JPH0341036A - Production of 1-pentene by codimerization of ethylene and propylene - Google Patents

Production of 1-pentene by codimerization of ethylene and propylene

Info

Publication number
JPH0341036A
JPH0341036A JP1176901A JP17690189A JPH0341036A JP H0341036 A JPH0341036 A JP H0341036A JP 1176901 A JP1176901 A JP 1176901A JP 17690189 A JP17690189 A JP 17690189A JP H0341036 A JPH0341036 A JP H0341036A
Authority
JP
Japan
Prior art keywords
catalyst
ethylene
pentene
propylene
potassium carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1176901A
Other languages
Japanese (ja)
Other versions
JP2756493B2 (en
Inventor
Katsuo Taniguchi
谷口 捷生
Yuichi Matsunaga
松永 雄一
Shuji Shimada
嶋田 修次
Toshihiro Tate
館 俊博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP1176901A priority Critical patent/JP2756493B2/en
Publication of JPH0341036A publication Critical patent/JPH0341036A/en
Application granted granted Critical
Publication of JP2756493B2 publication Critical patent/JP2756493B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/10Catalytic processes with metal oxides

Abstract

PURPOSE:To obtain 1-pentene in high selectivity by codimerizing ethylene with propylene by means of a fixed bed method in the presence of a catalyst prepared by supporting an alkali metal on a compression molded granular carrier comprising anhydrous potassium carbonate and carbon. CONSTITUTION:Ethylene is codimerized with propylene in the molar ratio of 0.30-0.95 by a fixed bed method in the presence of a catalyst prepared by supporting alkali metals on a compression molded granular carrier comprising anhydrous potassium carbonate and carbon to give 1-pentene in a high productivity based on unit weight of the catalyst. The alkali metals consists of 20-90g atom % Na and 80-10g atom % K, the carrier contains 0.6-3wt.% carbon based on anhydrous K2CO3 and has 22-38% pore volume ratio and 1.5-15kg/cm<2> compression strength. Anhydrous K2CO3 has 150-600mum average particle diameter and 0.50-0.70g/ml bulk density as raw powder before the compression molding.

Description

【発明の詳細な説明】 慶粟≧立程里分立 本発明は、触媒の存在下でのエチレンとプロピレンとの
共二量化による1−ペンテンの製造方法に関し、詳しく
は、エチレンとプロピレンとの共二量化によって、触媒
の単位重量当り、高い生産量にて、且つ高い選択性にて
、■−ペンテンを工業的に有利に製造する方法に関する
Detailed Description of the Invention The present invention relates to a method for producing 1-pentene by co-dimerization of ethylene and propylene in the presence of a catalyst. The present invention relates to an industrially advantageous method for producing (1)-pentene by dimerization in a high production amount per unit weight of catalyst and with high selectivity.

罠来夏枝光 α−オレフィンの三量化及び共二量化のための塩基性触
媒が従来より種々提案されており、無水炭酸カリウムと
グラファイトとからなる圧縮成形による粒状担体にアル
カリ金属を担持させてなる触媒は、特公昭59−405
03号公報や特公昭59−40506号公報に記載され
ているように、既に知られている。そして、上記公報に
は、担体を構成する無水炭酸カリウムとして、嵩密度が
0゜7g/mlである無水炭酸カリウムを用いて触媒を
調製し、かかる触媒を用いて、プロピレンの共二量化に
よって、4−メチル−1−ペンテンを製造し得ることが
記載されている。
Various basic catalysts for the trimerization and co-dimerization of α-olefins have been proposed in the past, and are made by supporting an alkali metal on compression-molded granular carriers made of anhydrous potassium carbonate and graphite. The catalyst was published by Special Publication Publication No. 59-405.
This is already known as described in Japanese Patent Publication No. 03 and Japanese Patent Publication No. 59-40506. In the above-mentioned publication, a catalyst is prepared using anhydrous potassium carbonate having a bulk density of 0.7 g/ml as the anhydrous potassium carbonate constituting the carrier, and using such a catalyst, co-dimerization of propylene is carried out. It is stated that 4-methyl-1-pentene can be prepared.

しかし、かかる従来の触媒によれば、特に、エチレンと
プロピレンとの共二量化によって、lペンテンを製造す
るとき、エチレンの反応性がプロピレンに比べて非常に
高いために、オリゴマーの生成による触媒活性の劣化が
生じやすく、1−ペンテンの選択性が低いうえに、触媒
の重量当りの生産量も低い。
However, according to such conventional catalysts, especially when producing l-pentene through co-dimerization of ethylene and propylene, the catalytic activity due to the formation of oligomers is low because the reactivity of ethylene is much higher than that of propylene. Deterioration easily occurs, the selectivity for 1-pentene is low, and the production amount per weight of catalyst is also low.

更に、上記したような従来の触媒は、使用中に機械的強
度が低下し、比較的短期間に粉末化するので、特に、固
定床触媒として用いる場合には、反応管における圧力損
失が経時的に速やかに増大し、触媒の交換を余儀なくさ
れる。かかる点からも、従来より知られている触媒を用
いれば、触媒の重量当りの1−ペンテンの生産量が低い
Furthermore, the conventional catalysts described above lose their mechanical strength during use and turn into powder in a relatively short period of time, so especially when used as a fixed bed catalyst, the pressure loss in the reaction tube increases over time. rapidly increases, forcing the catalyst to be replaced. From this point of view, when conventionally known catalysts are used, the production amount of 1-pentene per weight of the catalyst is low.

Iが”しようとするi 本発明は、従来のα−オレフィンの三量化触媒を用いる
エチレンとプロピレンとの共二量化による1−ペンテン
の製造における上記した問題を解決するためになされた
ものであって、高活性及び長寿命を有する改善された触
媒の存在下に反応条件を選択して、エチレンとプロピレ
ンとを共二量化させることによって、高選択性及び高生
産量にて1−ペンテンを工業的に有利に製造する方法を
提供することを目的とする。
The present invention was made to solve the above-mentioned problems in the production of 1-pentene by co-dimerization of ethylene and propylene using a conventional α-olefin trimerization catalyst. 1-pentene can be produced industrially with high selectivity and high yield by co-dimerizing ethylene and propylene by selecting reaction conditions in the presence of improved catalysts with high activity and long lifetime. The object of the present invention is to provide a manufacturing method that is economically advantageous.

