JPH0341043B2 - - Google Patents

Info

Publication number
JPH0341043B2
JPH0341043B2 JP59263477A JP26347784A JPH0341043B2 JP H0341043 B2 JPH0341043 B2 JP H0341043B2 JP 59263477 A JP59263477 A JP 59263477A JP 26347784 A JP26347784 A JP 26347784A JP H0341043 B2 JPH0341043 B2 JP H0341043B2
Authority
JP
Japan
Prior art keywords
inorganic
kneading
parts
kneaded
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59263477A
Other languages
Japanese (ja)
Other versions
JPS61141511A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP59263477A priority Critical patent/JPS61141511A/en
Publication of JPS61141511A publication Critical patent/JPS61141511A/en
Publication of JPH0341043B2 publication Critical patent/JPH0341043B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/20Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of indefinite length
    • B29C44/32Incorporating or moulding on preformed parts, e.g. linings, inserts or reinforcements
    • B29C44/321Incorporating or moulding on preformed parts, e.g. linings, inserts or reinforcements the preformed part being a lining, e.g. a film or a support lining

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は不燃性あるいは準不燃性で軽量かつ断
熱性に優れた無機・有機複合発泡断熱材の製造方
法に関するものである。従つて、例えば建築用内
外壁の金属サイデイングの断熱用裏打材の組造に
利用出来る。 (従来の技術) 近年、建築分野においては省エネルギーの観点
から軽量断熱材料が数多く用いられる様になり、
その製造方法も種々ある。 例えばウレタン発泡体の製造の一例として、独
立する2系統の供給管から組成に応じ定量的に有
機発泡剤を含むウレタン樹脂主材とウレタン樹脂
硬化剤を別々に送り出し混練部を通過した後、1
本の供給管から流出される様になつた単純なもの
や、ALC製造の様に1つの混練部で混練後すべ
て型に流し込み、水熱養生することを何回も繰り
返す単純バツチ式の様なごく単純なものであつ
た。このように従来の発泡体の製造においては単
純な様式で事足りるものであつたが、本発明に示
した無機・有機複合発泡体の製造においては反応
が段階的でかつ複雑に絡み合うために、このよう
な従来の製造技術では実状に合わなかつた。そこ
で本発明者らは鋭意研究した結果本発明を完成す
るに至つた。 「発明の目的」 本発明の目的としては不燃性、または準不燃性
でかつ軽量で断熱性に優れた無機・有機複合発泡
断熱材の製造方法を提供することにある。 (発明が解決しようとする問題点) 従来の技術で述べた様に本発明の無機・有機複
合発泡体の製造においては反応が複雑でかつ急激
であり、従来の製造方法では工場での大量生産と
いう実状に合わせることが出来ないという問題点
があつた。本発明は、本発明で言う無機・有機複
合発泡断熱材の工場での大量生産を可能にしよう
とするものである。 「発明の構成」 本発明の構成は無機・有機複合発泡性組成物の
混練後の流動可能時間、発泡可能時間、安定時間
等時間のパラメーターを中心にその混練手順を構
成し、かつそれぞれの段階に応じた混練方法を考
えたものである。理解を早めるために以下に流れ
を第1図を参考にしながら説明する。 本発明者らは種々の実験と研究を精力的に行な
い、本発明で言う無機・有機複合発泡性組成物の
混練後の安定時間の測定、発泡可能時間の測定、
反応様式の考察等々から多段分割混練を考察し、
次に述べる分割が最も連続生産に適していること
を見出だした。即ち、(a)無機質充填剤、(d)反応速
度調整剤、(e)添加剤、(f)水をミキサー1にて混練
してペーストAを得る。ペーストAのポツトライ
フは(a)無機質充填剤の種類によつて差があるが、
最低4時間以上であつた。これを撹拌ストツクす
る。ペーストAはポンプP12により定量供給を
行なう。これとは独立した系において(b)無機発泡
剤を粉末状態のまま混練部6に直接定量供給する
か又は無機発泡剤と(f)水をミキサー3で混練分散
して混練部6に定量供給する。この分散液Bとし
た場合のポツトライフは(b)無機発泡剤の種類によ
つて違うが、最低4時間以上であつた。分散液B
とした場合はポンプP24により定量供給を行な
う。ペーストAと無機発泡剤又は、分散液Bの混
練後のポツトライフはペーストA、無機発泡剤又
は分散液Bのポツトライフによつて差があるが、
最低で5分以上であつた。従つてペーストAと無
機発泡剤又は分散液Bの合流点イ5から合流点ロ
9までスクリユーミキサー又はスタテツクミキサ
ー6等を用い、その中の通過時間を5分以内にセ
ツトできる様にした。次に独立した別系のタンク
7から(c)ウレタンプレポリマーをポンプP38に
より定量供給を行ないペーストAと無機発泡剤又
は分散液Bの混練されたものとを合流点ロ9で合
流させた後溝切りスクリユーミキサー又はスタテ
ツクミキサー10にて高速混練して2秒以内に合
流点ロ9から流出点11に押出してしまう。押出
された無機・有機複合発泡性混練物は押出口下を
通過する鋼板コイル12(この他アルミコイル、
紙、ガラスペーパー、石綿紙等でも良い)上にキ
ヤツチされ面材13(クラフト紙、ポリエチクラ
フト紙、石綿紙、ガラスペーパー等のいずれか)
を介して押さえロール14で無機・有機複合発泡
断熱材を一定の厚さ形状に成形して後は所定の寸
法に連続裁断して無機・有機複合発泡断熱材成形
板15を得る。(c)ウレタンプレポリマーは水と反
応しやすいので発泡体製造停止に際して洗浄シン
ナーDを洗浄シンナータンク16からポンプP4
17により、合流点ロ9に供給して洗浄出来る様
にすると共にスタテツクミキサー6内を水洗出来
る様に水タンク18からポンプP519により合
流点イ5に供給して排出口20からペーストAと
無機発泡剤又は分散液Bの混練物を排出する。以
上の様にして無機・有機複合発泡断熱材を連続し
て製造可能とした。 (問題点を解決するための手段・特徴) 本発明は、本発明で言う無機・有機複合発泡性
組成物の発泡反応が複雑で工場生産出来ないかと
思われたものを、混練手順を種々分割してポツト
ライフ、発泡性等を実験する中で、実用に促した
分割方法と混練手順を見出だし、その混練に最も
ふさわしい混練手段と安全手段を製造工程に取り
入れる中で問題点を解決した。即ち、配合におい
て重量的に最も多くなる(a)無機質充填剤と(f)水と
を1つの系にする。この場合(b)無機発泡剤はポツ
トライフを短くするのでこちらでは入られない。
(d)反応速度調整剤、(e)添加剤は入れられる。この
様にして得た混練物ペーストAはポツトライフが
最低のもので4時間であつた。次に(b)無機発泡剤
をそのままでペーストAと定量混練するか又はさ
らに混練しやすい様に(f)水に分散する方式で定量
供給出来る様にした。この無機発泡剤のポツトラ
イフは∞時間また、分散液Bのポツトライフは最
低のもので4時間であつた。さらにペーストAと
無機発泡剤又は水に分散させた分散液Bを混練し
たもののポツトライフを測定したら、安定な発泡
