JPH0340912A - Production of molecular-sieve carbon - Google Patents

Production of molecular-sieve carbon

Info

Publication number
JPH0340912A
JPH0340912A JP1176747A JP17674789A JPH0340912A JP H0340912 A JPH0340912 A JP H0340912A JP 1176747 A JP1176747 A JP 1176747A JP 17674789 A JP17674789 A JP 17674789A JP H0340912 A JPH0340912 A JP H0340912A
Authority
JP
Japan
Prior art keywords
fine powder
gas
adsorption
molecular sieve
carbonaceous mesophase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1176747A
Other languages
Japanese (ja)
Inventor
Niro Shiomi
仁郎 塩見
Tsutomu Takahashi
勉 高橋
Chiaki Marumo
千郷 丸茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP1176747A priority Critical patent/JPH0340912A/en
Publication of JPH0340912A publication Critical patent/JPH0340912A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To obtain molecular-sieve carbon excellent in sharpness of separation by carbonizing carbonaceous mesophase fine powder or a granulated material obtained by granulating the fine powder and a binder under specified conditions or further activating the carbonized material. CONSTITUTION:Carbonaceous mesophase fine powder or a granulated material obtained by granulating the fine powder and <=40wt.% of the binder is carbonized at 500-1100 deg.C in a nonoxidizing atmosphere, or further the carbonized material is activated at 500-1100 deg.C in an oxidizing atmosphere so that the weight of the carbonized material is reduced by <=15wt.%. A soln. of a thermosetting resin such as liq. phenolic resin and melamine resin, PVA, coal tar, pitch, etc., are exemplified as the binder. The primary grains having about 1-100mum diameter or its secondary agglomerate is used as the carbonaceous mesophase fine powder.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は分子ふるい炭素の製造法に係り、さらに詳しく
は混合ガスの分離精製等の分野に応用される微細な細孔
を有する分子ふるい炭素の製造法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for producing molecular sieve carbon, and more specifically, to a method for producing molecular sieve carbon having fine pores, which is applied to the field of separation and purification of mixed gases. Concerning the manufacturing method.

(従来の技?#) 従来より、分子ふるい効果を有する吸着剤としては、シ
リカ、アルミナ系のゼオライトが広く用いられ、ガスの
分離および精製に重要な役割を果たしている。しかしな
がら、上記ゼオライト系分子ふるいは極性且つ、親水性
であり耐熱性、耐薬品性に劣り、水のような極性物質に
対する選択的吸着性が強く、極性物質の存在下では、分
子ふるい効果を示さないという欠点を有している。
(Conventional technique? #) Silica and alumina-based zeolites have been widely used as adsorbents with molecular sieving effects, and play an important role in gas separation and purification. However, the above-mentioned zeolite-based molecular sieves are polar and hydrophilic, have poor heat resistance and chemical resistance, have a strong selective adsorption property for polar substances such as water, and exhibit no molecular sieving effect in the presence of polar substances. It has the disadvantage that it is not.

ところで最近、非極性であって疎水性を示す炭素を素材
とした分子ふるいの製造が可能となった。
Recently, however, it has become possible to produce molecular sieves made from carbon, which is nonpolar and hydrophobic.

この種の分子ふるい炭素は、耐熱性、耐薬品性に優れ、
極性物質の存在下においても使用可能な分子ふるいとし
て注目を集めている。しかしながら、この分子ふるい炭
素の工業的製造に関しては、炭素表面のミクロ孔の制御
に煩雑な工程を必要とし、複雑で非効率的な製法しか実
施されておらず、さらに分子径の小さい炭化水素異性体
や窒素と酸素の分離に適用するための分子ふるい炭素と
しては性能が不充分であり、より一膚の分離性能の向上
が望まれている。
This type of molecular sieve carbon has excellent heat resistance and chemical resistance.
It is attracting attention as a molecular sieve that can be used even in the presence of polar substances. However, the industrial production of molecular sieve carbon requires complicated steps to control the micropores on the carbon surface, and only complicated and inefficient production methods are used. The performance of this carbon molecular sieve is insufficient for use in the separation of nitrogen and oxygen, and further improvements in separation performance are desired.

(発明が解決しようとする課題) 本発明はこのような事情に鑑みなされたもので分離性能
に優れた分子ふるい炭素の新規な製造法の提供をその目
的としている。
(Problems to be Solved by the Invention) The present invention was made in view of the above circumstances, and its purpose is to provide a novel method for producing carbon molecular sieves with excellent separation performance.

(課題を解決するための手段) 上述の目的は炭素質メソフェーズ微粉末または炭素質メ
ソフェーズ微粉末をその40重量嘩以下のバインダーと
ともに造粒して得た粒状成形体を非酸化性雰囲気下にお
いて500〜1100°Cの温度領域で炭化するか、あ
るいは炭化後さらに酸化性雰囲気下において500〜1
100°Cの温度領域で炭化物の151N%以内の重量
減少となる範囲で賦活を行うことを特徴とTろ方法によ
って達成される。
(Means for Solving the Problems) The above object is to granulate a carbonaceous mesophase fine powder or a granular compact obtained by granulating a carbonaceous mesophase fine powder together with a binder of 40% or less by weight in a non-oxidizing atmosphere. Carbonize in the temperature range of ~1100°C, or further carbonize in an oxidizing atmosphere to 500~1
This is achieved by the T-filtration method, which is characterized in that activation is performed in a temperature range of 100° C. in a range where the weight of the carbide is reduced within 151 N%.

