JPH0340857B2 - - Google Patents

Info

Publication number
JPH0340857B2
JPH0340857B2 JP11750383A JP11750383A JPH0340857B2 JP H0340857 B2 JPH0340857 B2 JP H0340857B2 JP 11750383 A JP11750383 A JP 11750383A JP 11750383 A JP11750383 A JP 11750383A JP H0340857 B2 JPH0340857 B2 JP H0340857B2
Authority
JP
Japan
Prior art keywords
voltage
reactive power
tap
terminal control
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11750383A
Other languages
Japanese (ja)
Other versions
JPS609332A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP11750383A priority Critical patent/JPS609332A/en
Publication of JPS609332A publication Critical patent/JPS609332A/en
Publication of JPH0340857B2 publication Critical patent/JPH0340857B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Description

【発明の詳細な説明】 この発明は、電力系統の電圧・無効電力を負荷
変化に応じて追従性よく集中制御する電圧・無効
電力制御方式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a voltage/reactive power control method that centrally controls the voltage/reactive power of a power system with good followability in response to load changes.

従来のこの種の電圧・無効電力制御方式として
は、第1図のものがあつた。第1図において、1
は給電所D/Cに設置された中央演算装置、2a
〜2nはそれぞれの変電所S/Sに設置されてい
る複数の端末制御装置、3a〜3nは、上り伝送
装置による情報伝送路、4a〜4nは、下り伝送
装置による情報伝送路である。
A conventional voltage/reactive power control system of this type is the one shown in FIG. In Figure 1, 1
is the central processing unit installed at the power supply station D/C, 2a
2n are a plurality of terminal control devices installed in each substation S/S, 3a to 3n are information transmission paths by uplink transmission devices, and 4a to 4n are information transmission paths by downlink transmission devices.

また、第2図は各変電所S/Sの設備構成図を
示したもので、同図中5は変圧器、5aは変圧器
タツプ、6はコンデンサからなる調相設備SC、
7はリアクトルからなる調相設備SRであり、8
は制御目標となる変圧器通過無効電力Qを、また
9は変圧器の2次側電圧Vである。
In addition, Fig. 2 shows the equipment configuration diagram of each substation S/S, in which 5 is a transformer, 5a is a transformer tap, 6 is a phase adjustment equipment SC consisting of a capacitor,
7 is a phase adjustment equipment SR consisting of a reactor, and 8
is the reactive power Q passing through the transformer, which is a control target, and 9 is the secondary voltage V of the transformer.

次に従来の電圧・無効電力制御方式の動作につ
いて説明する。
Next, the operation of the conventional voltage/reactive power control method will be explained.

まず、系統内各所で測定した母線電圧、ブラン
チの有効電力、無効電力などの運用状態データ
と、変圧器5及び変圧器タツプ5aの位置、調相
設備SC,SRのオン、オフ状態、ブランチのしや
断器CBのオン、オフ状態などの系統構成データ
とをそれぞれの端末制御装置2a〜2nより上り
の情報伝送路3a〜3nを介して中央演算装置1
に送る。
First, the operational status data such as bus voltage, branch active power, and reactive power measured at various points in the system, the positions of the transformer 5 and transformer tap 5a, the on/off status of the phase modifiers SC and SR, and the branch System configuration data such as the on/off state of the circuit breakers CB is sent to the central processing unit 1 from the respective terminal control devices 2a to 2n via upstream information transmission lines 3a to 3n.
send to

中央演算装置1では、電圧、無効電力、有効電
力損失等に関して系統全体の最適制御を演算して
決定し、その判定結果を夫々下りの情報伝送路4
a〜4nを介して各端末制御装置2a〜2nに送
る。
The central processing unit 1 calculates and determines the optimal control for the entire system regarding voltage, reactive power, active power loss, etc., and transmits the determination results to the downstream information transmission paths 4.
It is sent to each terminal control device 2a-2n via a-4n.