体を後で形成する時間は最低のもので5分間であ
つた。さらにペーストAと無機発泡剤又はその水
分散液BとウレタンプレポリマーCを混練したも
のの発泡開始時間は最も短いもので2秒であつ
た。以上の様な各系における安定時間を見出だし
た後フローシートを組み、各工程にふさわしい様
式を取り入れ、発泡体の連続的製造を可能にし
た。 なお、ここで言う (a) 無機質充填剤とは、水硬性を有するセメント
類(a1)群、ポルトランドセメント,アルミナ
セメント,高炉セメント,フライアツシユセメ
ント,シリカセメント等と、他の無機充填材成
分a2群,2水石膏,硅石粉,炭酸カルシウム,
クレー,タルク,水酸化アルミニウム,シラス
バルーン,パーライト,アルミナ粉などがあ
り、これらの中から選ばれた1種又は2種以上
の混合物であり、 (b) 無機発泡剤とは、1価、2価のの炭酸水素金
属塩、炭酸水素アンモニウム等の中から選ばれ
た1種又は2種以上の混合物であり、 (c) ウレタンプレポリマーとはトリレンジイソシ
アネートの様なイソシアネート基を有する化合
物に、OH基数が2以上のもので5重量%以上
のオキシエチレン分を含有するポリオールと反
応させて得られるウレタンプレポリマー1種
か、2種以上、場合によつてはTDI等イソシア
ネート化合物モノマーやMEK等溶剤を混ぜた
ものであり、 (d) 反応速度調整剤とは、(a1)群のセメント類
を用いる場合におけるリターダーとしての例え
ばほうしや、クエン酸ソーダーあるいは、アク
セレーターとしての例えば塩化カルシウム、炭
酸ソーダー等である。ただし、本発明において
アクセレーターを用いる場合には無機発泡剤か
その水分散液Bの方に混練する様にする。 (e) 添加剤とは主に整泡剤等の有機系界面活性剤
であり、他には増泡剤、難燃化剤等を使用する
ことがある。 (f) 水は地下水、水道水、工業用水のいずれでも
良い。 (作 用) 本発明における製造方法によれば、本発明適用
の対象となる無機・有機複合発泡性組成物から工
場生産的に連続に無機・有機複合発泡断熱材を製
造することが出来、金属鋼板等の裏面に流し込ん
で断熱防火金属サイデイング等の断熱パネルを作
ることが出来る。 (実施例) 以下に実施例をもつて詳述する。 (実施例 1) 無機・有機複合発泡性組成物として(i)ポルトラ
ンドセメント80重量部、2水石膏20重量部(ii)ほう
しや2重量部(iii)商品名:SN−FORM200(サンノ
プコ社製)1重量部(iv)水50重量部を混練してペー
ストAを作る。次に(v)炭酸水素カリウム4重量部
と(vi)水4重量部を混練して無機発泡剤の分散液B
を作る。一定時間ごとにA+Bを混練して、混練
物をさらに(vii)(c)ウレタンプレポリマー[即ちここ
では商品名:ポリグラウトW−1型(第一工業製
薬社製)40重量%、商品名:ハイセルOH−IA
(東邦化学社製)40重量%、トリレンジイソシア
ネート20重量部から成るものを時間を区切つて数
テストピース混練して発泡させた。その時のそれ
ぞれのポツトライフ、流動性のある時間、発泡が
正常である時間などを測定した。 (実施例 2) 無機・有機複合発泡性組成物として、(i)ポルト
ランドセメント50重量部、焼石膏50重量部(ii)ほう
しや2重量部、(iii)商品名:SN−FORM200(サン
ノプコ社製)1重量部(iv)水54重量部を混練してペ
ーストAを作る。次に(v)炭酸水素カリウム4重量
部と(vi)水4重量部を混練して無機発泡剤の分散液
Bを作る。(無機発泡剤の量が多い場合は直接混
練方法をとる。)一定時間ごとにA+Bを混練し
て、混練物にさらに(vii)ウレタンプレポリマー(実
施例1)と同様の配合のものを同量混練して時間
を区切つて数テストピース発泡させた。その時の
それぞれのポツトライフ、流動性のある時間、発
泡が正常である時間を測定した。 (比較例 1) 実施例1の組成比率のものをペーストA+分散
液Bの混練物の状態に置き、低速撹拌を行ないな
がら、時間をいろいろ区切つてペーストA+無機
発泡剤の水分散液Bからなる中間混練物の一定量
抽出し、それに組成比率の合う様に(vii)ウレタンプ
レポリマーを添加混練して発泡の状態を測定し
た。ウレタンプレポリマーは実施例1と同様の配
合のものを使用した。 (比較例 2) 実施例2の組成比率のものをペーストA+無機
発泡剤の水分散液Bの混練物の状態に置き、低速
撹拌を行ないながら、時間をいろいろ区切つてペ
ーストA+分散液B無機発泡剤の水分散液Bから
なる中間混練物の一定量を抽出し、それに組成比
率の合う様に(vii)ウレタンプレポリマー(実施例1
のものと同様の配合のもの)を添加混練して発泡
の状態を測定した。以上の結果を表1に記す。
(Field of Industrial Application) The present invention relates to a method for manufacturing an inorganic/organic composite foam heat insulating material that is nonflammable or quasi-nonflammable, lightweight, and has excellent heat insulation properties. Therefore, it can be used, for example, in the construction of a heat-insulating lining material for metal siding on internal and external walls of buildings. (Conventional technology) In recent years, many lightweight insulation materials have been used in the construction field from the perspective of energy conservation.
There are various manufacturing methods. For example, as an example of manufacturing urethane foam, a urethane resin main material containing an organic blowing agent and a urethane resin curing agent are sent out separately from two independent supply pipes quantitatively according to the composition, and after passing through a kneading section, 1
Simple products such as those that flow out from a supply pipe, and simple batch-type products such as those used in ALC manufacturing, where everything is kneaded in one kneading section and then poured into a mold and hydrothermally cured many times. It was something very simple. In this way, in the production of conventional foams, a simple method was sufficient, but in the production of the inorganic/organic composite foam shown in the present invention, the reactions are stepwise and intricately intertwined. Conventional manufacturing techniques such as these were not suitable for the actual situation. As a result of intensive research, the present inventors have completed the present