JPH0340442Y2 - - Google Patents

Info

Publication number
JPH0340442Y2
JPH0340442Y2 JP16321783U JP16321783U JPH0340442Y2 JP H0340442 Y2 JPH0340442 Y2 JP H0340442Y2 JP 16321783 U JP16321783 U JP 16321783U JP 16321783 U JP16321783 U JP 16321783U JP H0340442 Y2 JPH0340442 Y2 JP H0340442Y2
Authority
JP
Japan
Prior art keywords
hook
coil
contact
detection rod
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16321783U
Other languages
Japanese (ja)
Other versions
JPS6071444U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP16321783U priority Critical patent/JPS6071444U/en
Publication of JPS6071444U publication Critical patent/JPS6071444U/en
Application granted granted Critical
Publication of JPH0340442Y2 publication Critical patent/JPH0340442Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 この考案は両端にフツクを有するコイルばねを
連続的に機械の一サイクルで製作するコイルばね
製造機に於いて、両端フツクの相対的位置(以下
対向位置と称す)を一定関係に揃え、対向位置に
バラツキを生じないようにコイルばね製造機に於
けるフツク部の整斉装置に関する。
[Detailed description of the invention] This invention is based on a coil spring manufacturing machine that continuously manufactures coil springs with hooks at both ends in one cycle of the machine. This invention relates to a device for aligning hooks in a coil spring manufacturing machine to align them in a constant relationship and prevent variations in opposing positions.

一般にコイルばね製造機によつて製作された両
端フツク付コイルばねには使用材料の直径の不均
一、成形工具の摩耗等に起因する成形コイルばね
径の微少変化や材料送り長さの微少誤差が生じ、
対向位置を当初所定の値にセツトしておいても、
時間の経過とともに製作されるコイルばねの対向
位置は次第にバラツキができる欠点がある。
Coil springs with hooks at both ends manufactured using coil spring manufacturing machines generally have slight variations in the diameter of the formed coil spring due to uneven diameters of the materials used, wear of forming tools, etc., and slight errors in the material feed length. arise,
Even if the opposing position is initially set to a predetermined value,
There is a drawback that the opposed positions of the coil springs produced gradually vary over time.

しかし近年、精密工業機器に用いる精密ばね類
の各種寸法は高い精度が要求され、両端フツクの
対向位置に関しても高精度が要求されるようにな
つてきており、両端フツク部を設定の対向位置に
しなければ完成品として成り立たない場合も多
い。そのため、両端フツクとコイル胴部を一工程
で成形できる機械が出現したにも拘わらず片方の
フツクとコイル胴部とを機械で作り、他のフツク
は道具を使用しての手起し作業による方法で対向
位置の均一化をはかつているのが現状である。上
記に鑑み出願人は線ガイド用クイルより線材を押
出して各種成形工具に上記線材を圧接させ、線材
を巻込むことでコイルばねを巻成するものにおい
て、コイル胴部成形工具によつてコイル胴部を成
形中に巻込まれつつあるコイルばねの移動方向前
方に、上記コイルばねの第1フツクに当接するこ
とで信号を発生するセンサーを設け、上記信号に
より線材送りを一時停止させ、以降成形工具を第
2フツク成形工具に取替えることで第2フツクを
作成し、対向位置を揃えるという装置を開発した
のであるが(例えば特公昭52−11306,特公昭53
−35032)本考案はその対向位置を揃える装置を
より確実に作動させるための改良に係るものであ
る。
However, in recent years, various dimensions of precision springs used in precision industrial equipment require high precision, and high precision is also required for the opposing positions of the hooks at both ends. Without it, the finished product is often not viable. For this reason, even though a machine has appeared that can form both end hooks and the coil body in one process, one hook and the coil body are made by machine, and the other hooks are made by hand using tools. At present, the opposing positions are made uniform by a method. In view of the above, the applicant has proposed a method for winding a coil spring by extruding a wire from a wire guide quill, pressing the wire into various forming tools, and winding the wire into a coil body using a coil body forming tool. A sensor that generates a signal when it comes into contact with the first hook of the coil spring is provided in front of the coil spring being wound during forming, and the sensor generates a signal. He developed a device that created a second hook by replacing it with a second hook forming tool and aligned the opposing positions (for example, the
-35032) The present invention relates to an improvement for more reliably operating the device for aligning the opposing positions.

