JPH0341245B2 - - Google Patents

Info

Publication number
JPH0341245B2
JPH0341245B2 JP20865981A JP20865981A JPH0341245B2 JP H0341245 B2 JPH0341245 B2 JP H0341245B2 JP 20865981 A JP20865981 A JP 20865981A JP 20865981 A JP20865981 A JP 20865981A JP H0341245 B2 JPH0341245 B2 JP H0341245B2
Authority
JP
Japan
Prior art keywords
model
sprayed
thermal spray
mold
fence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20865981A
Other languages
Japanese (ja)
Other versions
JPS58110139A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP20865981A priority Critical patent/JPS58110139A/en
Publication of JPS58110139A publication Critical patent/JPS58110139A/en
Publication of JPH0341245B2 publication Critical patent/JPH0341245B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/20Making tools by operations not covered by a single other subclass

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はプレス型の製作方法に関する。 従来、量産用のプレス型の製作方法として、い
わゆるフルモールド法と称される方法がある。こ
れは、発泡スチロール等を用いて所望のプレス型
と略同一形状の型を形成し、この型を鋳物砂で埋
めて鋳型とする。そして、この鋳型に注湯するこ
とにより、前記発泡スチロールの部分を気化させ
ながら鋳込みを行ない、結果として発泡スチロー
ルに相当する部分を鋳物とする。そして、この鋳
物のプレス型面となる部分をNC工作機械等によ
り切削し、その後手仕上げを行なつてプレス型と
する方法である。 しかし、この方法では、特に切削後に手仕上げ
が必要であるため、製作期間が長くなると共に、
製作費用が高くなる。 一方、成型されるパネルの枚数がある程度限ら
れる試作用プレス型では、製作期間を短縮するた
め、亜鉛合金を用いたり、亜鉛合金の表面をエポ
キシ系樹脂でコーテイングしてプレス型としてい
る。 しかし、このようなプレス型は、耐久性が無
く、また、プレスされた製品の寸法精度も、前記
量産型によるものに比べて悪いという問題があつ
た。 そこで、これらの問題点を解決するため、次の
ようなプレス型の製作方法が提案されている。す
なわち、まず石膏、合成樹脂あるいは低融点合金
によつて、溶射を行なうための溶射モデルを作
り、そのプレス型の面となるモデル面に金属を溶
射して溶射層を形成する。次に、この溶射層をコ
ンクリート、サンドコア、樹脂等で裏打ちしてプ
レス型とする。 この方法の長所として、溶射モデルのモデル面
を完全に溶射層で再現できるため、プレス型とし
た後、手仕上げなどの作業が不要となり、このた
め、製作期間の短縮、製作費用の低減を図ること
ができる。 しかし、このプレス型では耐久性を向上させよ
うとすると溶射する金属を選定する必要がある。 そこで、本発明は上記の欠点を解決することを
目的とし、溶射する金属として自溶性合金を用い
て溶射モデルのモデル面に溶射後、再溶融処理し
て耐久性のあるプレス型を得ることを特徴とす
る。 以下に本発明の一実施例を第1図a〜hに従つ
て説明する。 第1図aは、転写されるべき表面1を有する基
本モデル2を示し、この基本モデル2の材質は、
石膏、合成樹脂あるいは低融点金属等としてお
く。 第1図bは、前記基本モデル2の外周にフエン
ス3を立て、このフエンス3内にスラリー4を流
し込んで固化させる工程を示す。スラリー4は、
熱膨張係数が低く耐火度の高いAl2O3・ZrO2
SiO2系の粉末に粘結剤としてエチルシリケート
を加えて混合したものであり、基本モデル2の表
面形状に即応して流れ込むことができる。 フエンス3内で固化したスラリー4は第1図c
に示す如く基本モデル2およびフエンス3から分
離され、図示しない焼成炉中で焼成させてセラミ
ツク型4aとし、そのモデル面に第1図dに示す
如く水ガラス5を塗布、含浸させて溶射モデル6
を形成する。ここでセラミツク型4aに水ガラス
5を塗布する理由は次の通りである。つまり、セ
ラミツク型4aのモデル面はセラミツク特有な微
細な粒子が突出していてざらざらした状態であ
る。このためこのモデル面に直接後述する溶射を
行なうと溶射層が剥離してしまい、薄い溶射層し
か形成できないという不都合がある。また、セラ
ミツク型4aそれ自体はもろい欠点があり、これ
らの欠点を補うために水ガラス5を3〜10mm含浸
させて炭酸ガス雰囲気中で反応硬化させてもろさ
に対抗させる。 このようにして作成された溶射モデル6のモデ
ル面、すなわち前記基本モデル2と反対形状に転
写されている形状のモデル面に第1図eに示す如
く自溶性合金を溶射して溶射層7を形成する。こ
のとき、通常のガス粉末溶射をするときよりも溶
射距離を長く保つて行ない、0.4〜1.7mm程度の溶
射層7を形成する。 このように溶射層7を形成した溶射モデル6を
図示しない炉内で自溶性合金の溶融温度より少し
高い温度内で30〜60分間保つて再溶融処理を行な
い、徐々に冷却して第1図fの状態にする。 このようにした溶射モデル6の再溶融処理を行
なつた溶射層7のモデル面の裏面に裏打材8を5
〜15mmの間隔をつくつて向い合わせ、その間隙に
合成樹脂9を注入して両者を固着するかもしくは
直接合成樹脂またはコンクリート等の裏打材を裏
打ちして第1図gの状態にする。 注入した合成樹脂もしくは直接裏打ちした裏打
材が固化した後、溶射モデル6を除去して第1図
hに示す如くプレス型が完成する。 なお、上記実施例において、再溶融処理を行な
う理由としては、通常、金属表面に自溶性合金を
溶射する場合にはガス粉末溶射で処理するが、本
実施例では水ガラスを含んだセラミツクに自溶性
合金を溶射するためにガスバーナーで処理すると
自溶性合金の溶射層はまくれ上つてしまうことに
なり、それをさけるために全体に熱衝撃を与えな
いように静かに炉内で再溶融処理を行なつてい
る。 また、溶射モデルとしてセラミツクを使用した
理由としては、前記した如く溶射モデルのモデル
面に形成した自溶性合金の溶射層を再溶融処理す
るために炉内で高温、高圧に耐える必要があり、
そのために耐温性、耐圧性のあるセラミツクが使
用される。 さらに、自溶性合金を用いた理由としては、自
溶性合金は再溶融処理をすることにより全一体の
合金となつて耐久性が極めて向上するためであ
る。 なお、自溶性合金の例としては第1表に示すよ
うなものがある。
The present invention relates to a method for manufacturing a press mold. Conventionally, as a method for manufacturing press molds for mass production, there is a method called a so-called full mold method. In this method, a mold having substantially the same shape as the desired press mold is formed using foamed polystyrene or the like, and this mold is filled with molding sand to obtain a casting mold. Then, by pouring the metal into this mold, casting is performed while vaporizing the Styrofoam portion, and as a result, the portion corresponding to the Styrofoam is cast. Then, the part of the casting that will become the press mold surface is cut using an NC machine tool, etc., and then hand-finished to form the press mold. However, this method requires hand finishing after cutting, which increases the production period and
Production costs increase. On the other hand, in order to shorten the manufacturing period for prototype press molds where the number of panels that can be molded is limited to a certain extent, zinc alloy is used or the surface of the zinc alloy is coated with epoxy resin to form the press mold. However, such press dies lack durability, and the dimensional accuracy of the pressed product is also poorer than that of the mass-produced dies. Therefore, in order to solve these problems, the following press mold manufacturing method has been proposed. That is, first, a thermal spray model for thermal spraying is made of plaster, synthetic resin, or a low melting point alloy, and metal is thermally sprayed onto the model surface, which will become the surface of the press mold, to form a thermal spray layer. Next, this sprayed