invention. ``Object of the Invention'' The object of the present invention is to provide a method for producing an inorganic/organic composite foam insulation material that is nonflammable or quasi-nonflammable, lightweight, and has excellent heat insulation properties. (Problems to be Solved by the Invention) As mentioned in the section on the prior art, the reactions in the production of the inorganic/organic composite foam of the present invention are complex and rapid, and the conventional production method does not allow for mass production in factories. The problem was that it could not be adapted to the actual situation. The present invention is intended to enable mass production of the inorganic/organic composite foam insulation material referred to in the present invention at a factory. "Structure of the Invention" The structure of the present invention consists of a kneading procedure centered on time parameters such as flowable time, foamable time, and stabilization time after kneading of an inorganic/organic composite foamable composition. The kneading method was designed according to the To speed up understanding, the flow will be explained below with reference to Figure 1. The present inventors have energetically conducted various experiments and research, and have determined the stability time after kneading of the inorganic/organic composite foamable composition referred to in the present invention, the measurement of the foamable time,
Considering multi-stage split kneading from consideration of reaction mode, etc.
We have found that the division described below is most suitable for continuous production. That is, paste A is obtained by kneading (a) an inorganic filler, (d) a reaction rate regulator, (e) an additive, and (f) water in a mixer 1. The pot life of paste A varies depending on (a) the type of inorganic filler;
It lasted at least 4 hours. Stir and stock this. Paste A is quantitatively supplied by pump P 1 2. In a system independent from this, (b) the inorganic blowing agent is directly supplied in a fixed amount to the kneading section 6 in powder form, or the inorganic blowing agent and (f) water are kneaded and dispersed in the mixer 3 and then supplied in a fixed amount to the kneading section 6. do. The pot life of this dispersion B was at least 4 hours, although it differed depending on the type of inorganic blowing agent (b). Dispersion B
In this case, pump P 2 4 is used to supply a fixed amount. The pot life after kneading of paste A and inorganic blowing agent or dispersion B varies depending on the pot life of paste A, inorganic blowing agent or dispersion B.
It lasted at least 5 minutes. Therefore, a screw mixer or static mixer 6 or the like is used from the confluence point A5 to the confluence point B9 of the paste A and the inorganic foaming agent or dispersion liquid B, so that the passage time therein can be set within 5 minutes. . Next, (c) urethane prepolymer is supplied quantitatively from an independent tank 7 by a pump P 3 8, and the paste A and the kneaded inorganic blowing agent or dispersion B are combined at a confluence point RO 9. After that, the mixture is kneaded at high speed using a grooved screw mixer or a static mixer 10, and is extruded from the confluence point 9 to the outlet point 11 within 2 seconds. The extruded inorganic/organic composite foam kneaded material passes under the extrusion port through a steel plate coil 12 (in addition to aluminum coil,
surface material 13 (any of kraft paper, polyethylene kraft paper, asbestos paper, glass paper, etc.)