まず、従来のコイルばねの製造方法の概略を装
置の骨組図である第1図により説明する。成形工
具はコイルば胴部成形工具(他の成形工具は省
略)1組で示してあり、駆動源M1より歯車10
に至る中間にある歯車等及び駆動源M2よりカム
24,26に至る中間にある歯車等は省略してあ
る。いま制御装置12の指令により駆動源M1
ら駆動力が伝達されて、互に噛み合つた歯車10
及び歯車14が回転すると共軸の材料送りフイー
ドローラ16及び18も互に反対方向に回される
ことになり、その回転力が線材Wを線ガイド用ク
イル20の孔を通して力強く前方に放出する力と
なる。また、制御装置12の指令により駆動源
M2から駆動力が伝達されて、カム24が回転す
ることでクイル20の前方にU溝を切られたコイ
ル胴部成形工具22が線材Wを傾斜した位置まで
移動する。その位置で保持されるとクイル20よ
り送り出された線材Wはコイル胴部成形工具22
に当接しコイル状に成形される。上記と同様な方
法でクイル20前方に適宜各種成形工具が位置す
ることにより、第1フツク,コイル胴部,第2フ
ツクが成形される。(第1図は第1フツク成形工
具で第1フツクを成形した後コイル胴部成形工具
でコイル胴部を成形している状態を示す)。上記
で示すばね成形過程においてこの第1図に示す状
態で線材を送り続け所望のコイル巻数までコイル
胴部が巻成されることになる。ここで、所定のコ
イル巻数の少し手前までコイル胴部が巻成される
と、その時期にタイミングを合わせた、カム26
の信号により検出器28のソレノイド30に動作
指令を送り、コイル胴部成形中にクイル部から横
方向に回転しながら前進する第1フツクの進行方
向前方位置まで検出棒32を前進させて停止待機
し、やがて検出棒32が第1フツクに当接するこ
とで第1フツク部位置を検知し、その時点で検出
棒32からの信号により線材送りを停止させて、
設定の対向位置を得るものである。なお、線材を
停止させて以降は通常のコイルばね成形方法を用
いて第2フツクを成形すれば対向位置の揃つたコ
イルばねが常に巻成可能となる。ここにおいて、
上記従来の機構はカム26で検出棒32の作動タ
イミングを取るため以下の欠点が生じる。第5図
はコイル胴部成形中のコイルばねを第1フツク側
から見た図であるが、上記検出棒32が第1フツ
クに当接するためにその先端が横方向から見てコ
イル胴部内まで移動するので、この検出棒32の
前進する作動タイミングをコイル胴部成形中の第
1フツクの位置をここに示す○イの点にバラツキに
中心を位置させるようにすればバラツキ○ロの範囲
のどの位置に第1フツクが位置しても、やがて第
1フツクは回転して検出棒32に当接することが
可能となるのが明白である。よつて、カム26の
取付位置調整にて作業者はこの○イの点にバラツキ
の中心を位置させようとするのであるが、この作
業は専ら作業者の勘に頼るものであつた。そのた
め、この位置決めは作業者の熟練度・器用さ等に
左右され、また生産個数を上げるためばね製造機
の回転数を上げることが必要なことから、上記○ロ
の範囲にバラツキを設定することは極めて難かし
いもので、ともすると位置決めが第6図のコイル
胴部成形中のコイルばねを第1フツク側から見た
図で示すコイル胴部成形中の第1フツクの位置を
○ハの範囲でバラツキを設定することが発生し、第
6図中の○ニの範囲にバラツキが起つたものは検出
棒32が第1フツクを検出することが半巻分ずれ
てしまうことにより、ばね製造中の製品の内にフ
ツク部の対向位置が半巻分ずれたばねが混入して
しまい、これらの良・不良の判断をすることは実
質上むりであり、製作した製品全てが不良として
扱われてしまうことが起つた。
First, a conventional method for manufacturing a coil spring will be outlined with reference to FIG. 1, which is a schematic diagram of the device. The forming tools are shown as one set of coil body forming tools (other forming tools are omitted), and the gear 10 is connected to the drive source M1.
Gears and the like located intermediate from the driving source M 2 to the cams 24 and 26 are omitted. Drive force is now transmitted from the drive source M1 according to a command from the control device 12, and the gears 10 are engaged with each other.
When the gear 14 rotates, the coaxial material feed rollers 16 and 18 are also rotated in opposite directions, and the rotational force causes the force to forcefully eject the wire W forward through the hole of the wire guide quill 20. Become. In addition, the drive source is controlled by a command from the control device 12.
Driving force is transmitted from M2 , and as the cam 24 rotates, the coil body forming tool 22, which has a U-groove cut in front of the quill 20, moves the wire W to an inclined position. When held at that position, the wire W fed out from the quill 20 is moved to the coil body forming tool 22.