この伝送情報としては、通常目標値なる概念を
一般に用いている。端末制御装置2a〜2nで
は、この目標値として無効電力Qと系統電圧Vと
を受けて、現状の変圧器通過無効電力Qと変圧器
2次側電圧V′が許容値に入るように第3図の制
御パターンに従つて調相設備SC,SRのオン、オ
フあるいは変圧器5のタツプ5aの上げ、下げの
各状況を判断して制御する。
As this transmission information, the concept of a target value is generally used. The terminal control devices 2a to 2n receive the reactive power Q and the system voltage V as the target values, and set a third voltage so that the current reactive power passing through the transformer Q and the transformer secondary voltage V' fall within the allowable values. According to the control pattern shown in the figure, each status of turning on or off of the phase modifiers SC and SR or raising or lowering the tap 5a of the transformer 5 is determined and controlled.

自所の電圧、無効電力の現在値と目標値を比較
し許容巾から逸脱がある時のみ、その量を積分
し、積分量が規定値を超えたとき調相設備SC,
SRのオン、オフ制御を行い、あるいは変圧器5
の上げ、下げ制御を判断している。
Compare the current values of voltage and reactive power at your site with the target values, and only if there is a deviation from the allowable range, integrate the amount, and when the integrated amount exceeds the specified value, phase adjustment equipment SC,
Perform on/off control of SR or transformer 5
It determines whether to raise or lower the control.

逸脱量の大、小にかかわらず一度制御をすれば
積分量をクリアし、再び初めから積分動作を行う
様にこの動作を繰り返し乍ら目標値への制御を完
全ならしめている。
Regardless of whether the amount of deviation is large or small, once the control is performed, the integral amount is cleared, and this operation is repeated so that the integral operation is performed again from the beginning, thereby perfecting the control to the target value.

上述のように従来の電圧・無効電力制御方式は
以上の様に構成されているので、目標値から現在
値が大巾に逸脱していても積分動作を何回も繰り
返す必要があるため追従特性が極めて悪いという
欠点があつた。
As mentioned above, the conventional voltage/reactive power control method is configured as described above, so even if the current value deviates widely from the target value, it is necessary to repeat the integral operation many times, so the tracking characteristic The problem was that it was extremely bad.

この発明は上記のような従来のものの欠点を除
去するためになされたもので、中央演算装置から
目標値に加えて更に電圧と無効電力の感度係数を
端末制御装置へ伝送し、各端末制御装置での追従
性を改善した電圧・無効電力制御方式を提供する
ことを目的としている。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above.In addition to the target value, the central processing unit also transmits the sensitivity coefficients of voltage and reactive power to the terminal control device, and each terminal control device The purpose of this research is to provide a voltage/reactive power control method with improved tracking performance.

以下、この発明の一実施例を図について説明す
る。中央演算装置1と複数の端末制御装置2a〜
2nの関係は第1図と同様である。
An embodiment of the present invention will be described below with reference to the drawings. Central processing unit 1 and multiple terminal control devices 2a~
The relationship of 2n is the same as in FIG.

第4図は、この発明の一実施例による電圧・無
効電力制御方式を適用した端末制御装置のもつ制
御動作のフロー図である。同図中、15は開始、
16は系統電圧V、無効電力Qの現在値を測定し
取り込む処理ブロツク、17は上述の各値V、Q
の目標値からの逸脱の有無の判断ブロツク、18
は同じく各値V、Qの逸脱量を積分する処理ブロ
ツク、19は判断ブロツク17での逸脱無しの場
合の該積分値の零クリヤ処理のための処理ブロツ
ク、20は積分量が所定の許容値より大きいか小
さいかを判定する判断ブロツク、21は許容値以
上である場合に変圧器5のタツプ5a、或いは調
相設備SC,SRなどのうちからどの操作機器を選
定するかを定める処理ブロツク、22はその操作
機器への操作回数の決定を行う処理ブロツク、2
3は操作機器への制御出力信号の供給を行う処理
ブロツク、24は該制御出力信号の供給完了を確
認する判断ブロツク、25はタイムデイレイ時間
を与える処理ブロツク、26は上述した積分値を
零クリアする処理ブロツク、27は終了を示すブ
ロツクである。
FIG. 4 is a flow diagram of a control operation of a terminal control device to which a voltage/reactive power control method according to an embodiment of the present invention is applied. In the same figure, 15 is the start,
16 is a processing block that measures and imports the current values of system voltage V and reactive power Q; 17 is a processing block that measures the above-mentioned values V and Q;
Judgment block for whether or not there is deviation from the target value, 18
Similarly, 19 is a processing block for integrating the amount of deviation of each value V and Q, 19 is a processing block for clearing the integral value to zero when there is no deviation in judgment block 17, and 20 is a processing block where the amount of integration is a predetermined tolerance value. 21 is a processing block that determines which operating device is to be selected from the tap 5a of the transformer 5 or the phase adjustment equipment SC, SR, etc. when the value is greater than or equal to the allowable value; 22 is a processing block for determining the number of operations on the operating device;
3 is a processing block that supplies a control output signal to the operating device; 24 is a judgment block that confirms the completion of supply of the control output signal; 25 is a processing block that provides a time delay; and 26 is a block that clears the above-mentioned integral value to zero. The processing block 27 is a block indicating the end.