ラ を”るための 本発明は、触媒の存在下に固定床方式にてエチレンとプ
ロピレンとを共二量化させて、1−ペンテンを製造する
方法において、 (A)上記触媒がアルカリ金属を無水炭酸カリウムと炭
素とからなる圧縮成形粒状担体に担持させてなる触媒で
あって、 (a)  上記アルカリ金属がナトリウム20〜90g
原子%とカリウム80〜Log原子%とからなり、 (b)  上記圧縮成形粒状担体が無水炭酸カリウムに
対して0.6〜3重量%の炭素を含有し、且つ、22〜
38%の細孔容積比と1.5〜15kg / co! 
Gの圧縮強度を有すると共に、(c)上記担体を構成す
る無水炭酸カリウムが圧縮成形前の原粉として、平均粒
径150〜600μmを有し、且つ、粒径100μm未
満の粉体が1〜15重量%の範囲にあり、粒径600μ
mを越える粉体が1〜20重量%の範囲にある粒度分布
を有し、更に、嵩密度が0、50 g /ml以上であ
って、0.70 g /ml未満の範囲にあり、 (B)エチレンとプロピレンとをエチレン/プロピレン
モル比0.30〜0.95の範囲にて供給し、圧力30
kg/cn!以上、温度80〜140℃にて反応させる
ことを特徴とする。
The present invention provides a method for producing 1-pentene by codimerizing ethylene and propylene in the presence of a catalyst in a fixed bed system, in which (A) the catalyst converts an alkali metal into anhydrous A catalyst supported on a compression-molded granular carrier consisting of potassium carbonate and carbon, wherein (a) the alkali metal is 20 to 90 g of sodium;
(b) the compression-molded granular carrier contains 0.6 to 3% by weight of carbon relative to anhydrous potassium carbonate;
Pore volume ratio of 38% and 1.5-15 kg/co!
has a compressive strength of 15% by weight, particle size 600μ
The powder exceeding m has a particle size distribution in the range of 1 to 20% by weight, and further has a bulk density in the range of 0.50 g / ml or more and less than 0.70 g / ml, B) Ethylene and propylene are supplied at an ethylene/propylene molar ratio in the range of 0.30 to 0.95, and the pressure is 30
kg/cm! The above is characterized in that the reaction is carried out at a temperature of 80 to 140°C.

本発明の方法において用いる触媒は、アルカリ金属が無
水炭酸カリウムと炭素とからなる圧縮成形粒状担体に担
持されてなり、かかる担持アルカリ金属は、ナトリウム
20〜90g原子%とカリウム80〜10g原子%とか
らなり、好ましくは、ナトリウム30〜85g原子%と
カリウム70〜15g原子%とからなる。かかるアルカ
リ金属は、無水炭酸カリウムに対して、0.5〜10重
量%の割合にて担持されていることが好ましく、特に、
1〜5重量%の割合にて担持されていることが好ましい
The catalyst used in the method of the present invention has an alkali metal supported on a compression-molded granular carrier consisting of anhydrous potassium carbonate and carbon, and the supported alkali metal includes 20 to 90 g at % of sodium and 80 to 10 g at % of potassium. It preferably consists of 30 to 85 g at % of sodium and 70 to 15 g at % of potassium. The alkali metal is preferably supported in a proportion of 0.5 to 10% by weight based on anhydrous potassium carbonate, and in particular,
It is preferable that it is supported at a ratio of 1 to 5% by weight.

担持アルカリ金属において、ナトリウムが90g原子%
よりも多く、カリウムがLog原子%よりも少ないとき
は、触媒活性及び目的とする共二量化生成物である1−
ペンテンへの選択性が低く、特に、最高活性を示すに至
るまでの誘導期が著しく長い。他方、担持アルカリ金属
において、ナトリウムが20g原子%よりも少なく、カ
リウムが80g原子%よりも多いときは、得られる触媒
は、初期活性は高いが、経時的な触媒活性の低下が著し
く、触媒寿命が短い。
In the supported alkali metal, sodium is 90g at%
When potassium is less than Log atomic %, the catalyst activity and the desired codimerization product 1-
It has low selectivity to pentene, and in particular, the induction period before peak activity is extremely long. On the other hand, when the supported alkali metal contains less than 20 g at % of sodium and more than 80 g at % of potassium, the resulting catalyst has high initial activity, but the catalyst activity decreases markedly over time and the catalyst life is shortened. is short.

また、無水炭酸カリウムにおけるアルカリ金属の担持割
合が少なすぎるときは、触媒活性が低く、他方、多すぎ
るときは、無水炭酸カリウムから剥離しやすいので好ま
しくない。
Furthermore, if the proportion of the alkali metal supported in the anhydrous potassium carbonate is too small, the catalytic activity will be low, while if it is too large, the alkali metal will easily peel off from the anhydrous potassium carbonate, which is not preferable.

担体への担持成分として、ナトリウムとカリウムのみを
担持させるときは、通常、液状又は固体状のナトリウム
−カリウム合金が用いられる。しかし、本発明の方法に
おいては、用いる触媒は、アルカリ金属以外の成分が必
要に応じて担体に担持されていてもよく、このような場
合は、例えば、アルカリ金属とその他の成分を含むペー
スト状の混合物が用いられる。
When only sodium and potassium are supported on the carrier, a liquid or solid sodium-potassium alloy is usually used. However, in the method of the present invention, the catalyst used may have components other than the alkali metal supported on a carrier, if necessary, and in such a case, for example, a paste containing the alkali metal and other components A mixture of is used.

本発明の方法にて用いる触媒においては、担体は、無水
炭酸カリウムと炭素との混合物を圧縮成形することによ
って得られる粒状担体である。このような担体における
炭素の含有率は、無水炭酸カリウムに対して、0.6〜
3重量%の範囲である。
In the catalyst used in the method of the present invention, the carrier is a granular carrier obtained by compression molding a mixture of anhydrous potassium carbonate and carbon. The carbon content in such a carrier is 0.6 to 0.6 to anhydrous potassium carbonate.
It is in the range of 3% by weight.

担体における炭素の含有率が無水炭酸カリウムに対して
、0.6重量%よりも少ないときは、触媒活性、目的と
する三量化生成物への選択性や触媒寿命等が低い。しか
し、担体における炭素の含有量が3重量%を越えても、
触媒活性や目的とする1ペンテンへの選択性の向上が特
に認められず、しかも、圧縮成形によって、無水炭酸カ
リウムと炭素との混合物を圧縮強度が1.5kg/cJ
AG以上の粒状担体に成形することが困難となり、延い
ては、触媒寿命が短く、実用的な触媒を得ることができ
ない。特に、本発明の方法においては、触媒寿命が長く
、しかも、目的とする1−ペンテンへの選択性の高い触
媒を得るには、炭素の担体における含有量は、0.8〜
2重量%の範囲にあることが好ましい。
When the content of carbon in the carrier is less than 0.6% by weight based on anhydrous potassium carbonate, the catalyst activity, selectivity to the desired trimerization product, catalyst life, etc. are low. However, even if the carbon content in the carrier exceeds 3% by weight,
No particular improvement in catalytic activity or target selectivity to 1-pentene was observed, and furthermore, by compression molding, the mixture of anhydrous potassium carbonate and carbon had a compressive strength of 1.5 kg/cJ.
It becomes difficult to mold into a granular support larger than AG, and as a result, the catalyst life is shortened, making it impossible to obtain a practical catalyst. In particular, in the method of the present invention, in order to obtain a catalyst with a long catalyst life and high selectivity to 1-pentene, the carbon content in the carrier should be between 0.8 and 1.
Preferably, it is in the range of 2% by weight.