It comes into contact with the coil and is formed into a coil shape. The first hook, coil body, and second hook are formed by appropriately positioning various forming tools in front of the quill 20 in the same manner as described above. (FIG. 1 shows a state in which a first hook is formed with a first hook forming tool and then a coil body is formed with a coil body forming tool). In the spring forming process described above, the wire is continued to be fed in the state shown in FIG. 1 until the coil body is wound up to the desired number of coil turns. Here, when the coil body is wound a little before the predetermined number of coil turns, the cam 26
The signal sends an operation command to the solenoid 30 of the detector 28, and the detection rod 32 is advanced to a position in front of the first hook in the direction of movement of the first hook, which moves forward while rotating laterally from the quill part during coil body forming, and waits to stop. Then, as the detection rod 32 comes into contact with the first hook, the position of the first hook portion is detected, and at that point, the wire feed is stopped by a signal from the detection rod 32.
This is to obtain the opposing position of the setting. Note that after the wire is stopped, if the second hook is formed using a normal coil spring forming method, a coil spring with aligned facing positions can always be wound. put it here,
The conventional mechanism described above has the following drawbacks because the cam 26 determines the timing of the operation of the detection rod 32. FIG. 5 is a view of the coil spring while the coil body is being formed, as seen from the first hook side. Because the detection rod 32 comes into contact with the first hook, its tip reaches inside the coil body when viewed from the side. Since the detection rod 32 moves forward, the position of the first hook during molding of the coil body can be adjusted so that the center of the movement is centered at the point ○A shown here. It is clear that whatever position the first hook is located, the first hook will eventually be able to rotate and come into contact with the detection rod 32. Therefore, when adjusting the mounting position of the cam 26, the operator attempts to locate the center of the dispersion at this point, but this work relies solely on the operator's intuition. Therefore, this positioning depends on the skill and dexterity of the worker, and since it is necessary to increase the rotation speed of the spring manufacturing machine to increase the number of pieces produced, it is necessary to set the variation within the range of ○○○ above. It is extremely difficult to position the first hook during forming the coil body, as shown in Figure 6, which shows the coil spring during forming the coil body as seen from the first hook side. If there is a variation in the setting, and if the variation occurs in the range marked with ○ in Figure 6, the detection rod 32 will be off by half a turn when detecting the first hook, and this will occur during spring manufacturing. A spring whose opposing position of the hook part is shifted by half a turn is mixed in with the product, and it is virtually impossible to judge whether these are good or bad, and all manufactured products are treated as defective. Something happened.