layer is lined with concrete, sand core, resin, etc. to form a press mold. The advantage of this method is that the model surface of the sprayed model can be completely reproduced with the sprayed layer, so there is no need for manual finishing after making it into a press mold, thereby shortening the production period and reducing production costs. be able to. However, in order to improve the durability of this press mold, it is necessary to select the metal to be thermally sprayed. Therefore, the purpose of the present invention is to solve the above-mentioned drawbacks, and to obtain a durable press mold by using a self-fusing alloy as the metal to be thermally sprayed and then remelting it on the model surface of the thermally sprayed model. Features. An embodiment of the present invention will be described below with reference to FIGS. 1a to 1h. FIG. 1a shows a basic model 2 with a surface 1 to be transferred, the material of which is
Use plaster, synthetic resin, low melting point metal, etc. FIG. 1b shows a step in which a fence 3 is erected around the outer periphery of the basic model 2, and a slurry 4 is poured into the fence 3 and solidified. Slurry 4 is
Al 2 O 3・ZrO 2・Has a low coefficient of thermal expansion and high refractoriness
It is a mixture of SiO 2 -based powder and ethyl silicate as a binder, and can flow into the basic model 2's surface shape instantly. The slurry 4 solidified in the fence 3 is shown in Figure 1c.
As shown in FIG. 1, it is separated from the basic model 2 and the fence 3, fired in a firing furnace (not shown) to form a ceramic mold 4a, and the model surface is coated and impregnated with water glass 5 as shown in FIG. 1d to form a thermal spray model 6.
form. The reason why the water glass 5 is applied to the ceramic mold 4a is as follows. In other words, the model surface of the ceramic mold 4a is rough with protruding fine particles peculiar to ceramics. For this reason, if thermal spraying, which will be described later, is performed directly on this model surface, the sprayed layer will peel off, resulting in the inconvenience that only a thin thermal sprayed layer can be formed. Furthermore, the ceramic mold 4a itself has the disadvantage of being brittle, and in order to compensate for these defects, it is impregnated with 3 to 10 mm of water glass 5 and reacted and hardened in a carbon dioxide atmosphere to counteract this fragility. The sprayed layer 7 is formed by spraying a self-fusing alloy onto the model surface of the sprayed model 6 thus created, that is, the model surface whose shape has been transferred in the opposite shape to that of the basic model 2, as shown in FIG. 1e. Form. At this time, the spraying distance is kept longer than when performing normal gas powder spraying, and a sprayed layer 7 of about 0.4 to 1.7 mm is formed. The sprayed model 6 with the sprayed layer 7 formed in this way is kept in a furnace (not shown) at a temperature slightly higher than the melting temperature of the self-fusing alloy for 30 to 60 minutes to perform remelting treatment, and is gradually cooled down to form the melted model 6 shown in FIG. Set to state f. A backing material 8 is placed on the back side of the model surface of the thermal sprayed layer 7 that has undergone the remelting process of the thermal sprayed model 6.
They face each other with an interval of ~15 mm, and either inject synthetic resin 9 into the gap to fix them together, or directly line them with a backing material such as synthetic resin or concrete to form the state shown in Figure 1g. After the injected synthetic resin or directly lined backing material has solidified, the thermal spray model 6 is removed to complete the press mold as shown in FIG. 1h. In the above example, the reason for performing the remelting treatment is that normally, when spraying a self-fusing alloy onto a metal surface, it is treated by gas powder spraying, but in this example, the self-fusing alloy was sprayed onto a ceramic containing water glass. If a fusible alloy is thermally sprayed using a gas burner, the sprayed layer of the self-fluxing alloy will curl up, and to avoid this, the metal should be gently remelted in the furnace to avoid thermal shock to the entire surface. is being carried out. In addition, the reason why ceramic was used as the thermal spray model was that it needed to withstand high temperatures and pressures in the furnace in order to remelt the sprayed layer of self-fusing alloy formed on the model surface of the thermal spray model.
For this purpose, ceramics with temperature and pressure resistance are used. Furthermore, the reason why a self-fusing alloy is used is that when a self-fusing alloy is subjected to remelting treatment, it becomes a completely integrated alloy and its durability is greatly improved. Incidentally, examples of self-fusing alloys include those shown in Table 1.

