a wide frequency band, and can be easily and inexpensively obtained even in a large size for high power use.

〔課題を解決するための手段〕[Means to solve the problem]

方形導波管1の横断面を、その入口付近におい
て、長辺1bの延長方向に拡げ、その拡げたとこ
ろに形成された短辺の起立面1aから導波管終端
1bに向けて絶縁物製の水管3を通しこの中に冷
却水を流す構造とした。またこのとき、その水管
に面する導波管1の短辺1′を水管に沿つて徐々
に傾斜させて長辺を狭める構造とした。
The cross section of the rectangular waveguide 1 is expanded in the direction of extension of the long side 1b near its entrance, and an insulator is formed from the upright surface 1a of the short side formed at the expanded area toward the waveguide terminal end 1b. The structure is such that cooling water flows through the water pipe 3. Further, at this time, the short side 1' of the waveguide 1 facing the water pipe is gradually inclined along the water pipe so that the long side is narrowed.

〔作用〕[Effect]

マイクロ波帯の伝送線路で、入力信号に対する
反射を小さくするためには、線路の寸法の急激な
変化を避ける必要がある。方形導波管系において
も、同様の考慮を払う必要があつて、水管の挿入
部に対しても、本発明のような構造は顧みられな
かつた。
In order to reduce the reflection of input signals on microwave band transmission lines, it is necessary to avoid sudden changes in line dimensions. Similar considerations need to be taken in a rectangular waveguide system, and a structure similar to the present invention has not been considered for the insertion portion of a water tube.

即ち方形導波管において、導波管の横断面をそ
の長辺の延長方向に急激に拡げここに比誘電率
(約80)の高い水管を通すことは、断面の不連続
部で高次姿態(たとえばTE20,TE30等)の発生
を誘い、不要な反射波の発生により入力反射係数
を高くし管内放電を招くために、大電力用として
は適さないと考え従来は採用されなかつた。
In other words, in a rectangular waveguide, if the cross section of the waveguide is suddenly widened in the direction of its long side and a water tube with a high dielectric constant (approximately 80) is passed through this section, a high-order morphology occurs at the discontinuous part of the cross section. (for example, TE 20 , TE 30 , etc.), and the input reflection coefficient increases due to the generation of unnecessary reflected waves, leading to discharge within the tube. Therefore, it was considered unsuitable for high power applications and was not used in the past.

従来は、主姿態(TE10)の伝送に対し、水管
(高い比誘電率)の影響を少なくし、高次姿態の
発生をさせるため、第6図のように水管の導波管
にある距離を長くし、水管の軸と導波管壁のなす
角度を狭するのが常識である。
Conventionally, in order to reduce the influence of the water tube (high relative dielectric constant) on the transmission of the principal mode (TE 10 ) and generate higher-order modes, the distance between the waveguides of the water tube as shown in Figure 6 was It is common sense to lengthen the waveguide and narrow the angle between the water tube axis and the waveguide wall.

然し、本発明のように前の導波管6との接続部
にできるだけ接近した入口付近において、その内
壁7の延長上において方形導波管1の横断面をそ
の長辺長方向に第2図示のように拡げ、その拡げ
たところ1aから水管3を貫通させて水を満たす
と、断面の不連続部による前記の高次姿態の発生
は実質的に生じないことが実験により判明した。
However, as in the present invention, the cross section of the rectangular waveguide 1 is shown in the second figure in the long side direction on the extension of the inner wall 7 near the entrance as close as possible to the connection part with the previous waveguide 6. It has been found through experiments that if the expanded area is expanded as shown in FIG.