上記欠点に対応することを鑑みて本考案は開発
されたもので、本考案装置の実施例を第2図の検
出器28の拡大図とともに説明する。本考案はこ
の装置により第1フツクと検出棒32との予定す
る時点での接触を確認するもので、以下に詳細を
説明する。平行な二板の支板34,34と下板3
6とで成るコの字をした保持フレーム38の下板
36の上にソレノイド30を取着し、ソレノイド
30の動作軸40の先端に検出棒32を止着す
る。そして、検出棒32から制御装置12まで電
気配線を行ない、この電気信号により駆動源M1
の停止信号を伝達する構成とする。上記動作軸4
0は支板34の抜孔42を貫通して前進後退可能
とされるもので、この中央部にソレノイド30の
作用で前進した際、支板34と当接するストツプ
板44を固着し、上記支板34とストツプ板44
との間の当接で、巻成されつつあるコイルばねの
第1フツクの進行方向前方位置への検出棒32の
位置決めをする。さらに、ストツプ板44の上方
には当板46を固定し、上記保持フレーム38の
支板34上方に絶縁体48を介して固定した取付
板50に設置する弾性力の弱い圧縮ばね52に対
峙させる。第2図は検出棒32が後退した状態を
示すもので、この動作軸40が後退しているとき
は当板46と圧縮ばね52は離隔している。
The present invention has been developed in view of the above-mentioned drawbacks, and an embodiment of the present invention will be described with reference to an enlarged view of the detector 28 in FIG. The present invention uses this device to confirm contact between the first hook and the detection rod 32 at a scheduled time, and will be described in detail below. Two parallel support plates 34, 34 and lower plate 3
The solenoid 30 is mounted on the lower plate 36 of a U-shaped holding frame 38 consisting of 6, and the detection rod 32 is fixed to the tip of the operating shaft 40 of the solenoid 30. Then, electrical wiring is performed from the detection rod 32 to the control device 12, and the drive source M 1 is activated by this electrical signal.
The configuration is such that it transmits a stop signal. The above operating axis 4
0 is made to be able to move forward and backward by passing through a hole 42 in the support plate 34, and a stop plate 44 that comes into contact with the support plate 34 when moved forward by the action of the solenoid 30 is fixed to the central part of the support plate 34. 34 and stop plate 44
The detection rod 32 is positioned in front of the first hook of the coil spring that is being wound in the direction of movement. Further, a contact plate 46 is fixed above the stop plate 44, and is opposed to a compression spring 52 having a weak elastic force, which is installed on a mounting plate 50 fixed above the support plate 34 of the holding frame 38 via an insulator 48. . FIG. 2 shows a state in which the detection rod 32 is retracted, and when the operating shaft 40 is retracted, the contact plate 46 and the compression spring 52 are separated.

一方ソレノイド30の作用により動作軸40が
前進し、ストツプ板44と支板34との当接で検
出棒32の前進位置決めがされる直前に於いて、
上記当板46は圧縮ばね52と当接し、さらに動
作軸40の前進方向に圧縮ばね52を押圧する
が、圧縮ばね52は弾性力の弱いものを使用する
ための圧縮されるのみで位置決め作用には影響を
及ぼすことはない。ここにおいて、取付板50か
ら制御装置12まで第3図の制御装置の一例を示
すブロツク線図に示す様に電気接続する。このた
め、検出棒32がソレノイド30の作用で前進し
てストツプ板44と支板34が当接する直前に於
いて当板46と圧縮ばね52が当接し、当板46
から取付板50を介して当接した信号が演算回路
まで伝達される。この信号を受けた時より検出棒
32と巻成中のコイルばねの第1フツクとが当接
するまでのクイル20からの線送り量を例えばフ
イードローラ16,18と同期する軸に設けるパ
ルス発生器からのパルス数としてカウントする。
第4図はその線送りと検出器28とのタイミング
を示す関係図を示す。いま制御装置12の指令に
より駆動源M1からの駆動力で回転される線材送
りカムにより、共軸の材料送りフイードローラ1
6及び18が互に反対方向に回されることにな
り、その回転力が線材Wを線ガイド用クイル20
の孔を通して力強く前方に放出する。また、制御
装置12の指令により駆動源M2から駆動力が伝
達されて、カムが回転することでクイル20の前
方にU溝を切られた各種成形工具が線材Wと傾斜
した位置まで適宜移動する。その位置でまず第1
フツク成形工具が保持されるとクイル20より送
り出された線材Wは第1フツク成形工具に当接し
第1フツクの湾曲が成形される、(第4図に示す
a領域)続いて第1フツク成形工具と入れ替わり
コイル胴部成形工具が上記と同様な方法でクイル
20前方に位置することにより、第1フツクに続
くコイル胴部が成形される。上記で示すコイル胴
部成形過程において線材送りカムに替わつて制御
装置12の指令から駆動源M1は最初は高速で線
材Wをクイル20から送り出し(第4図に示すb
領域)続いて低速で線材Wをクイル20から送り
出すことで(第4図に示すc領域)コイル胴部が
順に巻成されることになる。ここで、所定にコイ
ル巻数の少し手前までコイル胴部が巻成される
と、その時期にタイミングを合わせた、センサー
作動用カム26の信号により検出器28のソレノ
イド30に動作指令を送り、コイル胴部成形中に
クイル部から横方向に回転しながら前進する第1
フツクの進行方向前方位置まで検出棒32を前進
させて停止待機すると同時に当板と圧縮ばねの当
接で線送りのパルス量の計測を開始し、やがて検
出棒32が第1フツクに当接することで第1フツ
ク部位置を検知し、その時点で検出棒32からの
信号により線材送りを停止させて、設定の対向位
置を得ると同時に線送りの計測を停止して検出棒
32の前進してばねに当接してから第1フツクの
当接までの線材の送り量を計測し、このカウント
量を比較回路に送り、該カウント量が設定器で予
め定められた線送り量のカウント数の上限と下限
の間にあるかを比較回路で比較を行ない、設定値
内にあれば良品信号として信号を取り出す。ま
た、比較回路による比較で上限よりカウント量が
多い場合は、線送り量が多すぎることによるコイ
ル胴部の巻きすぎの状態で検出棒32が第1フツ
クに当接したことになり、対向位置を揃えた巻成
コイルばねの自由長が予定より長いものを生産し
たことであり、一方比較回路による比較で下限値
よりカウント量が少ない場合は、線送り量が少な
い状態で検出棒32が第1フツクに当接したこと
になり、対向位置を揃えた巻成コイルばねの自由
長が予定より短い状態で巻成したことであり、共
に不良信号として信号を取り出し、コイルばねの
巻成の際の異常を検出できるのである。さらに、
材料送り方向に対し直行する平面上に配列された
各種成形工具のクイル前方への移動のタイミング
のずれ等に起因する不良コイルばねを巻成した場
合も、上記線送りカウントが設定値の上限及び下
限の範囲内に納まることがないため不良信号とし
て信号を取り出すことが可能である。線材を停止
させてからはコイル胴部成形工具と入れ替えて第
2フツク成形工具をクイル20前方に位置させ、
線材送りカムにより共軸の材料送りフイードロー
ラ16及び18が互に反対方向に回されることで
線材Wをクイル20から送り出し、第2フツクを
成形する。(第4図に示すd領域)これにより対
向位置の揃つたコイルばねが巻成できる。これに
より、第7図に示すように検出棒32が第1フツ
クに当接する待機位置に進出してから、コイル胴
部の線材の送り量をx〜yに相当する量のパルス
数だけ送り出されてから検出棒32に当接したも
ののみ良品信号を出すことで、この信号に該当す
る製品は良品として扱うこととし、その範囲以外
のものは不良品と良品の混合されたものであるが
不良品信号を出すこととして、この信号に該当す
る製品は排出するのでコイル胴部の巻数及び対向
位置の揃つたコイルばねを検出して生産できるも
のである。以上説明したように本考案装置によれ
ばコイルばね製造機の対向位置を揃える装置にお
いて、検出棒の接触不良によるコイル胴部の巻数
が予定巻数より半巻分ずれてしまうことで起る位
置ずれ等のほか、コイルばねの成形異常の検出も
同時に兼ねて行なえるものであり、これらの異常
の起きた場合に不良信号として取り出した信号の
利用により対向位置の揃つた良品のみを製造機か
ら取り出すことが可能となるので、対向位置を揃
えたコイルばね製造が効果的に行なえるものであ
る。
On the other hand, the operating shaft 40 advances due to the action of the solenoid 30, and just before the detection rod 32 is positioned forward by the contact between the stop plate 44 and the support plate 34,
The abutment plate 46 contacts the compression spring 52 and further presses the compression spring 52 in the forward direction of the operating shaft 40. However, since the compression spring 52 has a weak elastic force, it is only compressed and cannot perform a positioning action. has no effect. Here, electrical connections are made from the mounting plate 50 to the control device 12 as shown in the block diagram of FIG. 3, which shows an example of the control device. Therefore, just before the detection rod 32 moves forward under the action of the solenoid 30 and the stop plate 44 comes into contact with the support plate 34, the contact plate 46 and the compression spring 52 come into contact with each other.
The contact signal is transmitted from the contact plate to the arithmetic circuit via the mounting plate 50. From the time when this signal is received until the detection rod 32 comes into contact with the first hook of the coil spring being wound, the wire feed amount from the quill 20 is determined by a pulse generator provided on a shaft synchronized with the feed rollers 16 and 18, for example. count as the number of pulses.
FIG. 4 is a diagram showing the relationship between the line feed and the timing of the detector 28. Now, the coaxial material feeding feed roller 1 is rotated by the wire feed cam rotated by the driving force from the drive source M 1 in response to a command from the control device 12.
6 and 18 are turned in opposite directions, and the rotational force causes the wire W to be rotated in the wire guide quill 20.