The inorganic/organic composite foam heat insulating material is formed into a shape with a constant thickness using a pressure roll 14 via a pressure roll 14, and then continuously cut into predetermined dimensions to obtain an inorganic/organic composite foam heat insulating material molded plate 15. (c) Since urethane prepolymer easily reacts with water, pump P 4 cleaning thinner D from the cleaning thinner tank 16 when foam production is stopped.
17, paste A is supplied to the confluence point A5 through the discharge port 20, and pump P5 is supplied from the water tank 18 to the confluence point I5, so that the inside of the static mixer 6 can be washed with water. and the inorganic blowing agent or dispersion B are discharged. In the manner described above, it has become possible to continuously produce an inorganic/organic composite foam insulation material. (Means/Features for Solving the Problems) The present invention solves the problem by dividing the kneading procedure into various ways for the inorganic/organic composite foamable composition referred to in the present invention, which has a complicated foaming reaction and is thought to be impossible to produce in a factory. While experimenting with pot life, foamability, etc., we discovered a practical dividing method and kneading procedure, and solved the problems by incorporating into the manufacturing process the most suitable kneading means and safety measures. That is, (a) the inorganic filler and (f) water, which are the largest in terms of weight in the formulation, are combined into one system. In this case, (b) an inorganic blowing agent cannot be used because it shortens the pot life.
(d) reaction rate modifier, (e) additives are included. The kneaded paste A thus obtained had the lowest pot life of 4 hours. Next, (b) the inorganic blowing agent was kneaded in a quantitative manner as it was with paste A, or (f) it was dispersed in water to facilitate further kneading, so that it could be supplied in a quantitative manner. The pot life of this inorganic blowing agent was ∞ hours, and the pot life of Dispersion B was 4 hours at the lowest. Furthermore, when the pot life of paste A and an inorganic blowing agent or dispersion B dispersed in water was kneaded and the pot life was measured, the minimum time required to form a stable foam was 5 minutes. Furthermore, when paste A, an inorganic foaming agent or its aqueous dispersion B, and urethane prepolymer C were kneaded, the foaming start time was the shortest, 2 seconds. After finding the stability time for each system as described above, we assembled a flow sheet and adopted a format appropriate for each process, making continuous production of foam possible. Note that (a) inorganic fillers mentioned here include hydraulic cements (a 1 ) group, Portland cement, alumina cement, blast furnace cement, fly ashes cement, silica cement, etc., as well as other inorganic filler components. a Group 2 , dihydrate gypsum, silica powder, calcium carbonate,
There are clay, talc, aluminum hydroxide, shirasu balloon, perlite, alumina powder, etc., and it is one type or a mixture of two or more selected from these. (c) Urethane prepolymer is a compound having an isocyanate group such as tolylene diisocyanate, One or more urethane prepolymers obtained by reacting with polyols having 2 or more OH groups and containing oxyethylene content of 5% by weight or more; in some cases, isocyanate compound monomers such as TDI, MEK, etc. (d) A reaction rate modifier is a retarder such as broom or sodium citrate when using cements of group (a 1 ), or an accelerator such as calcium chloride. , carbonated soda, etc. However, when an accelerator is used in the present invention, it is kneaded into the inorganic blowing agent or its aqueous dispersion