本発明方法において用いられる炭素質メソフェーズとは
、コールタールやコールタールピッチ、石油系重質油等
のれき青物を360°Cから500°C程度の温度で加
熱すると生成する低分子物が重縮合反応を繰り返し、多
核−多環芳香族分子が成長し、ピッチの一部、または全
部が液晶状態を示すようになり、こうした液晶状態のも
のを意味する。これら炭素質メソフェーズは、適宜な公
知の方法により得られる。即ちたとえばコールタール或
いはピッチを400°C近傍で熱処理する、コールター
ル或いはピッチを510〜600°Cで水素化処理し、
さらにおよそ400°Cで熱処理する、またナフタレン
をHF−BFsの存在下240〜500℃で熱処理する
ことにより製造される。
The carbonaceous mesophase used in the method of the present invention is a low-molecular compound produced when coal tar, coal tar pitch, petroleum heavy oil, etc. is heated at a temperature of about 360°C to 500°C. By repeating the reaction, polynuclear-polycyclic aromatic molecules grow, and some or all of the pitches come to exhibit a liquid crystal state. These carbonaceous mesophases can be obtained by any suitable known method. That is, for example, coal tar or pitch is heat treated at around 400°C, coal tar or pitch is hydrogenated at 510 to 600°C,
It is further produced by heat-treating at approximately 400°C, and by heat-treating naphthalene at 240-500°C in the presence of HF-BFs.

本発明において用いられる炭素質メソフェーズ微粉末は
粒径1〜100μmの一次粒子または、その二次凝集物
から成る。好ましい一次粒子の粒径は2〜50μm1更
に好ましくは3〜50μmである。
The carbonaceous mesophase fine powder used in the present invention consists of primary particles with a particle size of 1 to 100 μm or secondary aggregates thereof. The particle size of the primary particles is preferably 2 to 50 μm, and more preferably 3 to 50 μm.

炭素質メソフェーズ微粉末を粒状成形体に成形するため
に用いるバインダーとしては例えば液状のフェノール樹
脂、メラミン樹脂などの熱硬化性樹脂の溶液、ポリビニ
ルアルコールまたは水溶性もしくは水膨潤性セルロース
誘導体等の高分子バインダーあるいはコールタール、ピ
ッチ等を用いることができる。ポリビニルアルコールと
しては、重合度100〜5000、ケン化度70%以上
のものが好ましく用いられる。またセルロース誘導体と
しては例えばメチルセルロース、カルボキシメチルセル
ロース、ヒドロキシプロピルメチルセルロース等が好適
に使用される。
Examples of the binder used to mold the carbonaceous mesophase fine powder into a granular molded body include solutions of thermosetting resins such as liquid phenol resin and melamine resin, and polymers such as polyvinyl alcohol or water-soluble or water-swellable cellulose derivatives. A binder, coal tar, pitch, etc. can be used. As polyvinyl alcohol, one having a degree of polymerization of 100 to 5000 and a degree of saponification of 70% or more is preferably used. Further, as the cellulose derivative, for example, methylcellulose, carboxymethylcellulose, hydroxypropylmethylcellulose, etc. are preferably used.

本発明においては炭素質メソフェーズ微粉末を所定の条
件で炭化または賦活するか、あるいは上記の如き炭素質
メソフェーズ粉末(4)とバインダー中3)とを造粒し
て粒状成形体とした後、炭化または賦活することによっ
て実施される。
In the present invention, the carbonaceous mesophase fine powder is carbonized or activated under predetermined conditions, or the carbonaceous mesophase powder (4) as described above and 3) in a binder are granulated to form a granular compact, and then carbonized. or by activation.

造粒により粒状成形体を得る場合には、炭素質メソフェ
ーズ微粉末(4)とその40重ffi%以下のバインダ
ー成分量3)を用いる。
When obtaining a granular compact by granulation, carbonaceous mesophase fine powder (4) and its binder component amount 3) of 40% by weight or less are used.

本発明におけるバインダー成分量は、炭素質メソフェー
ズ微粉末を基準(100這愈部)とし、バインダー中の
固形分量で表示するものとする。
The amount of the binder component in the present invention is based on the carbonaceous mesophase fine powder (100 parts), and is expressed as the amount of solid content in the binder.

上記成分(4)(B)の混合はそのまま混合することも
でき、あるいは成分(A)(B)の他に水あるいは有機
溶媒等を加えそれらの溶媒の存在下に充分に混合するこ
ともできる。水あるいは有機溶媒は例えば成分(4)の
)を混合する前に成分(至)を溶解した形で添加するこ
ともできる。水また有機溶媒は好ましくは原料混合物(
A)[F])の固形分に対し、5〜30重fi%であり
、より好ましくは8〜20重量鋒である。また、成分(
A)(6)を混合する際には成分(A)CB)のほかに
例えば澱粉、その誘導体または変性体等を炭素質メソフ
ェーズ微粉末(4)に対し5〜50重量嘩、好ましくは
10〜40!量φ加えることができる。
The above components (4) and (B) can be mixed as is, or water or an organic solvent can be added to components (A) and (B) and mixed thoroughly in the presence of those solvents. . Water or an organic solvent can also be added in the form of a solution of the components (4), for example, before mixing the components (4). Water or an organic solvent is preferably used in the raw material mixture (
It is 5 to 30% by weight, more preferably 8 to 20% by weight, based on the solid content of A) [F]). In addition, the ingredients (
A) When mixing (6), in addition to components (A) and CB), for example, starch, derivatives or modified products thereof, etc. are added in an amount of 5 to 50% by weight, preferably 10 to 50% by weight, based on the carbonaceous mesophase fine powder (4). 40! The amount φ can be added.

澱粉等の成分は後述する非酸化性雰囲気下での炭化時の
熱分解による気孔の生成に関与し気孔形成材として好適
に作用する。
Components such as starch participate in the generation of pores through thermal decomposition during carbonization in a non-oxidizing atmosphere, which will be described later, and act suitably as a pore-forming material.