It is emitted forcefully forward through the hole. In addition, driving force is transmitted from the drive source M 2 according to a command from the control device 12, and as the cam rotates, various forming tools having a U-groove cut in front of the quill 20 are appropriately moved to a position inclined to the wire W. do. At that position, first
When the hook forming tool is held, the wire rod W sent out from the quill 20 comes into contact with the first hook forming tool, and the curve of the first hook is formed (area a shown in Fig. 4).Subsequently, the first hook forming By replacing the tool with the coil body forming tool and positioning it in front of the quill 20 in the same manner as described above, the coil body following the first hook is formed. In the process of forming the coil body shown above, the drive source M 1 initially feeds the wire W from the quill 20 at high speed in response to a command from the control device 12 instead of the wire feed cam (b shown in FIG. 4).
Region) Then, by feeding the wire W from the quill 20 at a low speed (region c shown in FIG. 4), the coil body is wound in sequence. Here, when the coil body is wound to a point just before the predetermined number of coil turns, a signal from the sensor actuation cam 26 that is timed at that time sends an operation command to the solenoid 30 of the detector 28, and the coil The first part moves forward while rotating laterally from the quill part while forming the body part.
The detection rod 32 is advanced to the forward position in the direction of movement of the hook, and at the same time as the detection rod 32 is stopped and waiting, measurement of the line feed pulse amount is started by the contact between the contact plate and the compression spring, and the detection rod 32 eventually comes into contact with the first hook. detects the position of the first hook part, and at that point, the wire feed is stopped by a signal from the detection rod 32, and at the same time as the set facing position is obtained, the measurement of the wire feed is stopped and the detection rod 32 is moved forward. The amount of feed of the wire from when it comes into contact with the spring until it comes into contact with the first hook is measured, and this counted amount is sent to the comparison circuit, and this count amount is set as the upper limit of the number of wire feed amount counts predetermined by the setting device. A comparator circuit compares whether the value is between the lower limit and the lower limit, and if it is within the set value, the signal is taken out as a non-defective signal. Furthermore, if the count amount is larger than the upper limit when compared by the comparison circuit, it means that the detection rod 32 has come into contact with the first hook in a state where the coil body is overwound due to too large a wire feed amount, and the opposite position This is because the free length of the wound coil spring with the lines aligned is longer than planned, and on the other hand, if the count amount is less than the lower limit value as compared by the comparison circuit, then the detection rod 32 is 1 hook, and the free length of the wound coil spring with opposing positions aligned was wound in a state shorter than planned, and both signals were taken out as a defective signal, and when the coil spring was wound. It is possible to detect abnormalities in moreover,
Even if a defective coil spring is wound due to a timing shift in the movement of various forming tools toward the front of the quill arranged on a plane perpendicular to the material feeding direction, the wire feed count may exceed the upper limit of the set value. Since the signal does not fall within the lower limit, it is possible to extract the signal as a defective signal. After stopping the wire rod, replace the coil body forming tool and position the second hook forming tool in front of the quill 20.