上記炭素としては、例えば、グラファイトや無定形炭素
等を例示することができるが、特に、グラファイトが好
ましく用いられる。
Examples of the carbon include graphite and amorphous carbon, and graphite is particularly preferably used.

本発明の方法においては、用いる触媒について、上記担
体を構成する無水炭酸カリウムは、圧縮成形前の原物と
して、平均粒径150〜600μmを有し、且つ、粒径
100μm未満の粉体が1〜15重量%の範囲にあり、
粒径600μmを越える粉体が1〜20重量%の範囲に
ある粒度分布を有し、更に、嵩密度が0.50 g 7
m1以上であって、0、70 g 7m1未満の範囲に
あることが必要であり、特に、平均粒径200〜500
μmを有し、且つ、粒径100μm未満の粉体が2〜1
0重量%の範囲にあり、粒径600μmを越える粉体が
2〜15重量%の範囲にある粒度分布を有し、更に、嵩
密度が0.53〜0.69 g /mlの範囲にあるこ
とが好ましい。
In the method of the present invention, regarding the catalyst used, the anhydrous potassium carbonate constituting the carrier has an average particle size of 150 to 600 μm as an original material before compression molding, and powder with a particle size of less than 100 μm is ~15% by weight,
Powder having a particle size exceeding 600 μm has a particle size distribution in the range of 1 to 20% by weight, and further has a bulk density of 0.50 g 7
m1 or more and less than 0.70 g 7 m1, in particular, the average particle size is 200 to 500 g.
μm, and the powder with a particle size of less than 100 μm is 2 to 1
The powder has a particle size distribution of 2 to 15% by weight, and a bulk density of 0.53 to 0.69 g/ml. It is preferable.

特に、本発明の方法においては、嵩密度が0.55〜0
.68 g /mlの範囲にある無水炭酸カリウム原物
を用いて、グラファイトと共に圧縮成形粒状担体を調製
し、かかる担体にアルカリ金属を担持させてなる触媒を
用いることによって、触媒の単位重量当りの1−ペンテ
ンの生産量が高く、且つ、高転化率及び高選択性にて、
1−ペンテンを製造することができる。
In particular, in the method of the present invention, the bulk density is 0.55 to 0.
.. 1 per unit weight of the catalyst by preparing a compression-molded granular support with graphite using anhydrous potassium carbonate raw material in the range of 68 g/ml and using a catalyst comprising an alkali metal supported on such a support. - High production of pentene, high conversion rate and high selectivity,
1-pentene can be produced.

粒度分布の狭い無水炭酸カリウムの原物、例えば、通常
の市販品は、平均粒径350〜800μmの範囲にあり
、粒径100μm未満の粉体及び粒径600μmを越え
る粉体がいずれも1重量%に満たず、かかる無水炭酸カ
リウムを炭素と共に圧縮成形しても、十分な強度を有す
る粒状担体を得ることができず、これに前述したアルカ
リ金属を担持させても、得られる触媒は、触媒寿命及び
目的とする1−ペンテンへの選択性のいずれにも劣る。
The original anhydrous potassium carbonate with a narrow particle size distribution, such as a normal commercially available product, has an average particle size in the range of 350 to 800 μm, and 1 weight of powder with a particle size of less than 100 μm and powder with a particle size of more than 600 μm is 1 weight. %, and even if such anhydrous potassium carbonate is compression molded together with carbon, a granular support with sufficient strength cannot be obtained. Even if the above-mentioned alkali metal is supported on this, the resulting catalyst is It is inferior in both longevity and selectivity to the target 1-pentene.

更に、本発明の方法においては、用いる触媒の調製に際
して、原物の嵩密度が0.50 g 7m1以上であっ
て、0.70 g 7m1未満、好ましくは、0.53
〜0.69g/m+、最も好ましくは、0.55〜0゜
68g/mlの範囲にある無水炭酸カリウムを用いるこ
とによって、機械的強度が著しく改善され、かくして、
触媒寿命が著しく長い触媒を得ることができる。即ち、
このように、多孔度の高い無水炭酸カリウム原物を用い
て、圧縮成形粒状担体を調製することによって、触媒活
性が高く、しかも、特に、固定床方式による連続反応に
おいて、1年を越える長寿命の触媒を得ることができる
Furthermore, in the method of the present invention, when preparing the catalyst used, the bulk density of the raw material is 0.50 g 7 ml or more and less than 0.70 g 7 ml, preferably 0.53 g 7 ml or more.
By using anhydrous potassium carbonate in the range ~0.69 g/m+, most preferably 0.55-0.68 g/ml, the mechanical strength is significantly improved, thus
A catalyst with a significantly long catalyst life can be obtained. That is,
In this way, by preparing a compression-molded granular carrier using an anhydrous potassium carbonate raw material with high porosity, it has high catalytic activity and a long life of more than one year, especially in continuous reactions using a fixed bed system. catalyst can be obtained.

しかし、無水炭酸カリウム原物の嵩密度が0.50g/
mlより小さいときは、圧縮成形前に炭素と混合する際
に破砕されて、原粉が前記した粒度分布を有しないこと
となって、圧縮成形によって、前記した範囲の強度を有
する粒状担体を得ることができず、得られる触媒は、却
って、寿命が低下する。
However, the bulk density of the anhydrous potassium carbonate original is 0.50 g/
If it is smaller than ml, it will be crushed when mixed with carbon before compression molding, and the raw powder will not have the above particle size distribution, and a granular carrier having a strength in the above range will be obtained by compression molding. However, the life of the resulting catalyst is rather shortened.