また、本発明の分子ふるい炭素の製造にあたっては、そ
の特性を失なわない範囲で、作業性の向上のため、例え
ばエチレングリコール、ポリオキシエチレンアルキルエ
ーテル、ポリオキシエチレン脂肪酸エステル、ポリカル
ボン酸アンモニウム塩等の界面活性剤、液状熱硬化性樹
細の硬化剤、ポリビニルアルコールの架橋剤、押出造粒
用の可塑剤等を少量加えることができる。
In addition, in producing the molecular sieve carbon of the present invention, in order to improve workability without losing its properties, for example, ethylene glycol, polyoxyethylene alkyl ether, polyoxyethylene fatty acid ester, polycarboxylic acid ammonium salt, etc. A small amount of a surfactant such as, a hardening agent for liquid thermosetting resin, a crosslinking agent for polyvinyl alcohol, a plasticizer for extrusion granulation, etc. can be added.

成分(A)CB)の混合工程では、I’f4.料物質を
例えばすボンミキサー V型ミキサー コーンミキサー
ニーダ−等で混合するとよい。
In the mixing step of component (A)CB), I'f4. The raw materials may be mixed using, for example, a bone mixer, a V-type mixer, a cone mixer kneader, or the like.

上記工程で準備された均一混合物は次いで、粒状物に成
形される。粒状物への成形は、例えば車軸あるいは二軸
の湿式押出造粒機、バスケット・リエーザーの如き、堅
型造粒機、半乾式ディスクペレンター等により行なうこ
とができる。
The homogeneous mixture prepared in the above process is then formed into granules. Molding into granules can be carried out using, for example, an axle or twin-screw wet extrusion granulator, a rigid granulator such as a basket reaser, a semi-dry disc granulator, or the like.

特に湿式の押出造粒機により造粒した粒状体は、粒子の
強度が大きく、炭化後の分子ふるい炭素の分離能も大き
いので好ましい。粒状物の形状は、例えば円柱状あるい
は球状である。造粒により得られる粒状体の大きさは特
に制限されないが、例えば円柱では直径0.5〜6 m
m 1長さ1〜10mm程度、球状の場合には、直径0
.5〜10mm程度が好ましい。
Particularly, granules granulated by a wet extrusion granulator are preferable because the particles have high strength and the ability to separate molecular sieve carbon after carbonization is high. The shape of the granules is, for example, cylindrical or spherical. The size of the granules obtained by granulation is not particularly limited, but for example, a cylinder has a diameter of 0.5 to 6 m.
m 1 Length: 1 to 10 mm, if spherical, diameter: 0
.. Approximately 5 to 10 mm is preferable.

炭素質メソフェーズ微粉末あるいは造粒により得られた
粒状成形体より分子ふるい炭素を得るには、これらを非
酸化性雰囲気下で500〜1100°Cの温度領域で炭
化するかあるいは炭化後更に酸化性雰囲気下において5
00〜1100°Cの温度領域で炭化物のIs重量多以
内の重量減少となる範囲で賦活を行なう。この場合の非
酸化性雰囲気とは例えば窒素、アルゴン、ヘリウム等で
ある。炭化工程での最高処理温度に到達するまでの昇温
速度は、特に制限するものではないが好ましくは5〜8
0 G ’C/hrである。また賦活時の酸化性雰囲気
には例えば空気、水蒸気、炭酸ガス等を用いることがで
きる。
In order to obtain molecular sieve carbon from carbonaceous mesophase fine powder or granular compacts obtained by granulation, these are carbonized in a temperature range of 500 to 1100°C in a non-oxidizing atmosphere, or further oxidized after carbonization. 5 under atmosphere
Activation is carried out in a temperature range of 00 to 1100°C within a range where the weight of the carbide is reduced within Is weight. The non-oxidizing atmosphere in this case is, for example, nitrogen, argon, helium, or the like. The temperature increase rate until reaching the maximum treatment temperature in the carbonization step is not particularly limited, but is preferably 5 to 8
0 G'C/hr. Further, for example, air, water vapor, carbon dioxide gas, etc. can be used as the oxidizing atmosphere during activation.

(発明の効果) ところで、分子ふるい炭素の分子ふるい効果は、ミクロ
孔の細孔直径が吸着分子の分子径に極めて近い数ムの領
域となり、分子径の異なる種々の物質に対して選択的吸
着特性を示すことによるものである。従って、分子ふる
い炭素の性能はミクロ孔の細孔径分布により規定され、
細孔直径が通常10A以下、好ましくは3〜sAg度の
範囲にシャープな細孔径分布を有するものが分子ふるい
炭素として好ましい。また細孔直径15〜200A程度
の細孔は通常分子ふるい効果を有せず、共存する複数の
ガスや溶液中の溶質を同時に吸着する。
(Effect of the invention) By the way, the molecular sieve effect of molecular sieve carbon is such that the pore diameter of the micropores is in the range of several micrometers, which is extremely close to the molecular diameter of the adsorbed molecules, and it is possible to selectively adsorb various substances with different molecular diameters. It is by showing the characteristics. Therefore, the performance of molecular sieve carbon is determined by the pore size distribution of micropores,
As molecular sieve carbon, carbon having a sharp pore diameter distribution, usually 10 A or less, preferably 3 to sAg, is preferable. Further, pores with a diameter of about 15 to 200 A usually do not have a molecular sieving effect, and simultaneously adsorb multiple gases coexisting and solutes in a solution.

従って、細孔直径15〜200差の範囲の細孔量は少な
い程好ましい。
Therefore, the smaller the amount of pores within the range of 15 to 200 pore diameters, the more preferable.