次に端末制御装置の制御動作を第4図のフロー
図について述べる。それぞれの端末制御装置2a
〜2nは、一定周期で動作するがまず処理ブロツ
ク16にて系統電圧V、無効電力Qの現在値を測
定し取込む。次にこれ等の系統電圧V、無効電圧
Qの目標値との逸脱量を計算し、許容巾と比較し
て逸脱の有無を判断ブロツク17にて判定する。
このとき、もし現在値が目標値から逸脱がなけれ
ば、その積分値を零にクリアして終了する。また
もし目標値から逸脱があれば、系統電圧V、無効
電力Qの逸脱量を積分し、その積分量が許容値以
上かどうかを判断ブロツク20にてチエツクす
る。このとき、もしその積分量が所定の許容値よ
り小であれば終了する。また、もしその積分量が
所定の許容値以上であれば、第5図に示す様に操
作機器の選定を行う。すなわち、変圧器5のタツ
プ5a、或いは調相設備SC,SRの選択を判断す
る。今、系統電圧の偏差ΔV(=V′−V)、無効電
力の偏差ΔQ(=Q′−Q)に基づくΔV・ΔQ座標
上の位置か、第5図の逸脱点10の位置にあると
する。
Next, the control operation of the terminal control device will be described with reference to the flow diagram of FIG. Each terminal control device 2a
2n operates at a constant cycle, and first, in processing block 16, the current values of system voltage V and reactive power Q are measured and taken in. Next, the amount of deviation from the target values of these system voltages V and reactive voltages Q is calculated and compared with the allowable range to determine whether there is deviation or not in a judgment block 17.
At this time, if the current value does not deviate from the target value, the integral value is cleared to zero and the process ends. If there is a deviation from the target value, the deviation amount of the system voltage V and reactive power Q is integrated, and a judgment block 20 checks whether the integrated amount is greater than or equal to the allowable value. At this time, if the integral amount is smaller than a predetermined tolerance value, the process ends. Furthermore, if the integral amount is greater than a predetermined allowable value, the operating device is selected as shown in FIG. That is, the selection of the tap 5a of the transformer 5 or the phase adjusting equipment SC, SR is determined. Now, if we are at the position on the ΔV/ΔQ coordinate based on the system voltage deviation ΔV (=V'-V) and the reactive power deviation ΔQ (=Q'-Q), or at the deviation point 10 in Figure 5. do.

いま、仮に中央演算装置1から伝送された感度
係数を系統電圧の場合にタツプ5aに対して
ATAP V、調相設備SC,SRに対してASCSR V、無効電力
の場合に、タツプ5aに対してATAP Q、調相設備
SC,SRに対してASCSRQとすると、端末制御装置2
a〜2nでは、まず処理ブロツク21による処理
が行われ制御手段となる操作機器として、タツプ
5aの下げを判断する。
Now, suppose that the sensitivity coefficient transmitted from central processing unit 1 is applied to tap 5a in the case of grid voltage.
A TAP V , A SCSR V for phase modifier SC, SR, A TAP Q for tap 5a in case of reactive power, phase modifier
If A SCSRQ is used for SC and SR, terminal control device 2
In steps a to 2n, processing is first performed by the processing block 21 to determine whether the tap 5a is lowered as an operating device serving as a control means.