本発明の方法にて用いる触媒においては、担体は、上述
したような無水炭酸カリウムと炭素とを圧縮成形して得
られる粒状担体であって、細孔容積比が22〜38%の
範囲にあり、且つ、圧縮強度が1.5〜15に+r/c
n!の範囲にあることが必要である。担体の細孔容積比
及び圧縮強度が上記範囲外にあって、細孔容積比が大き
く、圧縮強度が小さいとき、得られる触媒は、初期活性
は比較的高いが、触媒活性が経時的に低下しやすく、更
に、触媒が強度において不十分であるので、使用中に経
時的に崩壊し、粉末化しやすく、触媒寿命が短い。他方
、細孔容積比が小さく、圧縮強度が大きいときは、得ら
れる触媒は、活性が低く、しかも、目的とする1−ペン
テンへの選択性も低い。
In the catalyst used in the method of the present invention, the carrier is a granular carrier obtained by compression molding anhydrous potassium carbonate and carbon as described above, and has a pore volume ratio in the range of 22 to 38%. , and the compressive strength is 1.5 to 15+r/c
n! It is necessary to be within the range of . When the pore volume ratio and compressive strength of the carrier are outside the above ranges, and the pore volume ratio is large and the compressive strength is small, the resulting catalyst has a relatively high initial activity, but the catalytic activity decreases over time. Moreover, since the catalyst has insufficient strength, it is easy to disintegrate and powder over time during use, and the catalyst life is short. On the other hand, when the pore volume ratio is low and the compressive strength is high, the resulting catalyst has low activity and low selectivity to the target 1-pentene.

しかしながら、本発明の方法に従って、無水炭酸カリウ
ムと炭素とを圧縮成形して得られる粒状担体において、
細孔容積比を22〜38%、好ましくは、26〜33%
の範囲とし、且つ、圧縮強度を1.5〜15 kg/c
olG、好ましくは、2〜10kg / cn! Gの
範囲とすることによって、触媒活性、触媒寿命及び二量
化生成物への選択性にすぐれる工業上、有用な触媒を得
ることができ、1−ペンテンを工業上、有利に製造する
ことができる。
However, in the granular carrier obtained by compression molding anhydrous potassium carbonate and carbon according to the method of the present invention,
Pore volume ratio of 22 to 38%, preferably 26 to 33%
and compressive strength of 1.5 to 15 kg/c
olG, preferably 2-10 kg/cn! By setting G within the range, an industrially useful catalyst with excellent catalytic activity, catalyst life and selectivity to dimerization products can be obtained, and 1-pentene can be produced industrially advantageously. can.

本発明の方法において用いる触媒は、種々の方法によっ
て調製することができる。先ず、担体は、通常、次のよ
うな方法にて調製される。炭素と前述したような特性を
有する無水炭酸カリウムの原粉を十分に混合し、この混
合物を打錠成形機、圧縮成形機、ペレタイザー等によっ
て、前述した細孔容積比及び圧縮強度を有するように、
粒状担体に圧縮成形する。このようにして得られる圧縮
成形粒状担体の形状は、特に、限定されるものではない
が、通常、円筒状、錠剤状、ペレット状、球状等であり
、粒径は、通常、0.510以上、好ましくは、1〜1
011、特に、3〜5 +nの範囲が好ましい。
The catalyst used in the method of the invention can be prepared by various methods. First, a carrier is usually prepared by the following method. Carbon and raw powder of anhydrous potassium carbonate having the above-mentioned properties are sufficiently mixed, and this mixture is processed by a tablet molding machine, compression molding machine, pelletizer, etc. so that it has the above-mentioned pore volume ratio and compressive strength. ,
Compression molding into a granular carrier. The shape of the compression-molded granular carrier obtained in this way is not particularly limited, but it is usually cylindrical, tablet-shaped, pellet-shaped, spherical, etc., and the particle size is usually 0.510 or more. , preferably 1-1
011, particularly preferably in the range of 3 to 5 +n.

かかる担体にアルカリ金属を担持させるにも、種々の方
法によることができる。ナトリウムは、無水炭酸カリウ
ムに加熱下に接触されるとき、カリウムとの間にアルカ
リ金属交換反応を起こし、その結果、担体中にカリウム
及び無水炭酸ナトリウムを生しる。従って、本発明によ
る触媒の調製において、上記アルカリ金属交換反応を考
慮して、ナトリウムのみを用いて、担体に必要量のナト
リウムとカリウムを担持させることができる。勿論、ナ
トリウムとカリウム、例えば、前述したようにナトリウ
ム−カリウム合金を用いて、これらを担体に担持させる
こともできる。
Various methods can be used to support the alkali metal on such a carrier. When sodium is brought into contact with anhydrous potassium carbonate under heat, an alkali metal exchange reaction occurs with the potassium, resulting in potassium and anhydrous sodium carbonate in the carrier. Therefore, in the preparation of the catalyst according to the present invention, the necessary amounts of sodium and potassium can be supported on the carrier by using only sodium in consideration of the above-mentioned alkali metal exchange reaction. Of course, sodium and potassium, for example, a sodium-potassium alloy as described above, can also be used to support them on a carrier.

担体にアルカリ金属を担持させるには、具体的には、例
えば、次の方法によればよい。即ち、ナトリウムと必要
に応じてその他の担持成分との混合物や、或いはナトリ
ウム−カリウム合金と必要に応じてその他の担持成分と
の混合物を前記圧縮成形粒状担体と共に、不活性ガス雰
囲気中にて加熱下に撹拌することによって、ナトリウム
及びカリウム、必要に応じてその他の担持成分を担体に
担持させることができる。
Specifically, the following method may be used to support the alkali metal on the carrier. That is, a mixture of sodium and other supported components as necessary, or a mixture of a sodium-potassium alloy and other supported components as necessary, is heated together with the compression-molded granular carrier in an inert gas atmosphere. By stirring downward, sodium and potassium and, if necessary, other supported components can be supported on the carrier.

上記のように、して、アルカリ金属を担体に担持させる
場合に、上記加熱温度は、通常、150〜450℃の範
囲の温度であるが、触媒活性、触媒寿命及び二量化生底
物への選択性にすぐれる触媒を得るには、特に、200
〜400℃の範囲が好ましい。
As mentioned above, when an alkali metal is supported on a carrier, the heating temperature is usually in the range of 150 to 450°C, but it may affect catalyst activity, catalyst life, and dimerized biosubstances. In order to obtain a catalyst with excellent selectivity, in particular, 200
A range of ˜400° C. is preferable.

本発明の方法によれば、このようにして得られる触媒の
存在下に、固定床方式にてエチレンとプロピレンとを共
二量化させて、1−ペンテンを製造する方法において、
エチレンとプロピレンとをエチレン/プロピレンモル比
0.30〜0.90の範囲にて供給し、圧力30kg/
cII1以上、温度80〜130℃にて反応させる。
According to the method of the present invention, in the method of producing 1-pentene by codimerizing ethylene and propylene in a fixed bed method in the presence of the catalyst thus obtained,
Ethylene and propylene were supplied at an ethylene/propylene molar ratio of 0.30 to 0.90, and the pressure was 30 kg/
The reaction is carried out at a temperature of 80 to 130° C. at a temperature of 80 to 130° C.