本発明の分子ふるい炭素は、細孔直径10ム以下、好ま
しくは3〜5Aの領域にミクロ孔の細孔分布の極大値を
有し、IOA以下の細孔容積は好ましくは0.1〜0.
7cc/g、より好ましくは0.16〜0.5 cc/
gであり、また細孔直径15〜200人の細孔容積は、
好ましくは0.1 cmj以下である。
The molecular sieve carbon of the present invention has a maximum value of the pore distribution of micropores in the region of pore diameter of 10 μm or less, preferably 3 to 5 A, and the pore volume of IOA or less is preferably 0.1 to 0. ..
7 cc/g, more preferably 0.16-0.5 cc/
g, and the pore volume of 15 to 200 people with a pore diameter of
Preferably it is 0.1 cmj or less.

上記細孔構造を有する分子ふるい炭素の比表面積は、窒
素吸着によるB、E、T、法により測定した結果、通常
2〜600 ml/g、好ましくは10〜400m17
g、最も好ましくは60〜350 ml/g 程度であ
る。
The specific surface area of the molecular sieve carbon having the above-mentioned pore structure is usually 2 to 600 ml/g, preferably 10 to 400 ml/g, as measured by the B, E, T method using nitrogen adsorption.
g, most preferably about 60 to 350 ml/g.

これに対し、通常用いられている比表面積1000〜1
500m!/Hの活性炭はミクロ孔の細孔径分布の極大
値は細孔直径15A程度以上の領域にあり、細孔直径1
5〜20OAの範囲の細孔容積は0.4〜1.5 cc
/cr程度であり、本発明の分子ふるい炭素のような分
子ふるい特性を有していない。
In contrast, the commonly used specific surface area is 1000-1
500m! /H activated carbon has a maximum value of the pore size distribution of micropores in the region of about 15A or more, and the pore diameter is 15A or more.
Pore volume ranging from 5 to 20 OA is 0.4 to 1.5 cc
/cr, and does not have molecular sieve properties like the molecular sieve carbon of the present invention.

本発明の分子ふるい炭素は、上記の如く容易に製造する
ことができまた優れた吸着容量と選択的吸着特性を有す
る。そのため、本発明の分子ふるい炭素は種々の混合ガ
スの分離に使用することができる。例えば窒素ガスと酸
素ガスの気体混合物、メタンガスと水素ガスの気体混合
物、キシレン異性体、ブタン異性体、ブテン異性体等の
炭化水素異性体混合物、エチレンとプロピレンの混合物
、水素ガスとメタンガスの気体混合物、アルゴンを含む
気体混合物等の分離に使用できる。より具体的に例えば
窒素ガスと酸素ガスを含有する気体混合物から、窒素ガ
ス、酸素ガス、又は窒素ガスと酸素ガスのいずれか一方
が富化された気体混合物を取得するために使用すること
ができ、あるいはメタンガスと水素ガスを含有する気体
混合物から、メタンガス、水素ガス又はメタンガスと水
素ガスのいずれか一方が富化された気体混合物を取得す
るために使用できる。そのために圧力スイング吸着法を
採用するのが望ましい。圧力スイング吸着法では通常2
塔ないしs塔の吸着塔に分子ふるい炭素を充填し、3〜
7kgf/cmt程度の加圧下での選択的吸着と減圧ま
たは常圧での吸着剤の再生を周期的にくり返すことによ
り混合ガスの分離をおこなうことができる。この方法に
よって上述の混合ガスの分離の他、スチームリフォーミ
ングガス、エチレンプラントオフガス、メタノール分解
ガス、アンモニア分解ガス、コークス炉排ガス等よりの
水素回収あるいは転炉排ガスよりの一酸化炭素の回収等
も実施することができる。
The molecular sieve carbon of the present invention can be easily produced as described above and has excellent adsorption capacity and selective adsorption properties. Therefore, the molecular sieve carbon of the present invention can be used to separate various mixed gases. For example, a gaseous mixture of nitrogen gas and oxygen gas, a gaseous mixture of methane gas and hydrogen gas, a mixture of hydrocarbon isomers such as xylene isomers, butane isomers, and butene isomers, a mixture of ethylene and propylene, a gaseous mixture of hydrogen gas and methane gas, etc. It can be used to separate gas mixtures containing argon, etc. More specifically, for example, it can be used to obtain nitrogen gas, oxygen gas, or a gas mixture enriched in either nitrogen gas or oxygen gas from a gas mixture containing nitrogen gas and oxygen gas. Alternatively, it can be used to obtain a gas mixture enriched in methane gas, hydrogen gas, or either methane gas and hydrogen gas from a gas mixture containing methane gas and hydrogen gas. For this purpose, it is desirable to employ a pressure swing adsorption method. In pressure swing adsorption method, usually 2
The adsorption tower of the tower or S tower is filled with molecular sieve carbon, and
The mixed gas can be separated by periodically repeating selective adsorption under increased pressure of about 7 kgf/cmt and regeneration of the adsorbent under reduced pressure or normal pressure. In addition to separating the above-mentioned mixed gas, this method can also recover hydrogen from steam reforming gas, ethylene plant off-gas, methanol cracked gas, ammonia cracked gas, coke oven exhaust gas, etc., and carbon monoxide from converter exhaust gas. It can be implemented.

以下実施例を挙げて本発明を具体的に説明する。The present invention will be specifically explained below with reference to Examples.

なお実施例における細孔容積、細孔径分布及びガス濃度
の測定は以下の方法により行った。
Note that measurements of pore volume, pore size distribution, and gas concentration in Examples were performed by the following methods.