また、水管側の導波管の短辺1′を水管3に沿
わせ長辺の長さを徐々に減少させることによつ
て、水管内の電力吸収体としての水と導波管との
結合を徐々に密にさせ、管内の進行方向に対する
インピーダンス変化をゆるやかにしたことによつ
て、電力の吸収もよくなり広い周波数帯に亘つて
反射を実用的な値に納められた。なお短辺1′と
水管3との間隔は必ずしも密着の必要はなく、第
4図の如く水管出口部では少し離れても問題なか
つた。
In addition, by aligning the short side 1' of the waveguide on the water tube side with the water tube 3 and gradually decreasing the length of the long side, the connection between the water and the waveguide as a power absorber in the water tube is achieved. By gradually making the tube denser and making the impedance change more slowly in the direction of travel inside the tube, power absorption is improved and reflection can be kept within a practical value over a wide frequency band. It should be noted that the distance between the short side 1' and the water pipe 3 does not necessarily have to be close to each other, and there is no problem even if the short side 1' and the water pipe 3 are slightly apart from each other at the water pipe outlet, as shown in FIG.

本発明は、上記の理由により前記の目的を達成
することができる。
The present invention can achieve the above object for the above reasons.

〔実施例〕〔Example〕

第1図は直線状水管3を用いた例、第3図・第
4図は直線テーパ状の水管3を用いた例である。
FIG. 1 shows an example using a straight water tube 3, and FIGS. 3 and 4 show examples using a linear tapered water tube 3.

1.4GHz帯の方形導波管WR−510形(内法寸法
129.54mm×64.77mm)内に、第1図の如き構造の
水冷管を挿入して試験した結果、第5図の如く周
波数1.7〜2.3GHzに亘つてVSWRは従来例では1.2
程度だつたものが1.1以下となり、1MW以上のマ
イクロ波電力を吸収させることができた。
1.4GHz band rectangular waveguide WR-510 type (inner dimensions
129.54mm x 64.77mm), the water-cooled pipe with the structure shown in Figure 1 was inserted and tested, and as shown in Figure 5, the VSWR was 1.2 in the conventional case over the frequency range of 1.7 to 2.3GHz.
The level was reduced to less than 1.1, and it was possible to absorb more than 1MW of microwave power.

〔発明の効果〕〔Effect of the invention〕

本発明の実施による効果は次のとおりである。 The effects of implementing the present invention are as follows.

(1) 第6図のように水管の先端を曲げて導波管の
側壁から貫通させる無理な構造を避けられるの
で、水管を破損させることがない。
(1) It is possible to avoid the unreasonable structure of bending the tip of the water tube and penetrating it from the side wall of the waveguide as shown in Figure 6, so the water tube will not be damaged.

(2) 第7図のように導波管を曲げないので占有体
積が小さくできる。
(2) As the waveguide is not bent as shown in Figure 7, the occupied volume can be reduced.

(3) 以上の各点から特に大電力用として適してい
る。
(3) From the above points, it is especially suitable for high power applications.

(4) 使用周波数帯域を広くとれる。(4) Wide frequency band can be used.

(5) 特に大電力用の大形のものでは製作費が低く
なる。
(5) Manufacturing costs are low, especially for large-sized products designed for high-power applications.

【図面の簡単な説明】[Brief explanation of drawings]

第1図・第2図・第3図および第4図は本発明
の略図、第5図は本発明品の測定結果を示すグラ
フ、第6図は従来の水負荷導波管、第7図は従来
のものを改良した本発明以前の水負荷導波管。 1は方形導波管、1′は導波管短辺、1aは導
波管拡げ部の短辺の起立面、1bは長辺、2は導
波管フランジ、3は水管、4,5は貫通孔。
Figures 1, 2, 3, and 4 are schematic diagrams of the present invention, Figure 5 is a graph showing the measurement results of the product of the present invention, Figure 6 is a conventional water-loaded waveguide, and Figure 7 is a graph showing the measurement results of the product of the present invention. is a water-loaded waveguide prior to the present invention, which is an improvement over the conventional one. 1 is a rectangular waveguide, 1' is a short side of the waveguide, 1a is an upright surface of the short side of the waveguide expansion part, 1b is a long side, 2 is a waveguide flange, 3 is a water tube, 4 and 5 are Through hole.