反応は、通常、管径25〜80mmの高圧管状反応器を
用い、連続固定床流通法にて行なわれるが、エチレン及
びプロピレンと共に、溶剤又は同伴ガスを用いてもよい
The reaction is usually carried out by a continuous fixed bed flow method using a high-pressure tubular reactor with a tube diameter of 25 to 80 mm, but a solvent or accompanying gas may be used in addition to ethylene and propylene.

本発明の方法においては、エチレンとプロピレンは、エ
チレン/プロピレンモル比0.30〜0.95の範囲に
て固定床触媒に流通される。このエチレン/プロピレン
モル比が0.30よりも小さいときは、プロピレンの三
量化による4−メチル−I−ペンテンの副生が多く、目
的とする共二量化生成物である1−ペンテンを高選択性
にて得ることができない。他方、エチレン/プロピレン
モル比が0.95よりも大きいときは、3−エチル−1
ペンテンが多量に副生し、同様に、l−ペンテンを高選
択性にて得ることができない。
In the process of the invention, ethylene and propylene are passed through the fixed bed catalyst at an ethylene/propylene molar ratio in the range of 0.30 to 0.95. When this ethylene/propylene molar ratio is smaller than 0.30, 4-methyl-I-pentene is produced as a by-product due to trimerization of propylene, and 1-pentene, which is the desired codimerization product, is highly selective. It cannot be obtained through sex. On the other hand, when the ethylene/propylene molar ratio is greater than 0.95, 3-ethyl-1
A large amount of pentene is produced as a by-product, and l-pentene cannot be obtained with high selectivity.

反応温度は、80〜140°C1好ましくは90〜12
0℃の範囲である。反応温度が80℃よりも低いときは
、α−オレフィンの反応性が低く、しかも、望ましくな
い副生物の生成が多い。しかし、反応温度が140℃を
越えるときは、2−ペンテンの副生が多くなって、1−
ペンテンを高選択性にて得ることができないのみならず
、触媒の表面に重合体物が付着し、触媒活性の劣化を招
く。
The reaction temperature is 80-140°C, preferably 90-12°C.
It is in the range of 0°C. When the reaction temperature is lower than 80° C., the reactivity of the α-olefin is low and moreover, undesirable by-products are often produced. However, when the reaction temperature exceeds 140°C, a large amount of 2-pentene is produced and 1-
Not only is it not possible to obtain pentene with high selectivity, but also polymer substances adhere to the surface of the catalyst, leading to deterioration of the catalyst activity.

反応圧力は、30〜200 kg/adG、好ましくは
、40〜150 kg/colGの範囲である。反応圧
力が30kg/ciGよりも小さいときは、反応速度が
遅く、工業的に1−ペンテンを製造するには、不利であ
る。反応圧力の上限は、特に、限定されるものではない
が、通常、実用上の観点から、200kg/aJGであ
る。更に、エチレンとプロピレンとの混合物の柩空間速
度(L HS V)は、通常、0、1〜15 hr−’
、好ましくは0.5〜10 hr−’の範囲である。
The reaction pressure ranges from 30 to 200 kg/adG, preferably from 40 to 150 kg/colG. When the reaction pressure is lower than 30 kg/ciG, the reaction rate is slow, which is disadvantageous for industrially producing 1-pentene. Although the upper limit of the reaction pressure is not particularly limited, it is usually 200 kg/aJG from a practical standpoint. Furthermore, the space velocity (L HSV) of a mixture of ethylene and propylene is typically between 0.1 and 15 hr-'
, preferably in the range of 0.5 to 10 hr-'.

エチレン及びプロピレンは、かかる条件下に、触媒に5
〜50゛0秒間接触される。
Under such conditions, ethylene and propylene add 5% to the catalyst.
Contact is made for ~500 seconds.

前記溶剤又は同伴ガスとしては、例えば、メクン、エタ
ン、プロパン、ヘキサン、シクロヘキサン、オクタン、
デカン等の飽和炭化水素類を挙げることができ、このよ
うに溶剤又は同伴ガスを用いるときは、エチレン及びプ
ロピレンの合計量の濃度は、30重量%以上であること
が望ましい。
Examples of the solvent or accompanying gas include mekun, ethane, propane, hexane, cyclohexane, octane,
Examples include saturated hydrocarbons such as decane, and when a solvent or accompanying gas is used in this way, it is desirable that the total concentration of ethylene and propylene be 30% by weight or more.

反応終了後、得られた反応混合物から常法に従って1−
ペンテンと未反応エチレン及びプロピレンとを分離し、
未反応物は反応に循環再使用される。
After completion of the reaction, 1-
Separate pentene from unreacted ethylene and propylene,
Unreacted materials are recycled and reused in the reaction.

1馴しυ■医 以上のように、本発明方法においては、用いる触媒につ
いて、無水炭酸カリウムと炭素とからなる圧縮成形粒状
担体の調製に際して、特に、無水炭酸カリウムとして、
所定の嵩密度のものを用いると共に、反応条件を適正に
選択することによって、エチレンとプロピレンとの共二
量化によって、触媒の単位重量当り、高い生産量にて、
且つ高い選択性にて、■−ペンテンを工業的に有利に製
造することができる。
1. As described above, in the method of the present invention, regarding the catalyst used, in preparing a compression-molded granular carrier consisting of anhydrous potassium carbonate and carbon, in particular, as anhydrous potassium carbonate,
By using a catalyst with a predetermined bulk density and appropriately selecting the reaction conditions, co-dimerization of ethylene and propylene can produce a high production amount per unit weight of catalyst.
In addition, 1-pentene can be industrially advantageously produced with high selectivity.

尖凰拠 以下に実施例を挙げて本発明を説明するが、本発明はこ
れら実施例により何ら限定されるものではない。
EXAMPLES The present invention will be explained below with reference to Examples, but the present invention is not limited to these Examples in any way.

尚、以下において、担体及び触媒の物性の測定方法は、
次のとおりである。
In addition, below, the method for measuring the physical properties of the carrier and catalyst is as follows:
It is as follows.