B. (e) Additives are mainly organic surfactants such as foam stabilizers, and foam enhancers, flame retardants, etc. may also be used. (f) Water may be groundwater, tap water, or industrial water. (Function) According to the manufacturing method of the present invention, an inorganic/organic composite foam insulation material can be manufactured continuously in a factory production manner from the inorganic/organic composite foamable composition to which the present invention is applied. It can be poured onto the back side of steel plates to create insulation panels such as heat-insulating and fire-retardant metal siding. (Example) A detailed explanation will be given below using an example. (Example 1) Inorganic/organic composite foamable composition (i) 80 parts by weight of Portland cement, 20 parts by weight of dihydrate (ii) 2 parts by weight of hoshiya (iii) Product name: SN-FORM200 (San Nopco Co., Ltd.) Make paste A by kneading 1 part by weight of (iv) 50 parts by weight of water. Next, (v) 4 parts by weight of potassium hydrogen carbonate and (vi) 4 parts by weight of water were kneaded to form an inorganic blowing agent dispersion B.
make. A+B is kneaded at regular intervals, and the kneaded product is further mixed with (vii) (c) urethane prepolymer [i.e., trade name here: Polygrout W-1 type (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) 40% by weight, trade name: Hisel OH-IA
(Manufactured by Toho Chemical Co., Ltd.) 40% by weight and 20 parts by weight of tolylene diisocyanate were kneaded and foamed in several test pieces at separate intervals. At that time, the pot life, time for fluidity, time for normal foaming, etc. were measured. (Example 2) As an inorganic/organic composite foamable composition, (i) 50 parts by weight of Portland cement, 50 parts by weight of calcined gypsum, (ii) 2 parts by weight of hoshiya, (iii) Product name: SN-FORM200 (Sannopco) Make paste A by kneading 1 part by weight (iv) and 54 parts by weight of water. Next, (v) 4 parts by weight of potassium hydrogen carbonate and (vi) 4 parts by weight of water are kneaded to prepare an inorganic blowing agent dispersion B. (If the amount of inorganic blowing agent is large, use the direct kneading method.) Knead A+B at regular intervals, and add (vii) urethane prepolymer (Example 1) with the same composition to the kneaded product. The mixture was kneaded and several test pieces were foamed at separate intervals. At that time, the pot life, fluidity time, and normal foaming time were measured. (Comparative Example 1) The composition ratio of Example 1 was placed in the state of a kneaded product of paste A + dispersion B, and while stirring at low speed, the time was divided into various intervals to mix paste A + aqueous dispersion of inorganic blowing agent B. A certain amount of the intermediate kneaded material was extracted, and (vii) urethane prepolymer was added and kneaded so as to match the composition ratio, and the state of foaming was measured. The urethane prepolymer used had the same formulation as in Example 1. (Comparative Example 2) The composition ratio of Example 2 was placed in the state of a kneaded product of paste A + aqueous dispersion B of inorganic foaming agent, and paste A + dispersion B inorganic foaming was carried out at various intervals while stirring at low speed. Extract a certain amount of the intermediate kneaded material consisting of the aqueous dispersion B of the agent, and add (vii) urethane prepolymer (Example 1) to match the composition ratio.
The foaming state was measured by adding and kneading a mixture (with the same formulation as the above). The above results are shown in Table 1.