次に処理ブロツク22によつて操作回数を以下
の手順で決定する。すなわち、 V−ΔVo<V′−ATAP V×NTAP V<V+ΔVo
………(1) Q−ΔQo<Q′−ATAP Q×NTAP Q<Q+ΔQo
………(2) ただし ΔVo、ΔQo:電圧、無効電力の許容巾となる偏
差 NTAP V、NTAP Q:電圧、無効電力を許容巾内に入れ
るためのタツプ操作回数 この(1)式、(2)式より判断してタツプ5aの操作
回数NTAP V、NTAP Qを演算する。その結果、操作回
数NTAP VとNTAP Qとは、その小さい制御回数で制御
を完了する。この時、判断ブロツク24及び処理
ブロツク25のループによつて1度制御した後に
一定のデイレイ時間をおいて連続して上記したの
と同様の制御動作を行い、タツプ5aの操作回数
NTAP VorNTAP Qに達した時点で積分量を処理ブロツ
ク26によつてクリアする。
Next, the processing block 22 determines the number of operations according to the following procedure. That is, V−ΔVo<V′−A TAP V ×N TAP V <V+ΔVo
………(1) Q−ΔQo<Q′−A TAP Q ×N TAP Q <Q+ΔQo
………(2) However, ΔVo, ΔQo: Deviation that makes the voltage and reactive power within the allowable range N TAP V , N TAP Q : Number of tap operations to bring the voltage and reactive power within the allowable range This equation (1), Judging from equation (2), the number of operations of the tap 5a N TAP V and N TAP Q are calculated. As a result, the control is completed with the smaller number of operations N TAP V and N TAP Q. At this time, after controlling once by the loop of the judgment block 24 and the processing block 25, the same control operation as described above is performed continuously after a certain delay time, and the number of times the tap 5a is operated is
When N TAP V or N TAP Q is reached, the integral quantity is cleared by processing block 26.

以上のように、この発明の電圧・無効電力制御
方式によれば中央演算装置から端末制御装置に電
圧、無効電力の感度係数を送る一方端末制御装置
では、この感度係数を用いて制御手段の操作回数
を計算し、一定時間の遅延時間をおいて連続して
操作することにより、制御の追従性を大巾に改善
できる効果がある。
As described above, according to the voltage/reactive power control method of the present invention, the sensitivity coefficients of voltage and reactive power are sent from the central processing unit to the terminal control device, while the terminal control device operates the control means using the sensitivity coefficients. By calculating the number of times and performing continuous operations after a certain delay time, there is an effect that control followability can be greatly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は電力系統における電圧・無効電力制御
方式の基本概念説明図、第2図は通常の変電所の
電圧・無効電力制御の調相設備を示す系統図、第
3図は制御動作の操作機器パターン図、第4図は
この発明の一実施例による電圧・無効電力制御方
式の制御動作のフロー図、第5図は第4図実施例
にて制御される操作機器の動作説明図である。 1……給電所D/C中央演算装置、2a〜2n
……変電所S/Sの端末制御装置、3a〜3n…
…上り情報伝送路、4a〜4n……下り情報伝送
路、5……変圧器、5a……タツプ、6……コン
デンサよりなる調相設備、7……リアクトルより
なる調相設備、8……変圧器通過無効電力Q、9
……変圧器の2次側電圧V、10,11,12,
13……TAP下げによる制御状況、15……開
始ブロツク、16,18,19,21,22,2
3,25,26……処理ブロツク、17,20,
24……判断ブロツク、27……終了ブロツク。
Figure 1 is an explanatory diagram of the basic concept of the voltage/reactive power control method in the power system, Figure 2 is a system diagram showing phase adjustment equipment for voltage/reactive power control in a normal substation, and Figure 3 is the control operation. 4 is a flowchart of the control operation of the voltage/reactive power control method according to an embodiment of the present invention, and FIG. 5 is an explanatory diagram of the operation of the operating equipment controlled in the embodiment of FIG. 4. . 1...Power station D/C central processing unit, 2a to 2n
...Substation S/S terminal control device, 3a to 3n...
...Upstream information transmission line, 4a-4n...Downstream information transmission line, 5...Transformer, 5a...Tap, 6...Phase adjustment equipment consisting of a capacitor, 7...Phase adjustment equipment consisting of a reactor, 8... Reactive power passing through transformer Q, 9
... Secondary voltage of the transformer V, 10, 11, 12,
13...Control status due to TAP lowering, 15...Start block, 16, 18, 19, 21, 22, 2
3, 25, 26... processing block, 17, 20,
24...Judgment block, 27...End block.