缶水  カリウムの  の 16メツシユから200メツシユまでのJIS規格の標
準篩を組合わせ、その上部に約150gの無水炭酸カリ
ウム原物の試料を入れ、全体をポリエチレン製袋に入れ
て密封した。この篩をローダツブ型振動篩振とう器に取
り付け、振とう数290回/分、ハンマー数156回/
分の条件にて10分間篩い分けした。
A JIS standard sieve of 16 mesh to 200 mesh for canned potassium water was combined, about 150 g of anhydrous potassium carbonate original sample was placed on top of the sieve, and the whole was placed in a polyethylene bag and sealed. This sieve was attached to a loader tube type vibrating sieve shaker, and the number of shakes was 290 times/min, and the number of hammers was 156 times/min.
It was sieved for 10 minutes under the condition of 10 minutes.

このようにして篩い分けした後の各篩上の無水炭酸カリ
ウムの重量を測定し、その重量百分率を計算し、RR3
線図から平均粒径を求めた。
After sieving in this way, the weight of anhydrous potassium carbonate on each sieve was measured, the weight percentage was calculated, and RR3
The average particle size was determined from the diagram.

長生旦豊長春抗且 予め300℃で2時間加熱乾燥した約10gの担体試料
の比重を水銀中及び四塩化炭素中にて40℃で測定し、
担体の体積のうち、細孔容積が占める割合を細孔容積比
として、次式によって容量百分率にて求めた。
The specific gravity of a carrier sample of about 10 g, which had been dried by heating at 300°C for 2 hours, was measured at 40°C in mercury and carbon tetrachloride.
The ratio of the pore volume to the volume of the carrier was defined as the pore volume ratio, and the volume percentage was calculated using the following formula.

00 ここに、DHg及びD CCI Aはそれぞれ水銀及び
四塩化炭素中にて測定した担体の比重であり、pHg及
びρCCl4はそれぞれ40℃における水銀及び四塩化
炭素の密度である。
00 Here, DHg and D CCI A are the specific gravity of the carrier measured in mercury and carbon tetrachloride, respectively, and pHg and ρCCl4 are the densities of mercury and carbon tetrachloride at 40°C, respectively.

担体 のグラファイトA 二 予め300℃で2時間加熱乾燥した50gの担体試料に
水1001Ill及びメタノール20m1を加え、20
分間磁気撹拌子にて撹拌した後、更に、超音波洗浄器に
て30分間撹拌した。
Graphite A (carrier) 1001 Ill of water and 20 ml of methanol were added to 50 g of carrier sample which had been heated and dried in advance at 300°C for 2 hours.
After stirring with a magnetic stirrer for 1 minute, the mixture was further stirred with an ultrasonic cleaner for 30 minutes.

遊離したグラファイトを水で洗浄した後、100℃で2
時間乾燥して、重量を測定し、担体中の無水炭酸カリウ
ムに対する重量百分率を求めた。
After washing the liberated graphite with water, it was heated at 100℃ for 2
After drying for a period of time, the weight was measured and the weight percentage relative to the anhydrous potassium carbonate in the carrier was determined.

旦 アル−カリ金  ゝ 精秤した触媒約2gに窒素雰囲気中にて水15m1を加
え、発生した水素ガスの量をガスビユレットにて測定し
た。測定時の温度をt(’c)、圧力をP (wmHg
) 、温度t(”c)における水の分圧をP HzO(
mmHg)、発生した気体の量をV (ml) 、触媒
試料M (g)中の担持アルカリ金属量をA (g)及
びグラファイト含有量をC(g)とし、無水炭酸カリウ
ム100gに対する担持アルカリ金属量をB (g原子
)として、A及びBの値を次式から求めた。
15 ml of water was added to about 2 g of the precisely weighed catalyst in a nitrogen atmosphere, and the amount of hydrogen gas generated was measured using a gas villet. The temperature at the time of measurement is t ('c), and the pressure is P (wmHg
), the partial pressure of water at temperature t(”c) is expressed as P HzO(
mmHg), the amount of gas generated is V (ml), the amount of supported alkali metal in catalyst sample M (g) is A (g), and the graphite content is C (g), and the amount of supported alkali metal per 100 g of anhydrous potassium carbonate is The values of A and B were determined from the following equations, assuming that the amount was B (g atoms).

他方、担持触媒2gに窒素雰囲気中で無水イソプロピル
アルコール50m1を加え、室温で1時間放置した後、
担体及びその他の固形分を遠心分離した。このようにし
て得られたイソプロピルアルコール中に溶出したナトリ
ウムアルコキシドの量及びカリウムアルコキシドの量を
原子吸光法にて測定し、その両方の値からN a / 
K比を求めた。
On the other hand, 50 ml of anhydrous isopropyl alcohol was added to 2 g of supported catalyst in a nitrogen atmosphere, and after being left at room temperature for 1 hour,
The carrier and other solids were centrifuged. The amounts of sodium alkoxide and potassium alkoxide eluted into the isopropyl alcohol thus obtained were measured by atomic absorption spectrometry, and from both values Na/
The K ratio was determined.

また、触媒に担持されたナトリウム及びカリウムの無水
炭酸カリウム100gに対する量は、先に求めた無水炭
酸カリウム100gに対する担持アルカリ金属量B (
g原子)の値及びN a / K比から次式によって求
めた。
In addition, the amount of sodium and potassium supported on the catalyst per 100 g of anhydrous potassium carbonate is the amount of alkali metal supported per 100 g of anhydrous potassium carbonate, B (
g atom) and the Na/K ratio using the following formula.

Na量(g原子/100g無水炭酸カリウム)=に4J
 (g原子/100g無水炭酸カリウム)=下端に落と
し口を有し、且つ、その内径が26゜5N、上端の内径
が9.4重量、高さが1100u、内容積が150m1
である漏斗を、その下端の試料落とし口までの高さが1
00mmとなるように垂直に固定した。この漏斗の試料
落とし口の真下に内径39m、高さ81關及び内容積9
8.0mlの円筒型の受器を置いた。
Amount of Na (g atoms/100g anhydrous potassium carbonate) = 4J
(g atoms/100g anhydrous potassium carbonate) = It has a drop opening at the lower end, and its inner diameter is 26°5N, the inner diameter at the upper end is 9.4 weight, the height is 1100u, and the internal volume is 150m1.
The height of the funnel to the sample droplet at the bottom is 1
It was fixed vertically so that the distance was 0.00 mm. Directly below the sample drop opening of this funnel is an inner diameter of 39 m, a height of 81 m, and an internal volume of 9 m.
An 8.0 ml cylindrical receiver was placed.

上記漏斗に無水炭酸カリウム試料の粉末を入れ、下端の
試料落とし口を開けて、試料粉末を受器に落下させた。
Anhydrous potassium carbonate sample powder was placed in the funnel, the sample drop opening at the bottom was opened, and the sample powder was dropped into the receiver.