(1)細孔容積、細孔径分布の測定 本発明の分子ふるい炭素の細孔容積及び細孔径の分布は
、細孔直径60ム〜600μmの範囲の細孔については
、ポロシメーターによる水銀圧入法(島津製作所製、ボ
アサイザー9310)により測定した。
(1) Measurement of pore volume and pore diameter distribution The pore volume and pore diameter distribution of the molecular sieve carbon of the present invention were determined by mercury intrusion method using a porosimeter for pores with a pore diameter in the range of 60 μm to 600 μm. It was measured using Bore Sizer 9310 (manufactured by Shimadzu Corporation).

また、細孔直径80A以下の細孔については、窒素ガス
の吸着等混線により、下記のいわゆるケルビン式により
求めた。
In addition, for pores with a pore diameter of 80 A or less, it was determined by the following so-called Kelvin equation using crosstalk such as nitrogen gas adsorption.

PggIt着ガスが細孔に吸着するときの飽和蒸気圧 PO:常態での吸着ガスの飽和蒸気圧 γ:表面張力 V;液体窒素の一分子体積 R=ガス定数 T:絶対温度 へ二細孔のケルビン半径 細孔のケルビン半径に対する補正は0ranston−
Inkley  法によりおこj(った。
PggIt Saturated vapor pressure when the adsorbed gas is adsorbed in the pores PO: Saturated vapor pressure of the adsorbed gas under normal conditions γ: Surface tension V; Volume of one molecule of liquid nitrogen R = gas constant T: Absolute temperature of the two pores Kelvin radius The correction for the Kelvin radius of the pore is 0ranston-
It was caused by the Inkley method.

(2)ガス濃度分析 :島津ガスクロマトグラフaC−aムおよび東し■製ジ
ルコニア式酸素濃度分 析針(LO−800型)にて分析した。
(2) Gas concentration analysis: Analysis was performed using a Shimadzu gas chromatograph aC-am and a zirconia oxygen concentration analysis needle (LO-800 model) manufactured by Toshishima.

実施例1 炭素質メソフェーズ微粉末(大阪ガス@*・リノベスM
−go)soogを、内径60メX10X100Oの電
気炉内に入れ窒素雰囲気下において60℃/hrで所定
の温度まで昇温し、該温度で1時間保持した後炉冷し粒
子形状が球状の微粉末を得た。
Example 1 Carbonaceous mesophase fine powder (Osaka Gas @*・Renoves M
-go) soog was placed in an electric furnace with an inner diameter of 60 mm x 10 x 100 O, heated to a specified temperature at 60°C/hr under a nitrogen atmosphere, and then kept at that temperature for 1 hour. A powder was obtained.

この炭素微粉末の分子ふるい特性を評価するため、第1
図に示す吸着特性測定装置により窒素ガスおよび酸素ガ
スの吸着量を測定した。図において、試料室(4)(2
00ml)に約10gの試料を入れ、バルブ(li)、
(8)を閉じ、バルブ(2) 、 (3)を開けて真空
ポンプ(1)で30分間脱気した後バルブ(2) 、 
(5)を閉じバルブ(11)を開け、調整室(5)(2
00ml)内に酸素ガスまたは窒素ガスを送り込み、設
定圧(7,Okgf/cm”)にlったところでバルブ
(11)を閉じ、バルブ(3)を開は所定時間における
内部圧力の変化を測定して、酸素および窒素の各々の吸
着速度を求めた。窒素と酸素の分離性能を示す指標とし
て吸着開始1分後の吸着容量を窒素分はQl、酸素分は
Q!とし、吸着量差△Qを下記の式) %式%() により、また窒素吸着圧力をPl   酸素吸着圧力を
 P!として選択係数αを下記の式(2)%式%() より求めた。
In order to evaluate the molecular sieving properties of this fine carbon powder, the first
The amounts of nitrogen gas and oxygen gas adsorbed were measured using the adsorption property measuring device shown in the figure. In the figure, the sample chamber (4) (2
00ml), put about 10g of sample into it, and press the valve (li).
Close valve (8), open valves (2) and (3), and degas with vacuum pump (1) for 30 minutes, then open valve (2),
(5), open the valve (11), and adjust the adjustment chamber (5) (2).
00ml), close the valve (11) when it reaches the set pressure (7,000 kgf/cm"), and open the valve (3) to measure the change in internal pressure over a predetermined time. Then, the adsorption rates of oxygen and nitrogen were determined.As an indicator of the separation performance between nitrogen and oxygen, the adsorption capacity 1 minute after the start of adsorption is defined as Ql for nitrogen and Q! for oxygen, and the adsorption amount difference △ The selection coefficient α was determined from the following formula (2)% formula %() with Q as the following formula () and the nitrogen adsorption pressure as Pl and oxygen adsorption pressure as P!.

以上の実施例1の結果を第1表に示す。The results of Example 1 above are shown in Table 1.

炭化時の加熱処理温度が本発明の範囲よりも低い温度で
得られた試料1では酸素ti曾量が少なく、また、吸i
t差△Q1選択係致αとも小さい分子ふるい炭素として
好ましくない。試料2,3.4は酸素吸着量、吸着黛差
△Q選択係数とも大きく分子ふるい炭素として実用性を
有しており、特に試料4の特性が優れていることがわか
る。
Sample 1, which was obtained at a heat treatment temperature during carbonization lower than the range of the present invention, had a small amount of oxygen ti and
Both the t difference ΔQ1 selective engagement α are unfavorable as the molecular sieve carbon is small. It can be seen that Samples 2 and 3.4 have large oxygen adsorption amounts and adsorption difference ΔQ selectivity coefficients, and are useful as molecular sieve carbons, with Sample 4 having particularly excellent properties.