【表】 *ここでポツトライフとは発泡状態が一定のもの
が得られる間の時間を言う。
(発明の効果) 以上の試験結果より明らかな様に、本発明にお
いては無機・有機複合発泡体の製造に当たり、実
験結果の実施例1〜2で示す様に無機・有機複合
発泡性組成物のうち組成割合の多いもので混練に
時間も多く必要な(a)無機質充填剤+(d)反応速度調
整剤+(e)添加剤+(f)水の部分を混練し、4時間以
上ストツクすることが出来る様になり、実生産を
現実的なものにすることが出来る様になつた。
[Table] *Pot life here refers to the time during which a constant foaming state is obtained.
(Effect of the invention) As is clear from the above test results, in the production of inorganic/organic composite foams in the present invention, as shown in Examples 1 and 2 of the experimental results, inorganic/organic composite foamable compositions are Of these, the parts that have a high composition ratio and require a lot of time to knead (a) inorganic filler + (d) reaction rate regulator + (e) additive + (f) water are kneaded and kept for more than 4 hours. It has become possible to make actual production a reality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施態様を示す工程図であ
る。1は(a)無機質充填剤、(d)反応速度調整剤、(e)
添加剤、(f)水の混練用ミキサーであり、3は(b)無
機発泡剤、(f)水の混練用ミキサーである。1で混
練されたペーストAと3で混練されたペーストB
はそれぞれ2と4のポンプP1,ポンプP2で供給
されて6の混練部に送られる。7のCウレタンプ
レポリマー用タンクから8のポンプP3によつて
送り出されたウレタンプレポリマーは10のミキ
サーでペーストA,Bの混練物と共に高速混練さ
れて、12の鋼板コイル上にキヤツチされる。1
4の押さえロールで13の面材の上より押さえ成
形されて15の成形板となる。16の洗浄シンナー
タンクからはシンナーが供給されて10のミキサ
ー洗浄に使用される。18の水タンクからは水が
供給されて6の混練部の洗浄に使用される。
FIG. 1 is a process diagram showing an embodiment of the present invention. 1 is (a) an inorganic filler, (d) a reaction rate regulator, (e)
3 is a mixer for kneading additives and (f) water, and 3 is a mixer for kneading (b) an inorganic foaming agent and (f) water. Paste A kneaded in step 1 and paste B kneaded in step 3
are supplied by pumps 2 and 4, pump P 1 and pump P 2, respectively, and sent to kneading section 6. The urethane prepolymer sent out from the urethane prepolymer tank 7 by the pump P3 8 is mixed at high speed with the kneaded pastes A and B in the mixer 10, and is caught on the steel plate coil 12. . 1
The sheet material No. 4 is press-formed from the top of the sheet material No. 13 using a pressing roll No. 4 to form a molded plate No. 15. Thinner is supplied from the 16 cleaning thinner tanks and used for cleaning the 10 mixers. Water is supplied from the water tank 18 and used for cleaning the kneading section 6.