受器上部の盛り上がった試料を水平にすり切り、受器中
の試料粉末の重量を測定し、嵩密度を求めた。
The raised sample at the top of the receiver was cut horizontally, the weight of the sample powder in the receiver was measured, and the bulk density was determined.

その他の特性は、常法によって測定した。Other properties were measured by conventional methods.

実施例1 (触媒の調製) 平均粒径が280μmであって、粒径100μm未満が
6.9重量%、粒径600μmを越え、1000μmま
でが3.4重量%である粒度分布を有し、嵩密度は0.
68 g /ml、細孔容積0.45m1/gである無
水炭酸カリウムに対して、1.1重量%のグラファイト
を加え、十分に混合した後、直径3n、高さ3flの円
筒状の担体に打錠成形した。
Example 1 (Preparation of catalyst) A particle size distribution having an average particle size of 280 μm, 6.9% by weight of particles with a particle size of less than 100 μm, and 3.4% by weight of particles with a particle size of more than 600 μm up to 1000 μm, Bulk density is 0.
1.1% by weight of graphite was added to anhydrous potassium carbonate having a pore volume of 68 g/ml and a pore volume of 0.45 m1/g, and after thorough mixing, it was poured into a cylindrical carrier with a diameter of 3n and a height of 3fl. It was molded into tablets.

この担体の細孔容積比は27%、圧縮強度は6.8kg
 / col Gであった。
The pore volume ratio of this carrier is 27%, and the compressive strength is 6.8 kg.
/ col G.

この担体97.2 gを窒素気流中にて350℃で乾燥
させた後、窒素雰囲気下に金属ナトリウム2゜8gを加
え、240℃で5時間撹拌して、触媒を調製した。
After drying 97.2 g of this carrier at 350° C. in a nitrogen stream, 2.8 g of metallic sodium was added in a nitrogen atmosphere, and the mixture was stirred at 240° C. for 5 hours to prepare a catalyst.

得られた触媒において、担持アルカリ金属は、ナトリウ
ム48g原子%、カリウム52g原子%であり、無水炭
酸カリウムに対する担持量は、2゜7重量%であった。
In the obtained catalyst, the supported alkali metals were 48 g at % of sodium and 52 g at % of potassium, and the amount supported relative to anhydrous potassium carbonate was 2.7% by weight.

このようにして調製した触媒161を内径501mの管
状高圧気相反応器に充填し、この反応器の圧力100 
kg/ctAG、温度105℃に保持しつつ、エチレン
/プロピレンモル比0.55にてエチレンとプロピレン
とを液空間速度(L HS V) 2.5hr−’にて
供給して、連続反応を行なった。
The catalyst 161 thus prepared was packed into a tubular high-pressure gas phase reactor with an inner diameter of 501 m, and the pressure of this reactor was 100 m.
kg/ctAG, and while maintaining the temperature at 105°C, ethylene and propylene were supplied at a liquid hourly space velocity (LHS V) of 2.5 hr-' at an ethylene/propylene molar ratio of 0.55 to conduct a continuous reaction. Ta.

反応の結果は、エチレンの転化率は83モル%であって
、生成物の組成は、■−ペンテンが93゜2モル%、2
−ペンテンが1.4モル%、4−メチル−1−ペンテン
が3.0モル%、3−エチル−I−ペンテンカ1.9モ
ル%、その他0.5モル%であった。
As a result of the reaction, the conversion rate of ethylene was 83 mol%, and the composition of the product was 93.2 mol% of -pentene, 2.
-Pentene was 1.4 mol%, 4-methyl-1-pentene was 3.0 mol%, 3-ethyl-I-pentene was 1.9 mol%, and others were 0.5 mol%.

しかも、エチレンの転化率は、経時変化が少なく、10
日間の総生産量は98 g/g触媒であった。
Moreover, the conversion rate of ethylene shows little change over time, and 10
Total daily production was 98 g/g catalyst.

実施例2及び3 反応器に供給するエチレン/プロピレンモル比を第1表
に示すようにそれぞれ0.8及び0.3とした以外は、
実施例1と同様にして、エチレンとプロピレンの共二量
化を行なった。反応結果を第1表に示す。
Examples 2 and 3 The ethylene/propylene molar ratio fed to the reactor was 0.8 and 0.3, respectively, as shown in Table 1.
Codimerization of ethylene and propylene was carried out in the same manner as in Example 1. The reaction results are shown in Table 1.

比較例1 反応器に供給するエチレン/プロピレンモル比を1.1
とした以外は、実施例1と同様にして、エチレンとプロ
ピレンの共二量化を行なった。反応結果を第1表に示す
Comparative Example 1 Ethylene/propylene molar ratio supplied to the reactor was 1.1
Co-dimerization of ethylene and propylene was carried out in the same manner as in Example 1 except that. The reaction results are shown in Table 1.

この反応においては、反応開始して10時間後に反応器
からの反応液の排出が極端に減少した。
In this reaction, 10 hours after the start of the reaction, the amount of reaction liquid discharged from the reactor was extremely reduced.

そこで、反応器を開放して調べたところ、触媒の表面に
重合体物質の付着がみられた。
When the reactor was opened and examined, polymer substances were found to be attached to the surface of the catalyst.

比較例2 反応器に供給するエチレン/プロピレンモル比を0.2
とした以外は、実施例1と同様にして、エチレンとプロ
ピレンの共二量化を行なった。反応結果を第1表に示す
Comparative Example 2 The ethylene/propylene molar ratio supplied to the reactor was 0.2
Co-dimerization of ethylene and propylene was carried out in the same manner as in Example 1 except that. The reaction results are shown in Table 1.

実施例1と比較すれば、4−メチル−1−ペンテンの副
生が多く、目的とする1−ペンテンの選沢率の低下が著
しい。
Compared to Example 1, more 4-methyl-1-pentene was produced as a by-product, and the selection rate for the target 1-pentene was significantly lowered.

比較例3 反応温度を150℃とした以外は、実施例1と同様にし
て、エチレンとプロピレンの共二量化を行なった。反応
結果を第1表に示す。
Comparative Example 3 Co-dimerization of ethylene and propylene was carried out in the same manner as in Example 1 except that the reaction temperature was 150°C. The reaction results are shown in Table 1.

実施例1と比較すれば、4−メチル−1−ペンテンの副
生が非常に多く、しかも、2−ペンテンの副生も多い。
Compared to Example 1, the by-product of 4-methyl-1-pentene is very large, and the by-product of 2-pentene is also large.

この結果、目的とする1−ペンテンの選択率が極端に低
い。
As a result, the selectivity of the target 1-pentene is extremely low.