また、炭化時の加熱処理温度が本発明の範囲よりも高い
温度で得られた試料5では選択係数αは大きいが、酸素
膜、f量、吸着量差ΔQが小さく好実施例2 重合度1000、けん化度88%のポリビニルアルコー
ルを所定量の熱水で溶解し、20MIk%の水溶液とし
た。
In addition, in sample 5, which was obtained at a heat treatment temperature during carbonization higher than the range of the present invention, the selection coefficient α is large, but the oxygen film, f amount, and adsorption amount difference ΔQ are small. Good Example 2 Degree of polymerization 1000 Polyvinyl alcohol with a saponification degree of 88% was dissolved in a predetermined amount of hot water to obtain an aqueous solution of 20 MIk%.

これとは別に炭素質メソフェーズ微粉末(大阪ガス■製
、リノベスM−30)と水溶性レゾール樹脂(昭和高分
子■製、シ冒つノールBRL−2864、固形分濃度6
0M量%)、水溶性メラミン樹脂(住友化学工業■製、
スミテックスレジンM−5、固形分濃度80重量%)メ
チルセルロース粉末(信越化学工業■製品、メトローズ
60SH−4000)、馬鈴!J澱粉、エチレングリコ
ールをそれぞれ所定量計量した。
Apart from this, carbonaceous mesophase fine powder (manufactured by Osaka Gas ■, Renoves M-30) and water-soluble resol resin (manufactured by Showa Kobunshi ■, Shifutsu Nor BRL-2864, solid content concentration 6
0M amount%), water-soluble melamine resin (manufactured by Sumitomo Chemical ■,
Sumitex Resin M-5, solid content 80% by weight) Methylcellulose powder (Shin-Etsu Chemical ■ product, Metrose 60SH-4000), Potato! Predetermined amounts of J starch and ethylene glycol were each weighed.

上記、炭素質メソフェーズ微粉末、馬鈴薯澱粉及びメチ
ルセルロース粉末をニーダ−で15分分間式混合した後
、ポリビニルアルコール水溶液、水溶性レゾール樹脂、
水溶性メラミン樹脂及びエチレングリコールを加えて更
に15分間混合した。
After mixing the above carbonaceous mesophase fine powder, potato starch, and methylcellulose powder in a kneader for 15 minutes, a polyvinyl alcohol aqueous solution, a water-soluble resol resin,
Water-soluble melamine resin and ethylene glycol were added and mixed for an additional 15 minutes.

該混合組成物を2軸押出造粒機(不二パウダル■製、ペ
レッタ・ダブルEXDF−100型)により押出し第2
表に示す5種類の組成の円柱状ペレットを製造した。該
円柱状ペレットの平均粒子径5#XlimmLであった
。このペレットを、80°Cで24時間硬化および乾燥
した後、800gを有効径1001005X1000の
ロータリーキルンに入れ、21/min  の窒素気流
下において50°C/Hで900°Cまで昇温し、該温
度で1時間保持した後、炉冷した。
The mixed composition was extruded using a twin-screw extrusion granulator (manufactured by Fuji Paudal ■, Pelleta Double EXDF-100 model).
Cylindrical pellets with five types of compositions shown in the table were manufactured. The average particle diameter of the cylindrical pellets was 5#XlimmL. After curing and drying the pellets at 80°C for 24 hours, 800g of the pellets were placed in a rotary kiln with an effective diameter of 1001005 x 1000, and the temperature was raised to 900°C at 50°C/H under a nitrogen flow of 21/min. After holding for 1 hour, the mixture was cooled in the furnace.

こうして得られた粒状炭化物の窒素と酸素の分離性能を
実施例1と同様にして測定した。その結果を第2表に示
す。
The nitrogen and oxygen separation performance of the granular carbide thus obtained was measured in the same manner as in Example 1. The results are shown in Table 2.

第2表において、試料8は、造粒時の作業性が悪く造粒
不可能であった。水溶性高分子バインダー量が本発明で
規定する割合より多く用いた試料7では、0!  吸着
量が少なく分子ふるい炭素として好ましくないことがわ
かる。
In Table 2, Sample 8 had poor workability during granulation and could not be granulated. In sample 7, in which the amount of water-soluble polymer binder was greater than the ratio specified in the present invention, 0! It can be seen that the adsorption amount is small and it is not preferable as a molecular sieve carbon.

試料8,9.10.11.12.13では、好ましいN
!。0!吸着量及び分離特性が得られ、特に試料8の特
性が優れていた。
For samples 8, 9.10.11.12.13, the preferred N
! . 0! Adsorption amount and separation characteristics were obtained, and the characteristics of sample 8 were particularly excellent.

実施例3 実施例2のNo、 IJの試料と同一組成、同一条件で
造粒した平均粒径3 mml X 8 mmLの円柱状
ペレット前駆体を100声X10X100Oのロータリ
キルンに入れ、21/m1nの窒素を流しながらaO℃
/Hの昇温速度で所定の温度まで昇温し、該温度で1時
間保持し、その後炉冷して炭化物を得た。
Example 3 A cylindrical pellet precursor with an average particle diameter of 3 mm x 8 mm L, which was granulated with the same composition and under the same conditions as the No. IJ sample of Example 2, was placed in a rotary kiln of 100 x 10 x 100 O, and was heated to a temperature of 21/m1n. aO℃ while flowing nitrogen
The mixture was heated to a predetermined temperature at a heating rate of /H, held at that temperature for 1 hour, and then cooled in a furnace to obtain a carbide.

該炭化物の窒素、酸素の分離能を第3表に示す。Table 3 shows the nitrogen and oxygen separation ability of the carbide.