Claims (1)

【特許請求の範囲】[Claims] 1 中央演算装置から複数の端末制御装置に対し
電圧・無効電力の目標値を伝送し、被制御所の操
作機器を操作して電力系統の電圧・無効電力を調
節する電圧・無効電力制御方式において、上記目
標値に加えて上記電圧・無効電力の感度係数を上
記中央演算装置から上記端末制御装置に伝送し、
さらに上記端末制御装置は上記電圧・無効電力の
現在値と上記目標値との偏差信号の積分値が規定
値を超えたとき上記感度係数を用いて上記操作機
器の操作回数を算出し、一定の遅延時間をおいて
実質的に連続して上記電圧・無効電力を制御する
ことを特徴とする電圧・無効電力制御方式。
1 In a voltage/reactive power control method in which target values of voltage/reactive power are transmitted from a central processing unit to multiple terminal control devices, and the voltage/reactive power of the power system is adjusted by operating the operating equipment at the controlled station. , transmitting the voltage/reactive power sensitivity coefficients in addition to the target values from the central processing unit to the terminal control device;
Further, the terminal control device calculates the number of operations of the operating device using the sensitivity coefficient when the integral value of the deviation signal between the current value of the voltage/reactive power and the target value exceeds a specified value, and A voltage/reactive power control method characterized in that the voltage/reactive power is controlled substantially continuously after a delay time.
JP11750383A 1983-06-27 1983-06-27 Voltage reactive power control system Granted JPS609332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11750383A JPS609332A (en) 1983-06-27 1983-06-27 Voltage reactive power control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11750383A JPS609332A (en) 1983-06-27 1983-06-27 Voltage reactive power control system

Publications (2)

Publication Number Publication Date
JPS609332A JPS609332A (en) 1985-01-18
JPH0340857B2 true JPH0340857B2 (en) 1991-06-20

Family

ID=14713354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11750383A Granted JPS609332A (en) 1983-06-27 1983-06-27 Voltage reactive power control system

Country Status (1)

Country Link
JP (1) JPS609332A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0638379A (en) * 1992-07-17 1994-02-10 Mitsubishi Electric Corp Voltage/reactive power control system
KR101982839B1 (en) 2017-09-28 2019-08-28 지에스건설 주식회사 Method for anaerobic digestion of organic waste

Also Published As

Publication number Publication date
JPS609332A (en) 1985-01-18

Similar Documents

Publication Publication Date Title
US5646512A (en) Multifunction adaptive controls for tapswitches and capacitors
US6188205B1 (en) Power system control apparatus and power system control method
US5541498A (en) Distribution circuit var management system using adaptive capacitor controls
US6411066B1 (en) Method to control the flow of active power in a high voltage direct current transmission system and device for the same
EP0047501B2 (en) Multiterminal dc power transmission system
CN109378867B (en) Maximum transmission power control method for hybrid double-feed-in direct current transmission system
US4296269A (en) Control of electrical arc furnaces
JPH0531763B2 (en)
JPH0340857B2 (en)
JPH0578250B2 (en)
EP0923181B1 (en) Multifunction adaptive controls for tapswitches and capacitors
JPS60241724A (en) Voltage reactive power control system
JPH07241035A (en) Method for stabilizing single separated system
CN112557813A (en) Method for judging voltage stability of power grid under simultaneous fault of multiple loops of direct current
GB2339620A (en) Measuring real and imaginary components of electrical power
CN219087322U (en) Electric heating system based on heating pipe
JP3594781B2 (en) Power system stabilizer and power system stabilization method
JPH0612501B2 (en) Voltage-reactive power control method
JPH0638379A (en) Voltage/reactive power control system
JP2792109B2 (en) Automatic calculation method of cut-off power for demand controller
RU2023337C1 (en) Method of automatic limiting of power transfer in intersystem power line
JPH0581926B2 (en)
JP2678258B2 (en) Power system voltage / reactive power control method
JPS62260522A (en) Method of controlling voltage and reactive power of power system
JP3134034B2 (en) Power system cooperative distributed control method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees