JPH0340453A - High frequency high output transistor package - Google Patents

High frequency high output transistor package

Info

Publication number
JPH0340453A
JPH0340453A JP458190A JP458190A JPH0340453A JP H0340453 A JPH0340453 A JP H0340453A JP 458190 A JP458190 A JP 458190A JP 458190 A JP458190 A JP 458190A JP H0340453 A JPH0340453 A JP H0340453A
Authority
JP
Japan
Prior art keywords
ceramic
copper
tungsten
molybdenum
porous body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP458190A
Other languages
Japanese (ja)
Other versions
JPH0465544B2 (en
Inventor
Toshiro Kuroda
俊郎 黒田
Koichi Kumazawa
熊沢 光一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP458190A priority Critical patent/JPH0340453A/en
Publication of JPH0340453A publication Critical patent/JPH0340453A/en
Publication of JPH0465544B2 publication Critical patent/JPH0465544B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To form a package provided with a flat mounting section by a method wherein ceramic frames are directly brazed to a semiconductor element mounting section which serves also as a heat dissipating plate and is formed of a tungsten or molybdenum porous body filled with copper, where tungsten or molybdenum and copper are in a specific weight ratio. CONSTITUTION:1-30% copper by weight is fused into a porous body of 99-70% by weight of tungsten or molybdenum which serves as a core material to form a semiconductor mounting and head dissipating plate 12. A ceramic frame 11 is placed in a recess provided near the center of the heat dissipating plate 12 and joined through a brazing method. Then, a required part is plated with nickel or gold. As mentioned above, copper is fused and filled into a porous body of tungsten or molybdenum, whereby the thermal expansion coefficient of the porous body becomes conformable for that of ceramic, so that a package provided with a flat semiconductor mounting section free of warpage and distortion can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、高周波高出カドランシスターパッケージに関
するもので、更に詳しくは高周波高出カドランシスター
パッケージの半導体素子搭載部兼放熱板として、銅−タ
ングステンあるいは銅−モリブデンよりなる非合金組成
体を用いたものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a high-frequency, high-output quadrant sister package, and more specifically, the present invention relates to a high-frequency, high-output quadrant sister package, and more specifically, a copper-tungsten material is used as a semiconductor element mounting portion and a heat sink of a high-frequency, high-output quadrant sister package. Alternatively, a non-alloyed composition made of copper-molybdenum is used.

[従来の技術] 従来、半導体用セラミックパッケージはグリーンセラミ
ックシートに必要金属層をスクリーンプリント法により
印刷しこれを積層し焼結−体化して、このセラミック体
の金属層に必要な金属部材をろう付けにより取りつける
方法か、又はプレス法によってセラミック枠体を成形し
、これにメタライズを施して、このメタライズ部を介し
て金属部材とろう付性により接着しパッケージとしてき
た。
[Conventional technology] Conventionally, ceramic packages for semiconductors have been produced by printing the necessary metal layers on green ceramic sheets using a screen printing method, laminating them and sintering them, and then waxing the necessary metal members for the metal layers of the ceramic body. A ceramic frame is formed by attaching by attaching or by pressing, metallized, and bonded to a metal member through the metallized portion to form a package.

しかし、積層パッケージの中でも、半導体素子を接着す
る部分、いわゆる半導体素子搭載部がセラミック上のメ
タライズ部によって構成されているパッケージでは、セ
ラミックを焼結−体化する際に起るシート自身の歪或い
は積層時の外的な力によって生ずる歪により半導体素子
搭載部のセラミックに反りや、うねりを生ずることがあ
るという欠点があり、半導体素子の接着強度が弱いとか
又半導体素子が水平に搭載されない等の欠点が生じ、半
導体素子搭載部の平坦ナパッケージを製作するためにす
でに特願昭5B−214141号として提案された発明
等がなされてきた。
However, among laminated packages, in packages where the part to which the semiconductor element is bonded, the so-called semiconductor element mounting part, is composed of a metallized part on the ceramic, distortion of the sheet itself that occurs when the ceramic is sintered, or Distortion caused by external forces during lamination may cause warping or waviness in the ceramic of the semiconductor element mounting area, which may cause problems such as weak bonding strength of the semiconductor element or the semiconductor element not being mounted horizontally. Due to these drawbacks, an invention proposed in Japanese Patent Application No. 5B-214141 has already been made in order to manufacture a flat package for a semiconductor element mounting portion.

第2図は従来法による高周波高出カドランシスターパッ
ケージの要部断面図であり、セラミックと無酸素銅との
熱膨脹係数の差を吸収せしめる金属体としてコバールか
又は無酸素素鋼等によって形成された介在金属枠体3を
利用し、セラミック枠体lと無酸素銅製半導体素子搭載
部兼放熱板2の間に前記介在金属枠体3をろう付した構
成である。
Figure 2 is a cross-sectional view of the main parts of a high-frequency, high-output quadratic sister package made by a conventional method.The metal body is made of Kovar or oxygen-free steel to absorb the difference in coefficient of thermal expansion between ceramic and oxygen-free copper. The structure is such that an intervening metal frame 3 is used and the intervening metal frame 3 is brazed between the ceramic frame l and the oxygen-free copper semiconductor element mounting portion/heat dissipation plate 2.

高周波トランジスターでは、その性質上発熱を伴うため
熱伝導性の良いベリリヤ磁器等を用いることもなされた
が、ベリリヤは毒性を有し、ベリリヤ磁器製造の際の労
働衛生上の問題や、それに続く公害問題等のために製造
する事業所が少くなり、又高価であるという欠点があっ
た。
Because high-frequency transistors generate heat due to their nature, materials such as Beryllium porcelain, which has good thermal conductivity, have been used. However, Beryllium is toxic, causing occupational health problems during the production of Beryllium porcelain, and subsequent pollution. Due to these problems, the number of establishments that manufacture it has decreased, and it also has the disadvantage of being expensive.

更には高山カドランシスターでは多量の熱を発生するた
めに無酸素銅等の高熱伝導性金属を用いた放熱板を兼ね
た半導体素子搭載部材を取りつけて熱の放散を行わしめ
る構造としているが、使用する無酸素銅とセラミックと
の持つ膨脂係数の差が大きすぎるためろう付後セラミッ
クにクラック等が発生することがしばしばであった。
Furthermore, since the Takayama Cadran Sister generates a large amount of heat, it has a structure in which a semiconductor element mounting member that doubles as a heat sink is made of a highly thermally conductive metal such as oxygen-free copper to dissipate the heat. Because the difference in coefficient of swelling between oxygen-free copper and ceramic is too large, cracks often occur in the ceramic after brazing.

又、このクラックの発生を防止するために商品名コバー
ルのようなセラミックと熱膨脹係数の近い金属をセラミ
ックと無酸素銅との間に介在させ、しかも該コバール部
材の形状に工夫をこらした形としてろう付するか又は無
酸素鋼の形状やセラミックの形状に工夫をこらして熱膨
脹率の差の解消に努力してきた。
In addition, in order to prevent the occurrence of cracks, a metal such as the product name Kovar, which has a coefficient of thermal expansion similar to that of the ceramic, is interposed between the ceramic and the oxygen-free copper, and the shape of the Kovar member is devised. Efforts have been made to eliminate the difference in coefficient of thermal expansion by brazing or by devising the shape of oxygen-free steel or ceramic.

最近、技術の発展に伴って大型の素子を搭載するパッケ
ージが要求されるようになり、したがってパッケージ自
体も大型化され、セラミックの歪を僅少にとどめたり、
接合する半導体素子搭載部材との膨脹差を解消せしめた
りすることがますます困難さを増してきた。
Recently, with the development of technology, there has been a demand for packages that can mount large-sized elements, and the packages themselves have also become larger.
It has become increasingly difficult to eliminate the difference in expansion between the semiconductor element mounting member and the semiconductor element mounting member to be bonded.

一方、シリコン素子と銅を主体とする端子板が接続され
る構造の半導体装置において、両者の中間に、胴中にタ
ングステン又はモリブデンを分散せしめて焼結してなる
電極を介在せしめた装置も知られている(特開昭50−
82776号公報参照)。
On the other hand, in a semiconductor device having a structure in which a silicon element and a terminal plate mainly made of copper are connected, a device is also known in which an electrode made of sintered tungsten or molybdenum dispersed in the body is interposed between the two. (Japanese Unexamined Patent Application Publication No. 1973-
(See Publication No. 82776).

[発明が解決しようとする課題] 本発明は前記諸欠点、諸問題を一挙に解決するだけでな
く、大型化を可能にした高周波高出カドランシスターパ
ッケージを提供することを目的とする。又、用いる材質
については、特開昭50−82778号公報記載の技術
では、銅とタングステン又はモリブデンとの混和物が焼
結体であるため、熱膨脹係数、熱伝導率ともW(又はM
o)/Cuの複合剤があてはまらず、実質的には空孔が
存在するもので、メツキ性、気密性や熱伝導性等の基板
に要求される特性の点で問題がある。本発明では、W(
又はMo)/Cuの複合材料におけるこの点の問題も解
決するものである。
[Problems to be Solved by the Invention] An object of the present invention is to not only solve the above-mentioned drawbacks and problems all at once, but also to provide a high-frequency, high-output quadrant sister package that can be made larger. Regarding the material used, in the technique described in JP-A-50-82778, since a mixture of copper and tungsten or molybdenum is a sintered body, both the coefficient of thermal expansion and the thermal conductivity are W (or M).
o)/Cu composite is not applicable, and there are substantially pores, which poses problems in terms of properties required of the substrate, such as plating properties, airtightness, and thermal conductivity. In the present invention, W(
This also solves this problem in Mo)/Cu composite materials.

[課題を解決するための手段] 本発明は、セラミック枠体と、w、量%で99〜70%
のタングステン又はモリブデン多孔体を芯材としてこれ
に 1〜30%の銅を溶融して充填してなる非合金組成
体からなる半導体素子搭載部兼放熱板とが、ろう付けに
より直接接合された構造である高周波高出カドランシス
ターパッケージである。
[Means for Solving the Problems] The present invention provides a ceramic frame and a w ratio of 99 to 70% by weight.
A structure in which a semiconductor element mounting part and a heat dissipation plate made of a non-alloy composition made of a core material of tungsten or molybdenum porous material and filled with 1 to 30% copper by melting are directly joined by brazing. It is a high frequency, high output quadrant sister package.

本発明で使用する非合金組成体は、上記のとおりタング
ステン又はモリブテン多孔体を芯材として、それに鋼材
を溶融して充填せしめた複合材料である。これは溶浸法
と呼ばれる方法であって、この方法によると、毛細管現
象によりタングステン又はモリブデンの多孔体の空隙率
は、溶融した銅によりほぼ完全に充填されるので、非合
金組成体の密度は実質100%になる。
As described above, the non-alloy composition used in the present invention is a composite material in which a tungsten or molybdenum porous body is used as a core material and steel is melted and filled therein. This is a method called the infiltration method, and according to this method, the porosity of the tungsten or molybdenum porous body is almost completely filled with molten copper due to capillarity, so the density of the non-alloyed composition is reduced. Actually it becomes 100%.

前記材料の持つ特性のうち熱膨脹係数及び熱伝導率を第
1表で銅−タングステン組戊体について、第2表で銅−
モリブデン組成体について示した。
Among the properties of the above materials, the coefficient of thermal expansion and thermal conductivity are shown in Table 1 for the copper-tungsten assembly, and in Table 2 for the copper-tungsten assembly.
The molybdenum composition is shown below.

第1表 第2表 第1表及び第2表から明らかなように、銅−タングステ
ン、銅−モリブデン組成体は、銅の含有量の比較的少い
領域においてはセラミックの持つ熱膨脹係数50〜75
X10−7に適合する熱膨脹係数を有し、しかもその値
はW(又はMo)/ Cuの複合剤に基づく理論値とほ
ぼ一致するため、銅含有率を変えることによって任意に
必要とする熱膨脹係数を有する複合金属材料を得ること
ができる。したがって現在使用されている金属よりも熱
膨脹係数がセラミックのそれに適合する金属材料を得る
ことができる。
As is clear from Tables 1 and 2, copper-tungsten and copper-molybdenum compositions have a thermal expansion coefficient of 50 to 75, which is the same as that of ceramics, in areas where the copper content is relatively low.
It has a thermal expansion coefficient that conforms to A composite metal material having the following properties can be obtained. Therefore, it is possible to obtain a metal material whose thermal expansion coefficient matches that of ceramics better than currently used metals.

そして、又、セラミックと対応する熱膨脹係数を有する
組成体はコバール金属やセラミックより1桁上の熱伝導
率を有し、セラミック中で最も熱伝導率が大きいといわ
れているベリリヤ磁器の有する熱膨脹係数(76X 1
0”7 ’)に近い熱膨脹係数を有する組成体では、ベ
リリヤ磁器よりはるかに大きい熱伝導率を有している金
属材料である。
Furthermore, a composition with a coefficient of thermal expansion corresponding to that of ceramic has a thermal conductivity one order of magnitude higher than that of Kovar metal or ceramic, and the coefficient of thermal expansion of Beryliya porcelain, which is said to have the highest thermal conductivity among ceramics. (76X 1
For compositions with a coefficient of thermal expansion close to 0"7'), it is a metallic material with a much greater thermal conductivity than Beryllium porcelain.