炭化時の加熱処理・温度が本発明で規定する温度よりも
低い温度で得られた試料14では、酸素吸着量が少なく
、また、吸着量差△Q1選択係数αとも小さく分子ふる
い炭素として好ましくない。
Sample 14, which was obtained at a heat treatment and temperature during carbonization lower than the temperature specified in the present invention, had a small amount of oxygen adsorption, and the adsorption amount difference ΔQ1 selection coefficient α was also small, making it undesirable as a molecular sieve carbon. .

試料15.16.17は、酸素吸着量、吸着量差ΔQ1
選択係数とも大きく分子ふるい炭素として実用性を有し
ており、特に試料16の特性が優れていることがわかる
Samples 15, 16, and 17 have oxygen adsorption amount and adsorption amount difference ΔQ1.
It can be seen that both the selectivity coefficients are large and it is practical as a molecular sieve carbon, and the characteristics of sample 16 are particularly excellent.

また、炭化時の加熱処理温度が本発明で規定する温度よ
りも高い温度で得られた試料18では、選択係数αは大
きいが、酸素段!W量、吸着量差ΔQが小さく好ましく
ない。
In addition, in sample 18, which was obtained at a heat treatment temperature during carbonization higher than the temperature specified in the present invention, the selection coefficient α was large, but the oxygen stage! The W amount and adsorption amount difference ΔQ are small, which is not preferable.

実施例4 実施例3の試料16と同様にして、作製した粒状分子ふ
るい炭素を用い、圧力スイング吸着(P 8A)法によ
り空気中の窒素と酸素の分離実験を実施した。
Example 4 Using the granular molecular sieve carbon prepared in the same manner as Sample 16 of Example 3, an experiment was conducted to separate nitrogen and oxygen in the air by the pressure swing adsorption (P8A) method.

本実験に用いたPEA装置の概略図を図2に示す。g&
着塔のサイズは、内径S !OXI 200mmIであ
り、2本の吸着塔内に上記分子ふるい炭素(比表面積1
10m”/g>を充填した。その充填密度は0.56 
g/ cmjであった。
A schematic diagram of the PEA apparatus used in this experiment is shown in FIG. g&
The size of the tower is the inner diameter S! OXI is 200 mmI, and the above molecular sieve carbon (specific surface area 1
10m”/g>.The packing density is 0.56
g/cmj.

まず、コンプレッサーで圧縮した空気を吸着塔に送り、
吸着時の圧力をゲージ圧で4kgf/cm!とし、脱着
(排気)再生は真空ポンプにより約100 torrま
で減圧することにより実施した。
First, air compressed by a compressor is sent to an adsorption tower.
Pressure during adsorption is 4kgf/cm in gauge pressure! The desorption (exhaust) regeneration was carried out by reducing the pressure to about 100 torr using a vacuum pump.

P8ム操作は、均圧(加圧)−段着−均圧(減圧)−排
気−昇圧の6エ程で実施し、各工程の切換えは電磁弁を
シーケンサ−で自動制御して行なった。
The P8 operation was carried out in 6 steps: pressure equalization (pressurization), stage setting, pressure equalization (pressure reduction), exhaust, and pressure increase, and switching between each step was performed by automatically controlling a solenoid valve with a sequencer.

P8ム操作条件を第4表に示す。The P8 system operating conditions are shown in Table 4.

本実験では、製品窒素ガスの取出し量が11/mlnで
純度1116%(Nt+Ar)、2J/min実施例5 実施例4と同一組成の前駆体を、実施例Sと同様にして
850℃で窒素雰囲気中で1時間炭化した後、引続き水
蒸気雰囲気中で10分間賦活した。
In this experiment, the amount of product nitrogen gas taken out was 11/mln, the purity was 1116% (Nt+Ar), and the precursor had the same composition as Example 5 and Example 4. After being carbonized in an atmosphere for 1 hour, it was subsequently activated in a steam atmosphere for 10 minutes.

炉冷後取出した試料は、炭化物重量を基準としてa、s
xt鋒の重量減少を示した。
The sample taken out after cooling the furnace was a, s based on the carbide weight.
It showed a weight loss of xt.

上記の如くして得られた粒状分子ふるい炭素は、比表面
ff610mF/g、充填密度0.53 g/ cmi
であった。
The granular molecular sieve carbon obtained as described above has a specific surface ff of 610 mF/g and a packing density of 0.53 g/cmi.
Met.