Claims (1)

【特許請求の範囲】 1 製造に用いる組成物と組成比率が (a1) 水硬性を有するセメント類 (a2) 水石膏、硅石粉、水酸化アルミニウム、
シラスバルーン、アルミナ粉など (a1),(a2)成分より選ばれる無機質充填材
(a) 100重量部 (b) 無機発泡剤(a)に対して 1〜40重量部 (c) ウレタンプレポリマー (a)に対して 2〜40重量部 (d) 反応速度調整剤をa1成分を用いる時 (a1)に対して 0.1〜20重量部 (e) 整泡剤、増粘剤、難燃化剤等の添化剤を (a)に対して 0〜20重量部 (f) 水 (a)に対して 10〜200重量部 であり、 製造時の混練手順として (i) (a)無機質充填剤、(d)反応速度調整剤、(e)添化
剤、(f)水を混練しペースト化し独立流路を形成
する。 (ii) (b)無機質発泡剤を粉末状態そのままで定量供
給する経路を作るか、または、(f)水と(b)無機質
発泡剤を混練し分散状態とし独立流路を形成す
るかどちらかにする。 (iii) (i),(ii)から組成比率に応じ、独立に供給され
た後1本に統合し、スクリユーミキサーまたは
スタテツクミキサーで混練して送り出すか、ま
たは5分以内に消費可能な容量を有する混練機
を2基設け、バツヂ式混練を交互に繰り返して
連続的に送り出した後、 (iv) 他の独立した流路から組成比率に応じ(C)ウレ
タンプレポリマーとスクリユー式混練または衝
突混練またはスプレー混練して短時間(2秒程
度)のうちに1度混練したものはすべて混練部
から流出させ、クラフト紙等の面材を介してロ
ールで押さえながら発泡体を連続して形成する
ことを特徴とする無機・有機複合発泡断熱材の
製造方法。 2 特許請求の範囲第1項(iv)記載のウレタンプレ
ポリマーとペーストの混練部が必要に応じて溶剤
洗浄可能となつたものを用いることを特徴とする
無機・有機複合発泡断熱材の製造方法。
[Scope of Claims] 1 Composition used for production and composition ratio (a 1 ) Hydraulic cements (a 2 ) Hydraulic gypsum, silica powder, aluminum hydroxide,
Inorganic filler selected from ingredients (a 1 ) and (a 2 ) such as whitebait balloons and alumina powder
(a) 100 parts by weight (b) 1 to 40 parts by weight based on inorganic blowing agent (a) (c) 2 to 40 parts by weight based on urethane prepolymer (a) (d) Reaction rate modifier a 1 When using ingredients: (a 1 ) 0.1 to 20 parts by weight (e) Additives such as foam stabilizers, thickeners, flame retardants, etc. to (a) 0 to 20 parts by weight (f ) 10 to 200 parts by weight based on water (a), and the kneading procedure during production includes (i) (a) inorganic filler, (d) reaction rate regulator, (e) additive, (f) Water is kneaded into a paste to form independent channels. (ii) Either (b) create a path to supply a fixed amount of the inorganic blowing agent in its powder state, or (f) knead water and (b) the inorganic blowing agent to form a dispersed state and form an independent flow path. Make it. (iii) Depending on the composition ratio, (i) and (ii) are supplied independently and then combined into one, kneaded with a screw mixer or static mixer and sent out, or can be consumed within 5 minutes. Two kneaders with a capacity are installed, and after continuous batch-type kneading is repeated alternately, (iv) urethane prepolymer and screw-type kneading or screw-type kneading or All the material that has been kneaded once in a short time (about 2 seconds) by impact kneading or spray kneading is allowed to flow out of the kneading section, and is continuously formed into a foam while being pressed with a roll through a face material such as kraft paper. A method for producing an inorganic/organic composite foam insulation material. 2. A method for manufacturing an inorganic/organic composite foam insulation material, characterized in that the kneading section of the urethane prepolymer and paste described in claim 1 (iv) is washable with a solvent if necessary. .
JP59263477A 1984-12-13 1984-12-13 Manufacture of inorganic and organic composite foam Granted JPS61141511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59263477A JPS61141511A (en) 1984-12-13 1984-12-13 Manufacture of inorganic and organic composite foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59263477A JPS61141511A (en) 1984-12-13 1984-12-13 Manufacture of inorganic and organic composite foam