【表】 以上のようにしてプレス型を製作するが、上記
実施例において裏打材8として直接パンチやダイ
を利用してもよく、第2図に示す如くそのまま成
形型として使用することができ、鉄、非鉄金属の
素材10を成形することができる。 また第3図は剪断型として利用した場合を示
し、パンチホルダー11の上に裏打材8によつて
型を設置し、型の上に載せた素材10を板押さえ
12によつて押さえながら上ホルダー13によつ
て支持された上刃14によつて素材10を切断す
る。 以上説明したように本発明によると、溶射材料
として自溶性合金を用いたので再溶融処理を行な
うことによつて極めて耐久性のあるプレス型を得
ることができる。
[Table] A press mold is manufactured as described above, but in the above embodiment, a punch or die may be used directly as the backing material 8, and as shown in FIG. 2, it can be used as a mold as it is. Materials 10 of ferrous and non-ferrous metals can be formed. FIG. 3 shows a case where the die is used as a shearing die. The die is placed on top of the punch holder 11 with the backing material 8, and the material 10 placed on the die is held down by the plate holder 12 while the upper holder The material 10 is cut by the upper blade 14 supported by the blade 13. As explained above, according to the present invention, since a self-fusing alloy is used as the thermal spray material, an extremely durable press mold can be obtained by performing remelting treatment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a〜hは本発明によるプレス型製作方法
の工程図、第2図は成形型として使用した状態の
断面図、第3図は剪断型として使用した状態の断
面図である。 2……基本モデル、3……フエンス、4……ス
ラリー、4a……セラミツク型、5……水ガラ
ス、6……溶射モデル、7……溶射層、8……裏
打材。
1A to 1H are process diagrams of the press mold manufacturing method according to the present invention, FIG. 2 is a cross-sectional view of the press mold used as a mold, and FIG. 3 is a cross-sectional view of the press mold used as a shear mold. 2... Basic model, 3... Fence, 4... Slurry, 4a... Ceramic mold, 5... Water glass, 6... Thermal spraying model, 7... Thermal spraying layer, 8... Backing material.