The coaxial material feed rollers 16 and 18 are rotated in opposite directions by the wire feed cam to feed the wire W from the quill 20 and form the second hook. (Area d shown in FIG. 4) As a result, a coil spring with aligned opposing positions can be wound. As a result, as shown in FIG. 7, after the detection rod 32 advances to the standby position where it comes into contact with the first hook, the wire rod in the coil body is fed by the number of pulses corresponding to By outputting a non-defective signal only for those products that come into contact with the detection rod 32 after the test, products that correspond to this signal are treated as non-defective products, and products outside this range are a mixture of defective and non-defective products, but are considered defective. When a non-defective product signal is issued, products corresponding to this signal are discharged, so that coil springs with the same number of turns and facing positions on the coil body can be detected and produced. As explained above, according to the device of the present invention, in a device for aligning opposing positions of a coil spring manufacturing machine, positional deviation occurs when the number of turns of the coil body deviates by half a turn from the planned number of turns due to poor contact of the detection rod. In addition to the above, it is also possible to detect molding abnormalities in coil springs at the same time, and when these abnormalities occur, the signals extracted as defective signals are used to extract only good products with aligned facing positions from the manufacturing machine. Therefore, it is possible to effectively manufacture coil springs in which the facing positions are aligned.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のコイルばねの製造方法の概略を
説明する骨組図、第2図は検出器拡大図、第3図
は制御装置の一例を示すブロツク線図、第4図は
線送りと検出器28とのタイミングを示す関係
図、第5図、第6図、第7図はコイル胴部成形中
のコイルばねを第1フツク側から見た図である。 12……制御装置、20……クイル、28……
検出器、30……ソレノイド、32……検出棒、
46……当板、52……圧縮ばね。
Fig. 1 is a skeleton diagram outlining the conventional manufacturing method for coil springs, Fig. 2 is an enlarged view of the detector, Fig. 3 is a block diagram showing an example of the control device, and Fig. 4 is wire feeding and detection. FIGS. 5, 6, and 7 are diagrams showing the timing with respect to the coil body 28, as viewed from the first hook side. 12...control device, 20...quill, 28...
Detector, 30... solenoid, 32... detection rod,
46...Packing plate, 52...Compression spring.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 材料送り方向に対し直交する平面上に配列さ
れ、材料に向かつて寄合うように作動する複数個
の成形工具によりコイルばねを製作するフツク付
コイルばね製造機であつて、コイル胴部成形工具
により巻込まれるコイルばねの移動方向前方で、
巻込まれつつあるコイルばねの第1フツクに当接
することで信号を発生する検出棒を設けたものに
於いて、上記検出棒の移動を当接することで検知
する圧縮ばねと、圧縮ばねとの当接による検知か
ら検出棒での第1フツクとの当接信号までの線送
り量を演算する演算回路と、予め上限・下限を設
定させた設定値と演算回路からの線送り量を比較
する比較回路を持ち、比較回路での比較で良・不
良信号を発生させて異常を検出することを特徴と
するコイルばねのフツク部整斉装置に於ける不良
検出装置。
A coil spring manufacturing machine with a hook that manufactures coil springs using a plurality of forming tools that are arranged on a plane perpendicular to the material feeding direction and operate so as to move toward the material, and the coil body forming tool is used to produce coil springs. In front of the coiled spring in the direction of movement,
In a device that is provided with a detection rod that generates a signal by contacting the first hook of the coil spring that is being wound up, a compression spring that detects the movement of the detection rod by contact with the first hook, and a contact between the compression spring and A calculation circuit that calculates the line feed amount from contact detection to the contact signal with the first hook with the detection rod, and a comparison that compares the line feed amount from the calculation circuit with the set value with upper and lower limits set in advance. A defect detection device for a hook portion alignment device of a coil spring, which has a circuit and detects an abnormality by generating a good/bad signal through comparison in a comparison circuit.
JP16321783U 1983-10-20 1983-10-20 Defect detection mechanism in coil spring hook alignment device Granted JPS6071444U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16321783U JPS6071444U (en) 1983-10-20 1983-10-20 Defect detection mechanism in coil spring hook alignment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16321783U JPS6071444U (en) 1983-10-20 1983-10-20 Defect detection mechanism in coil spring hook alignment device