Publications (2)

Publication Number Publication Date
JPS61141511A JPS61141511A (en) 1986-06-28
JPH0341043B2 true JPH0341043B2 (en) 1991-06-20

Family

ID=17390050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59263477A Granted JPS61141511A (en) 1984-12-13 1984-12-13 Manufacture of inorganic and organic composite foam

Country Status (1)

Country Link
JP (1) JPS61141511A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0278505A (en) * 1988-09-14 1990-03-19 Noritake Co Ltd Mixing and discharge device of two-pack type resin
BE1009260A3 (en) * 1995-03-24 1997-01-07 Wilfried Blocken Insulation mortar.
CN106915142B (en) * 2017-03-15 2018-11-23 江苏理工学院 Increasing material manufacturing aluminum alloy slab alclad tandem rolling device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57109626A (en) * 1980-12-27 1982-07-08 Kubota Ltd Manufacture of architectural panel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57109626A (en) * 1980-12-27 1982-07-08 Kubota Ltd Manufacture of architectural panel

Also Published As

Publication number Publication date
JPS61141511A (en) 1986-06-28

Similar Documents

Publication Publication Date Title
EP0050645B1 (en) Low-density cellular thermally insulating gypsum material
US4383862A (en) Concrete
US4057608A (en) Process of continuous manufacture of light-weight foamed concrete
US4373955A (en) Lightweight insulating concrete
CN102285778A (en) Ultra-light cement-based composite foaming material and preparation method thereof
JP2010513213A (en) Gypsum composition comprising naphthalene sulfonate and a modifier
GB2086748A (en) Aerated concrete
US20130280518A1 (en) Building material and building system element as well as method of production thereof
EP3483131B1 (en) Method of production of a mineral foam obtained from a foaming slurry of high yield stress
CN103951361B (en) A kind of preparation method mixing the inorganic foamed building thermal insulation material of vanadium mine tailing
US4040850A (en) Production of porous gypsum moldings
CN103145440B (en) Comprehensive foaming method of light-weight cement
DE4134550C2 (en) Process for the production of local foam
US1951691A (en) Manufacture of porous plaster
CN1328204C (en) Heat insulating bearing concrete brick and its production process
JPH0341043B2 (en)
AT9511U1 (en) LIGHT BEDS BZW. MINERALS AND METHOD OF MANUFACTURING THEM
CN107030856A (en) A kind of method for improving gypsum board manufacture foam stability
JP2005035866A (en) Foamed material, foamed board, and manufacturing method of foamed board
EP3299352B1 (en) Method for manufacturing a thermally insulated mortar
JPS61138616A (en) Foamable inorganic and organic composite composition
RU2315840C2 (en) Construction extrusion-compensatory block, block production line and method for porous material production for block filling
JPH0335272B2 (en)
CN107601990B (en) Assembly type light plate and preparation method thereof
US20220306535A1 (en) Method of production of a mineral foam for filling cavities