Claims (1)

【特許請求の範囲】[Claims] 1 方形導波管の横断面を、その入口付近におい
て長辺の延長方向に拡げ、その拡げたところに形
成された短辺の起立面から導波管終端に向かつ
て、斜めに絶縁物の水管を通し、その水管に面す
る導波管の短辺を水管に沿つて斜めに終端に向か
つて傾斜させて長辺を狭めるように構成した水負
荷導波管。
1 The cross section of a rectangular waveguide is expanded in the direction of extension of the long side near its entrance, and an insulating water tube is formed diagonally from the upright surface of the short side formed at the expanded area toward the end of the waveguide. A water-loaded waveguide configured such that the short side of the waveguide facing the water pipe is inclined obliquely toward the terminal end along the water pipe so that the long side is narrowed.
JP2022085A 1985-02-05 1985-02-05 Water load waveguide Granted JPS61179601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022085A JPS61179601A (en) 1985-02-05 1985-02-05 Water load waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022085A JPS61179601A (en) 1985-02-05 1985-02-05 Water load waveguide

Publications (2)

Publication Number Publication Date
JPS61179601A JPS61179601A (en) 1986-08-12
JPH034125B2 true JPH034125B2 (en) 1991-01-22

Family

ID=12021081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022085A Granted JPS61179601A (en) 1985-02-05 1985-02-05 Water load waveguide

Country Status (1)

Country Link
JP (1) JPS61179601A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4761313B2 (en) * 2007-03-08 2011-08-31 スタンレー電気株式会社 Aiming device for vehicular lamp

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5215937A (en) * 1975-07-29 1977-02-05 Stanley Electric Co Ltd Engine automatic control system for automobiles

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58104002U (en) * 1982-01-06 1983-07-15 日本高周波株式会社 water load waveguide

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5215937A (en) * 1975-07-29 1977-02-05 Stanley Electric Co Ltd Engine automatic control system for automobiles

Also Published As

Publication number Publication date
JPS61179601A (en) 1986-08-12

Similar Documents

Publication Publication Date Title
CN108039541B (en) Compact rectangle TE10Circular waveguide TM01Mode conversion device
CN2877054Y (en) Step cavity directional coupler
CN211404704U (en) Soft waveguide and waveguide system for high vacuum environment
CN107565200B (en) Suppressor for high-frequency output of gyrotron traveling wave tube
JPH0656923B2 (en) Super-elliptical waveguide connection device
CN109148243B (en) Broadband high-power energy transmission structure suitable for helix traveling wave tube
JPH034125B2 (en)
CN101017921A (en) High-power ridge wave guide microwave window
CN108682606B (en) Ultra-wideband planar dual-beam slow wave structure
CN210984686U (en) Rectangular frame-double-rod slow wave structure
WO2004075334A3 (en) Microwave coupler
US3315182A (en) Directional coupler having directivity improving means situated near end of couplingregion
JPH0645809A (en) Nonradiative dielectric line
CN216698694U (en) Millimeter wave waveguide coaxial microstrip conversion structure
CN217035944U (en) Spread spectrum waveguide coaxial converter
US4871950A (en) Wide band device for coupling between the delay line of a travelling wave tube and the external circuit transmitting the energy of the tube
CN111384473A (en) Rectangular waveguide turn and rectangular waveguide thereof
JPS6030123B2 (en) Converter between waveguide and microstrip line
CN111128646A (en) Rectangular frame-double-rod slow wave structure
CN111786067A (en) Broadband directional coupling circuit structure suitable for radio frequency front end
CN108335959B (en) Angle logarithm folding groove waveguide slow wave structure
JPS639130Y2 (en)
JPS642281B2 (en)
CN216145752U (en) Airtight packaging structure of radio frequency system waveguide interface
JP4294679B2 (en) Power terminator