Publications (2)

Publication Number Publication Date
JPS6071444U JPS6071444U (en) 1985-05-20
JPH0340442Y2 true JPH0340442Y2 (en) 1991-08-26

Family

ID=30358197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16321783U Granted JPS6071444U (en) 1983-10-20 1983-10-20 Defect detection mechanism in coil spring hook alignment device

Country Status (1)

Country Link
JP (1) JPS6071444U (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6117242U (en) * 1984-07-03 1986-01-31 利和 奥野 Wire forming machine
JPH0357311Y2 (en) * 1986-10-24 1991-12-26

Also Published As

Publication number Publication date
JPS6071444U (en) 1985-05-20

Similar Documents

Publication Publication Date Title
US5550468A (en) Method and apparatus for adjusting the operating diameter of a probe in a rotating testing head
JPH04783B2 (en)
US4945631A (en) Armature assembly apparatus
JPH0340442Y2 (en)
US4956910A (en) Armature assembly method
EP3383780B1 (en) A method to position spindle precisely in turret type automatic winder
EP0119599A2 (en) Forming apparatus for performing bending operations
US2949136A (en) Apparatus for the automatic production of closed loops of wire from wire stock
US4135378A (en) Wire feeding means
GB2051629A (en) Machine tool having hloow main spindle and bar stock feeding mechanism
US3640164A (en) Automatic chain-cutting machine
US4089405A (en) Lead making machine having improved feeding means
US3758900A (en) Combination point former and thread roller machine
US2627767A (en) Automatically fed thread rolling machine
JP3749724B2 (en) Apparatus and method for intermittently feeding strip shaped blanks to a press
JPH07172644A (en) Sheet winding device and sheet winding method
JPS6363294B2 (en)
KR100442907B1 (en) Spring forming machine
JPH0343103A (en) Product length detection device in automatic lathe
CS216840B2 (en) Method of signalling and sorting of products with badly rolled threads of machines for rolling the threads and facility for executing the same
KR100427808B1 (en) Sequential loading apparatus
JPH08115860A (en) Terminal machining/press-fit device
JP7026928B2 (en) Material supply method and material supply system
RU2065833C1 (en) Automatic machine for producing blanks from composite materials
SU878359A1 (en) Automatic machine for testing and sorting drills