モして又、セラミックと対応する熱膨脹係数を有する組
成体はコバール金属やセラミックより1桁上の熱伝導率
を有し、セラミック中で最も熱伝導率が大きいといわれ
ているベリリヤ磁器の有する熱膨脹係数(76X10’
)に近い熱膨脹係数を有する組成体では、ベリリヤ磁器
よりはるかに大きい熱伝導率を有している金属材料であ
る。
Furthermore, a composition with a coefficient of thermal expansion corresponding to that of ceramic has a thermal conductivity one order of magnitude higher than that of Kovar metal or ceramic, and the thermal expansion of Beryliya porcelain, which is said to have the highest thermal conductivity among ceramics. Coefficient (76X10'
) is a metallic material with a thermal conductivity much greater than Beryllium porcelain.

[実施例] 第1図は本願発明を利用した改良型高周波高山カドラン
シスターパッケージの要部断面図である。第1図におい
てセラミック枠体11を常法のシート積層法により形成
し焼結一体化せしめる、他方半導体素子搭載部兼放熱板
王2を溶浸法により形成した銅25%、タングステン7
5%の組成体及び銅35%、タングステン65%の組成
体により夫々形成し、ニッケルメツキ2μ前後を施し、
前記部材12の中央付近凹部に前記セラミック枠体11
を!を置してろう付性により接合せしめる。このろう付
の際に、リード等必要な金属(図示せず)を同時にろう
付することができる。
[Example] FIG. 1 is a sectional view of a main part of an improved high frequency alpine quadran sister package using the present invention. In FIG. 1, a ceramic frame 11 is formed by a conventional sheet lamination method and sintered into one piece, while a semiconductor element mounting portion/heat dissipation plate king 2 is formed by an infiltration method using 25% copper and 7% tungsten.
5% composition, 35% copper, and 65% tungsten, respectively, and applied nickel plating of about 2μ,
The ceramic frame 11 is placed in a recess near the center of the member 12.
of! are placed and joined by brazing properties. During this brazing, necessary metals (not shown) such as leads can be brazed at the same time.

その後必要部分にニッケル又は金等のメツキを施す。こ
れらパッケージのうち、銅35%、タングステン65%
よりなる組成体を使用した場合はセラミックにクラック
が入り、そのセラミックの一部は後日剥離するという現
象を生じた。銅25%、タングステン75%のものは第
2図3に示したごとき介在物を置く構造にせずセラミッ
クと直接ろう付しても前記のようなりラック及1?剥離
現象を生ぜず所定テストに合格した。
After that, the necessary parts are plated with nickel or gold. Of these packages, 35% copper and 65% tungsten
When a composition consisting of the following was used, cracks appeared in the ceramic, and a portion of the ceramic peeled off at a later date. Even if the one with 25% copper and 75% tungsten is brazed directly to the ceramic without any inclusions as shown in Fig. 2, the result will be the rack and 1? The specified test was passed without any peeling phenomenon.

なお、本実施例ではシート積層法を利用したセラミック
枠体を使用したが、プレス法によって製作されたセラミ
ック枠体についても同様な好結果が得られている。
In this example, a ceramic frame using a sheet lamination method was used, but similar good results have been obtained with a ceramic frame manufactured by a pressing method.

[発明の効果] 以上詳細に説明したごとく、本発明はセラミック材料に
金属材料を半導体素子搭載部材として取りつけたセラミ
ックパッケージであって、用いる金属材料の持つ熱膨脹
係数がセラミック例えばムライトなどにも適合している
ため、この金属材料をセラミック部と容易に置き換える
ことができ反りや歪のない平坦な半導体搭載部を持つパ
ッケージをつくり出せるし、したがって大型化も容易で
ある。更には熱伝導率が大きいため放熱部材として用い
ることもでき大容量化された半導体素子にも高い熱放散
を必要とするパッケージにも最適であり、又本金属材料
にメツキ層を形成することにより直接半導体装置を接着
できるためパッケージの部品点数を減らしたり形状をシ
ンプルにしたりすることができ今後の高周波高出カドラ
ンシスターパッケージとして必須のものとなるものであ
る。
[Effects of the Invention] As explained in detail above, the present invention is a ceramic package in which a metal material is attached to a ceramic material as a semiconductor element mounting member, and the thermal expansion coefficient of the metal material used is compatible with ceramics such as mullite. Therefore, this metal material can be easily replaced with a ceramic part, making it possible to create a package with a flat semiconductor mounting part without warping or distortion, and therefore making it easy to increase the size. Furthermore, due to its high thermal conductivity, it can be used as a heat dissipation member, making it ideal for large-capacity semiconductor devices and packages that require high heat dissipation. Since semiconductor devices can be directly bonded, the number of package parts can be reduced and the package can be simplified, making it essential for future high-frequency, high-output quadrant sister packages.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の高周波高出カドランシスター
パッケージの要部断面図、第2図は従来技術による高周
波高出カドランシスターパッケージの要部断面図である
。 1・・・セラミック枠体、 2・・・無酸素銅製半導体素子搭載部兼放熱板、3・・
・介在金属枠体、11・・・セラミック枠体、12・・
・半導体素子搭載部兼放熱板。
FIG. 1 is a sectional view of a main part of a high frequency, high output quadrant sister package according to an embodiment of the present invention, and FIG. 2 is a sectional view of a main part of a high frequency, high output quadrant sister package according to the prior art. 1... Ceramic frame body, 2... Oxygen-free copper semiconductor element mounting part and heat sink, 3...
- Intervening metal frame, 11...Ceramic frame, 12...
・Semiconductor element mounting part and heat sink.