該分子ふるい炭素の酸素およびM素の吸着Aを図1の装
置により測定した。酸素吸着量は吸着圧力L876kg
f/crnlでg6.6mg/g、窒素吸着量は吸着圧
力L514kg f/cm!でfJ、7mg/C1、吸
着コ差△Q=16.11mg/g 選択係数CE=8.
1であった。
The adsorption A of oxygen and M element on the carbon molecular sieve was measured using the apparatus shown in FIG. Oxygen adsorption amount is adsorption pressure L876kg
f/crnl is g6.6mg/g, nitrogen adsorption amount is adsorption pressure L514kg f/cm! fJ, 7mg/C1, adsorption difference ΔQ = 16.11mg/g, selection coefficient CE = 8.
It was 1.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例1,2.3に用いた吸着特性測定装置
、第2図は実施例4及び5に使用した圧力スイング吸着
(P13ム)装置の概略図である。 図1において、 (1)・・・真空ポンプ・ (2) 、 <5ン、 (8) 、 (11) 、 <
12) 、 (1り・・・バルブ、(4)・・・試料室
、    (5)・・・調整室、(6) 、 (7)・
・・圧力センサー(8)・・・記録計、     (1
0)・・・圧力計、(14) 、 (15)・・・ ガ
スレギュレーター(1B)・・・窒素ボンベ、(17)
・・・酸素ボンベ。 図2において、 (1)・・・空気圧縮機、(2)・・・エアードライヤ
ー(り 、 (la)・・・ 吸着塔、 (4) 、 (tm)・・・ 第1の開閉弁、(5) 
、 (6m)・・・ 流入路パイプ、(6)・・・真空
ポンプ、  (8)・・・吸引路パイプ。 (8)、(9a)・・・ 取出路パイプ、(11)・・
・メインパイプ、 (14)・・・リザーバータンク、 (16)・・・製品ガス取出パイプ、 (7)、(7a)、(10)、(10a)、(13)、
(Ha)、(15)。 (17)・・・開閉弁。 第 図
FIG. 1 is a schematic diagram of the adsorption characteristic measuring device used in Examples 1 and 2.3, and FIG. 2 is a schematic diagram of the pressure swing adsorption (P13) device used in Examples 4 and 5. In Figure 1, (1)...vacuum pump・(2) , <5n, (8) , (11) , <
12) , (1ri...valve, (4)...sample chamber, (5)...adjustment chamber, (6), (7)...
...Pressure sensor (8) ...Recorder, (1
0)...Pressure gauge, (14), (15)...Gas regulator (1B)...Nitrogen cylinder, (17)
...Oxygen cylinder. In FIG. 2, (1)...air compressor, (2)...air dryer (RI, (LA)...adsorption tower, (4), (tm)...first on-off valve, (5)
, (6m)...Inflow pipe, (6)...Vacuum pump, (8)...Suction pipe. (8), (9a)... Outlet pipe, (11)...
・Main pipe, (14)... Reservoir tank, (16)... Product gas extraction pipe, (7), (7a), (10), (10a), (13),
(Ha), (15). (17)...Opening/closing valve. Diagram

Claims (1)

【特許請求の範囲】[Claims] 炭素質メソフェーズ微粉末または炭素質メソフェーズ微
粉末をその40重量%以下のバインダーとともに造粒し
て得た粒状成形体を非酸化性雰囲気下において500〜
1100℃の温度領域で炭化するか、あるいは炭化後更
に酸化性雰囲気下において500〜1100℃の温度領
域で炭化物の15重量%以内の重量減少となる範囲で賦
活を行うことを特徴とする分子ふるい炭素の製造法。
A granular molded body obtained by granulating carbonaceous mesophase fine powder or carbonaceous mesophase fine powder with 40% by weight or less of a binder is granulated in a non-oxidizing atmosphere to
A molecular sieve characterized by being carbonized in a temperature range of 1,100°C, or further activated after carbonization in an oxidizing atmosphere in a temperature range of 500 to 1,100°C in a range where the weight of the carbide is reduced within 15% by weight. Carbon production method.
JP1176747A 1989-07-07 1989-07-07 Production of molecular-sieve carbon Pending JPH0340912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1176747A JPH0340912A (en) 1989-07-07 1989-07-07 Production of molecular-sieve carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1176747A JPH0340912A (en) 1989-07-07 1989-07-07 Production of molecular-sieve carbon

Publications (1)

Publication Number Publication Date
JPH0340912A true JPH0340912A (en) 1991-02-21

Family

ID=16019103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1176747A Pending JPH0340912A (en) 1989-07-07 1989-07-07 Production of molecular-sieve carbon

Country Status (1)

Country Link
JP (1) JPH0340912A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105327678A (en) * 2015-12-09 2016-02-17 煤炭科学技术研究院有限公司 Industrial production technology for adsorbents special for concentration of coal bed gas and application

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105327678A (en) * 2015-12-09 2016-02-17 煤炭科学技术研究院有限公司 Industrial production technology for adsorbents special for concentration of coal bed gas and application
CN105327678B (en) * 2015-12-09 2017-11-03 煤炭科学技术研究院有限公司 A kind of industrialized producing technology of coal bed gas concentration Special adsorbent and application

Similar Documents

Publication Publication Date Title
US5597617A (en) Carbon-coated inorganic substrates
US4933314A (en) Molecular sieving carbon
Shen et al. SIFSIX-3-Zn/PIM-1 mixed matrix membranes with enhanced permeability for propylene/propane separation
US5726118A (en) Activated carbon for separation of fluids by adsorption and method for its preparation
EP3356028B1 (en) Method of preparing carbon molecular sieve adsorbents from activated carbon and a polymer
KR101608850B1 (en) Hollow porous carbon particles and their synthetic method
WO1989004810A1 (en) Activated carbon and process for its production
JPH04310209A (en) Making of high oxygen capacity charcoal and particulate coconut husk charcoal and gasified coconut husk charcoal
WO1996033801A1 (en) Carbonaceous adsorbent, process for producing the same, and method and apparatus for gas separation
JP2004315283A (en) Porous carbon particle and its producing method
KR20160051879A (en) Porous carbon, humidity-controlling adsorbent material, adsorption-type heat pump, and fuel cell
JPH08224468A (en) Cylindrically pelletized carbon based adsorbent
US5451554A (en) Activated carbon bodies having epoxy resin and bentonite binders
JP3768134B2 (en) Molecular sieve carbon and pressure swing adsorption device using it
JPH0340912A (en) Production of molecular-sieve carbon
JPH0620546B2 (en) Molecular sieving carbon and its manufacturing method
JPH09202610A (en) Activated carbon and its production
JPH05285379A (en) Production of carbon as molecular sieve
JPH02153818A (en) Production of zeolite moldings
JPH06154595A (en) Molecular sieve carbon for pressure swing type adsorption apparatus
KR101885249B1 (en) Method of preparing activated carbon
JP2009062295A (en) Method for purifying perfluorocarbon gas and apparatus therefor
JP2681894B2 (en) Oxygen gas separation method
JPH03141111A (en) Production of molecular sieve carbon
RU2736586C1 (en) Molded nanostructured microporous carbon sorbent and a method for production thereof