Claims (1)

【特許請求の範囲】 1 基本モデルの外周にフエンスを立て、このフ
エンス内にスラリーを流し込んで固化させる工程
と、 固化したスラリーを基本モデルとフエンスから
分離し、焼成してセラミツク型とする工程と、 セラミツク型のモデル面に水ガラスを含浸させ
て溶射モデルを形成する工程と、 溶射モデルのモデル面に自溶性合金を溶射して
溶射層を形成する工程と、 溶射層を形成した溶射モデルを炉内に入れて溶
射層に再溶融処理を施す工程と、 溶射層を形成した溶射モデルを炉から取り出し
て溶射層のモデル面の裏から裏打ちを行う工程
と、 溶射モデルと溶射層とを分離する工程とよりな
ることを特徴とするプレス型の製作方法。
[Claims] 1. A step of erecting a fence around the outer periphery of the basic model and pouring slurry into the fence to solidify it; and a step of separating the solidified slurry from the basic model and the fence and firing it to form a ceramic mold. , a process of impregnating the model surface of a ceramic mold with water glass to form a thermal spray model, a process of thermally spraying a self-fusing alloy onto the model surface of the thermal spray model to form a thermal spray layer, and a process of forming a thermal spray model with the thermal spray layer formed. A process of putting the model into a furnace and subjecting the sprayed layer to re-melting treatment, a process of taking the sprayed model with the sprayed layer formed from the furnace and lining the sprayed layer from the back of the model surface, and separating the sprayed model and the sprayed layer. A method for manufacturing a press mold, which is characterized by the following steps:
JP20865981A 1981-12-23 1981-12-23 Production of press die Granted JPS58110139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20865981A JPS58110139A (en) 1981-12-23 1981-12-23 Production of press die

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20865981A JPS58110139A (en) 1981-12-23 1981-12-23 Production of press die

Publications (2)

Publication Number Publication Date
JPS58110139A JPS58110139A (en) 1983-06-30
JPH0341245B2 true JPH0341245B2 (en) 1991-06-21

Family

ID=16559911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20865981A Granted JPS58110139A (en) 1981-12-23 1981-12-23 Production of press die

Country Status (1)

Country Link
JP (1) JPS58110139A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63268524A (en) * 1987-04-28 1988-11-07 Denki Kagaku Kogyo Kk Molding die for high strength cement
US5079974A (en) * 1991-05-24 1992-01-14 Carnegie-Mellon University Sprayed metal dies
US7028744B2 (en) 2004-03-17 2006-04-18 National Research Council Of Canada Surface modification of castings
DE102009058657A1 (en) * 2009-12-16 2011-06-22 Benteler Automobiltechnik GmbH, 33102 Method for producing a thermoforming tool and thermoforming tool with wear protection
CN103920804A (en) * 2014-03-20 2014-07-16 成都市龙泉驿区齐盛机械厂 Wear-resistant punching die capable of improving unilateral punching pressure

Also Published As

Publication number Publication date
JPS58110139A (en) 1983-06-30

Similar Documents

Publication Publication Date Title
US4919193A (en) Mold core for investment casting, process for preparing the same and process for preparing mold for investment casting having therewithin said mold core
CA2000770A1 (en) Method of producing reinforced composite materials
US3160931A (en) Core casting method
US5297609A (en) Investment casting of metal matrix composites
MX172496B (en) METHOD FOR MANUFACTURING A METAL MATRIX COMPOSITE BODY
CA2000776A1 (en) A flotation process for the formation of metal matrix composite bodies
US4218418A (en) Processes of casting an ingot and making a silica container
US2795022A (en) Method of making moulds
JPH0341245B2 (en)
US5127461A (en) Water soluble cores, process for producing them and process for die casting metal using them
US4188010A (en) Casting risers
US5368086A (en) Method for making a ceramic mold
EP0240190B1 (en) Process for manufacturing ceramic sintered bodies and mold to be used therefor
DK0625386T3 (en) Precision molding method for making castings
JPH0362489B2 (en)
US5509459A (en) Pressure cast alumina tile reinforced aluminum alloy armor and process for producing the same
JPH0367466B2 (en)
JPS6030549A (en) Production of casting having fine hole
JP2943831B2 (en) Manufacturing method of composite material
JPS6234648A (en) Production of mold for precision casting
JPS6247098B2 (en)
SU1189571A1 (en) Method of producing parts of powder materials
JPS6415472A (en) Abrasion-resistance pump part and manufacture thereof
JPS6228062A (en) Casting method for base body for lead storage battery
JPH10109137A (en) Solid mold precision casting method