Claims (1)

【特許請求の範囲】[Claims] セラミック枠体と、重量%で99〜70%のタングステ
ン又はモリブデン多孔体を芯材としてこれに1〜30%
の銅を溶融して充填してなる非合金組成体からなる半導
体素子搭載部兼放熱板とが、ろう付けにより直接接合さ
れた構造であることを特徴とする高周波高出力トランジ
スターパッケージ。
Ceramic frame and 99-70% by weight tungsten or molybdenum porous body as a core material and 1-30% by weight.
A high-frequency, high-output transistor package characterized in that a semiconductor element mounting portion and a heat sink made of a non-alloy composition made of melted and filled copper are directly joined by brazing.
JP458190A 1990-01-16 1990-01-16 High frequency high output transistor package Granted JPH0340453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP458190A JPH0340453A (en) 1990-01-16 1990-01-16 High frequency high output transistor package

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP458190A JPH0340453A (en) 1990-01-16 1990-01-16 High frequency high output transistor package

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP57157684A Division JPS5946050A (en) 1982-09-09 1982-09-09 Ceramic package for semiconductor

Publications (2)

Publication Number Publication Date
JPH0340453A true JPH0340453A (en) 1991-02-21
JPH0465544B2 JPH0465544B2 (en) 1992-10-20

Family

ID=11588006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP458190A Granted JPH0340453A (en) 1990-01-16 1990-01-16 High frequency high output transistor package

Country Status (1)

Country Link
JP (1) JPH0340453A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0773739A (en) * 1993-09-03 1995-03-17 Nippon Kokuen Kogyo Kk Flexible circuit board and its manufacture
US9192762B2 (en) 2011-09-20 2015-11-24 Braun Gmbh Therapeutic micro-current delivery devices and methods thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0773739A (en) * 1993-09-03 1995-03-17 Nippon Kokuen Kogyo Kk Flexible circuit board and its manufacture
US9192762B2 (en) 2011-09-20 2015-11-24 Braun Gmbh Therapeutic micro-current delivery devices and methods thereof

Also Published As

Publication number Publication date
JPH0465544B2 (en) 1992-10-20

Similar Documents

Publication Publication Date Title
JPS6327860B2 (en)
US5451817A (en) Semiconductor-mounting heat-radiative substrates, a method of making and use thereof in semiconductor packages
US20030131476A1 (en) Heat conduits and terminal radiator for microcircuit packaging and manufacturing process
JPH04152642A (en) Paste for adhesion use
JPH0340453A (en) High frequency high output transistor package
JPH04348062A (en) Manufacture of heat-dissipating substrate for semiconductor mounting and package for semiconductor using the substrate
JPH0613494A (en) Substrate for semiconductor device
JPH0348448A (en) Ccd package
JP2517024B2 (en) Ceramic package and its manufacturing method
JPH0340454A (en) Pin grid array package
JPH0997865A (en) Radiation part
JP4454164B2 (en) Package for storing semiconductor elements
JPH0340455A (en) Ceramic chip carrier
JP7340009B2 (en) Electronic component module and silicon nitride circuit board
JPH05211248A (en) Semiconductor mount composite heat radiation board and its manufacture
JPH0786444A (en) Manufacture of compound heat dissipating substrate for semiconductor
JP2001284509A (en) Al-SiC COMPOSITE BODY
JP2525232B2 (en) Ceramic package and method of manufacturing the same
JPH04168792A (en) Manufacture of high heat radiating ceramic circuit board with excellent thermal shock resistance
JPH07335792A (en) Package for mounting semiconductor element
JPH02146748A (en) Semiconductor container
JPH0255271A (en) Bond structure consisting of aluminum nitride substrate and metallic plate
JPS6286833A (en) Ceramic package for placing semiconductor substrate and manufacturing thereof
JP2003046042A (en) Semiconductor element for storing package and semiconductor device
JPS63122253A (en) Seminconductor package