比較例4 反応温度を70℃とした以外は、実施例1と同様にして
、エチレンとプロピレンの共二量化を行なった。反応結
果を第1表に示す。
Comparative Example 4 Co-dimerization of ethylene and propylene was carried out in the same manner as in Example 1 except that the reaction temperature was 70°C. The reaction results are shown in Table 1.

実施例1と比較すれば、エチレンの転化率が極めて低い
Compared to Example 1, the ethylene conversion rate is extremely low.

Claims (2)

【特許請求の範囲】[Claims] (1)触媒の存在下に固定床方式にてエチレンとプロピ
レンとを共二量化させて、1−ペンテンを製造する方法
において、 (A)上記触媒がアルカリ金属を無水炭酸カリウムと炭
素とからなる圧縮成形粒状担体に担持させてなる触媒で
あつて、 (a)上記アルカリ金属がナトリウム20〜90g原子
%とカリウム80〜10g原子%とからなり、 (b)上記圧縮成形粒状担体が無水炭酸カリウムに対し
て0.6〜3重量%の炭素を含有し、且つ、22〜38
%の細孔容積比と1.5〜15kg/cm^2Gの圧縮
強度を有すると共に、 (c)上記担体を構成する無水炭酸カリウムが圧縮成形
前の原粉として、平均粒径150〜600μmを有し、
且つ、粒径100μm未満の粉体が1〜15重量%の範
囲にあり、粒径600μmを越える粉体が1〜20重量
%の範囲にある粒度分布を有し、更に、嵩密度が0.5
0g/ml以上であつて、0.70g/ml未満の範囲
にあり、 (B)エチレンとプロピレンとをエチレン/プロピレン
モル比0.30〜0.95の範囲にて供給し、圧力30
kg/cm^2以上、温度80〜140℃にて反応させ
ることを特徴とするエチレンとプロピレンの共二量化に
よる1−ペンテンの製造方法。
(1) In a method for producing 1-pentene by co-dimerizing ethylene and propylene in a fixed bed method in the presence of a catalyst, (A) the catalyst comprises an alkali metal formed of anhydrous potassium carbonate and carbon. A catalyst supported on a compression-molded granular carrier, wherein (a) the alkali metal is composed of 20 to 90 g at % of sodium and 80 to 10 g at % of potassium, and (b) the compression-molded granular carrier is anhydrous potassium carbonate. contains 0.6 to 3% by weight of carbon, and 22 to 38% by weight of carbon.
% pore volume ratio and a compressive strength of 1.5 to 15 kg/cm^2G; have,
Further, the particle size distribution is such that the powder with a particle size of less than 100 μm is in the range of 1 to 15% by weight, the powder with a particle size of more than 600 μm is in the range of 1 to 20% by weight, and further, the bulk density is 0. 5
(B) Ethylene and propylene are supplied at an ethylene/propylene molar ratio of 0.30 to 0.95, and the pressure is 30 g/ml.
A method for producing 1-pentene by co-dimerization of ethylene and propylene, characterized in that the reaction is carried out at kg/cm^2 or more and at a temperature of 80 to 140°C.
(2)担体を構成する無水炭酸カリウムが圧縮成形前の
原粉として、嵩密度が0.53〜0.69g/mlの範
囲にあることを特徴とする請求項第1項記載の1−ペン
テンの製造方法。
(2) The 1-pentene according to claim 1, wherein the anhydrous potassium carbonate constituting the carrier has a bulk density in the range of 0.53 to 0.69 g/ml as a raw powder before compression molding. manufacturing method.
JP1176901A 1989-07-07 1989-07-07 Method for producing 1-pentene by co-dimerization of ethylene and propylene Expired - Fee Related JP2756493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1176901A JP2756493B2 (en) 1989-07-07 1989-07-07 Method for producing 1-pentene by co-dimerization of ethylene and propylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1176901A JP2756493B2 (en) 1989-07-07 1989-07-07 Method for producing 1-pentene by co-dimerization of ethylene and propylene

Publications (2)

Publication Number Publication Date
JPH0341036A true JPH0341036A (en) 1991-02-21
JP2756493B2 JP2756493B2 (en) 1998-05-25

Family

ID=16021737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1176901A Expired - Fee Related JP2756493B2 (en) 1989-07-07 1989-07-07 Method for producing 1-pentene by co-dimerization of ethylene and propylene

Country Status (1)

Country Link
JP (1) JP2756493B2 (en)

Also Published As

Publication number Publication date
JP2756493B2 (en) 1998-05-25

Similar Documents

Publication Publication Date Title
SU628805A3 (en) Method of producing catalyst for olefin polymerization
CA1198409A (en) Catalyst composition suitable for the dimerization or codimerization of alpha-olefins
CA1259298A (en) Dimerization process and catalysts therefor
JPH01207137A (en) Carrier for catalyst and manufacture of catalyst and dimerization method of olefin
JPH0342043A (en) Alpha-olefin dimerization catalyst
US2313053A (en) Catalyst and preparation thereof
JPH0341036A (en) Production of 1-pentene by codimerization of ethylene and propylene
EP0143334B1 (en) Process for preparing 4-methyl-1-pentene
KR101847319B1 (en) MOLDED BODY, METHOD FOR PRODUCING SAME, CATALYST FOR α-OLEFIN DIMERIZATION, AND METHOD FOR PRODUCING α-OLEFIN DIMER
CN110114143B (en) Porous molded article and catalyst for dimerization of alpha-olefin
JPS5940504B2 (en) Catalyst for α-olefin dimerization
KR970002159B1 (en) Dimerization process and catalyst therefor
US5081094A (en) Alkali metal bicarbonate/alkali metal carbonate support, catalyst system, and olefin dimerization processes therewith
JPS5940503B2 (en) α-olefin duplication catalyst
JPS5940505B2 (en) α-olefin dimerization catalyst
JPS5940506B2 (en) Catalyst for dimerization of α-olefin
JPH03109403A (en) Manufacture of catalyst support
JPH02504484A (en) Catalyst and method for dimerizing propylene to 4-methyl-1-pentene
CN115193463B (en) Method for synthesizing 4-methyl-1-pentene by propylene dimerization
JPS61227536A (en) Side-chain alkylation of alkyl-substituted aromatic hydrocarbon
JPH0699329B2 (en) Method for side-chain alkylation of alkyl-substituted aromatic hydrocarbons
US5128298A (en) Potassium carbonate supports and catalysts
JPH03103405A (en) Catalyst composition, catalyst carrier, and preparation thereof
US5118901A (en) Alkali metal and alkali metal carbonate catalytic systems and catalytic processes
JP3596049B2 (en) Method for producing 1-pentene

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees