JPH0340351A - Analyzing method and device for educed object - Google Patents

Analyzing method and device for educed object

Info

Publication number
JPH0340351A
JPH0340351A JP17318189A JP17318189A JPH0340351A JP H0340351 A JPH0340351 A JP H0340351A JP 17318189 A JP17318189 A JP 17318189A JP 17318189 A JP17318189 A JP 17318189A JP H0340351 A JPH0340351 A JP H0340351A
Authority
JP
Japan
Prior art keywords
image
precipitates
electron microscope
precipitate
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17318189A
Other languages
Japanese (ja)
Inventor
Yasunari Yoshitomi
吉冨 康成
Masao Matsuo
松尾 征夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP17318189A priority Critical patent/JPH0340351A/en
Publication of JPH0340351A publication Critical patent/JPH0340351A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make analysis of educed substance with high accuracy and high efficiency by subjecting an electron microscopic image to a processing, and obtaining the logical sum of the two-value image in the region bounded by vivid boundaries and an image which has been turned into two values by the variable threshold value method. CONSTITUTION:A specimen for observation of educed substance of a surface dimensioned half the thickness of a Si steel annealed plate is prepared by means of extraction replica method, followed by photographing using an electron microscope, and the image is fed to an analyzer by the use of a TV camera 42. The analyzer converts 43 analog signals of electron microscopic photo 49 into digital signals and feeds to a central processing unit 45 via an image memory 44. The entered image of educed substance is subjected to image processing, and identification of the substance is made, followed by measurement of its size, dispersed condition, etc., and the result is output to a printer 48.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、析出物の解析方法およびそのための装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for analyzing precipitates and an apparatus therefor.

(従来の技術) 従来、電子顕微鏡による析出物の解析は、一般に目視測
定が行なわれている。
(Prior Art) Conventionally, analysis of precipitates using an electron microscope has generally been carried out by visual measurement.

しかしながら、この目視は、1)測定面積が小さく、試
料全体の把握が不十分、2)析出物の認識精度が低い、
等の問題が指摘されている(たとえば、鎌1)仁 編:
「最近の鉄鋼状態分析」(アグネ社、1979)、30
1頁)。
However, this visual inspection has the following problems: 1) The measurement area is small and the entire sample cannot be grasped properly; 2) The recognition accuracy of precipitates is low.
Problems such as those have been pointed out (for example, Kama 1) edited by Jin:
“Recent Steel Condition Analysis” (Agne Publishing, 1979), 30
1 page).

また、析出物の観察試料作成法には、l)薄膜法、2)
抽出レプリカ法があるが、広い視野の観察には抽出レプ
リカ法が適している。しかし、抽出レプリカ法で得られ
る電子顕微鏡像の析出物は、レプリカ膜とのコントラス
トも小さく、近年進歩してきた画像解析技術を用いて析
出物を認識する場合でも、マニュアルしきい値指定によ
る二値化で析出物を認識する際の、しきい値の僅かの違
いで析出物の数、サイズが大きく変動して信頼性が乏し
かった。
In addition, methods for preparing observation samples for precipitates include l) thin film method, 2)
There is an extraction replica method, but the extraction replica method is suitable for observing a wide field of view. However, the contrast of precipitates in electron microscope images obtained by the extraction replica method with the replica film is small, and even when recognizing precipitates using image analysis technology that has advanced in recent years, it is difficult to recognize the precipitates using manual threshold specification. When recognizing precipitates using chemistries, the number and size of precipitates vary greatly due to slight differences in the threshold value, resulting in poor reliability.

一方、鉄鋼等金属材料中の析出物は、機械的性質、磁気
的性質に大きな影響を与える因子であり、析出物を制御
することが材料科学における重要な学問分野の一つとな
っている。このような、析出物の製品特性への影響に加
えて、種々の材料の製造技術の中でも析出物制御は、重
要な役割をもっている。たとえば、方向性電磁鋼板は、
−次再結晶粒の粒成長を抑制する数百λのjVN、Mn
S等の析出物を利用して二次再結晶粒を発生させ、その
結晶方位の集積度を制御することによって製造されてい
る。
On the other hand, precipitates in metal materials such as steel are factors that greatly affect mechanical and magnetic properties, and controlling precipitates is an important academic field in materials science. In addition to the influence of precipitates on product properties, control of precipitates plays an important role in the manufacturing technology of various materials. For example, grain-oriented electrical steel sheets are
jVN, Mn of several hundred λ to suppress grain growth of -order recrystallized grains
It is manufactured by generating secondary recrystallized grains using precipitates such as S and controlling the degree of accumulation of the crystal orientation.

さらに、材料の加工性に影響する再結晶粒径の制御因子
としての析出物の量、サイズの制御は重要であり、たと
えば、時効性制御のためのFe、C析出核としてのMn
S等析出物の重要性が指摘されている。他方、再結晶の
核生成サイトとしての析出物近傍の高歪領域の重要性も
指摘されており、析出物近傍が変態の優先核生成サイト
となるとされている。このように、材料科学における析
出物の重要性は、枚挙に暇がなく、わけても析出物のサ
イズ、分布状態は重要である。
Furthermore, it is important to control the amount and size of precipitates as a control factor for the recrystallized grain size, which affects the workability of materials. For example, Fe for aging control, and Mn as C precipitation nuclei.
The importance of precipitates such as S has been pointed out. On the other hand, the importance of high strain regions near precipitates as nucleation sites for recrystallization has also been pointed out, and the vicinity of precipitates is considered to be the preferential nucleation site for transformation. As described above, the importance of precipitates in materials science is too numerous to list, and the size and distribution state of precipitates are especially important.

しかし、析出物の解析法としては、種々の分析法、電子
線回折等による同定法があるものの、析出物のサイズ、
分布状態を定量的に解析する手段が、従来、不十分であ
った。
However, although there are various analytical methods and identification methods such as electron beam diffraction for analyzing precipitates,
Conventionally, there have been insufficient means to quantitatively analyze the distribution state.

また、近年、高純度の材料の開発が進められ、析出物の
量の測定においても、化学分析では限界にきており、電
子顕微鏡像から析出物の量の測定を行う検討も必要とな
ってきている。
In addition, in recent years, the development of high-purity materials has pushed forward, and chemical analysis has reached its limit in measuring the amount of precipitates, and it is now necessary to consider measuring the amount of precipitates from electron microscope images. ing.

(発明が解決しようとする課題) 本発明は、析出物のサイズ、分布状態等を精度よく解析
することが難しいという問題点を解決する方法および装
置を提供するものである。
(Problems to be Solved by the Invention) The present invention provides a method and an apparatus for solving the problem that it is difficult to accurately analyze the size, distribution state, etc. of precipitates.

(課題を解決するための手段) 本発明は、抽出レプリカ法で作成された試料の電子顕微
鏡像を用いて析出物を解析する方法において、析出物の
電子顕微鏡像に対して、鮮明な境界で囲まれた領域の二
値画像と、可変しきい値法により二値化された画像の論
理和により析出物を認識する方法を提供するものである
。また、上記方法に加えて、濃淡画像の二次元微分値の
高い領域を可変しきい値法により二値化抽出した画像に
よって鮮明な境界を認識する方法を提供するものである
。さらに、抽出レプリカ作成装置、電子顕微鏡、析出物
の電子顕微鏡像に対して鮮明な境界で囲まれた領域の二
値画像を作成し、可変しきい値法により二値化された二
値画像を作成し、該二つの二値画像の論理和を演算算出
する画像解析機からなる析出物の解析装置を提供するも
のである。
(Means for Solving the Problems) The present invention provides a method for analyzing precipitates using an electron microscope image of a sample created by an extraction replica method. This invention provides a method for recognizing precipitates by using the logical sum of a binary image of a surrounded area and an image binarized by a variable threshold method. In addition to the above method, the present invention also provides a method for recognizing sharp boundaries using an image obtained by binarizing and extracting a region of a grayscale image with a high two-dimensional differential value using a variable threshold method. Furthermore, we used an extraction replica creation device, an electron microscope, and created a binary image of a region surrounded by clear boundaries from the electron microscope image of the precipitate, and then created a binary image that was binarized using a variable threshold method. The object of the present invention is to provide a precipitate analysis device comprising an image analyzer that creates a binary image and calculates the logical sum of the two binary images.

以下に、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明は、鉄鋼゛籐材料中の析出物のサイズ、分布状態
を解析する際に、従来、電子顕微鏡像に対して目視測定
が行われていたものを、画像解析を用いて高精度かつ高
効率下に行うことを目的としている。
The present invention uses image analysis to analyze the size and distribution of precipitates in steel and rattan materials, instead of the conventional visual measurement of electron microscope images. The aim is to do so with efficiency.

発明者等は、析出物解析のための種々の方法を広範に亙
って検討した結果、抽出レプリカ法で作成された試料の
電子顕微鏡像を用いて析出物を解析する際に、可変しき
い値法により二値化された二値画像により析出物を認識
すると析出物の中心近傍の領域に二値化で抽出されない
領域が生じるという問題点を解決することが、目的を達
するために必要不可欠であるという結論に達した。可変
しきい値法は、各画素の近傍の領域の濃淡レベルの平均
値を基にして、その値より指定した数だけ濃淡レベルが
高い値を二値化のしきい値とする方法であり、レプリカ
膜(バックグラウンド)の濃淡が、通常、変動する抽出
レプリカ法を用いて析出物の解析を行う際の析出物の認
識法として優れているけれども、析出物の中心近傍では
濃淡がほぼ等しいため、可変しきい値法で二値化を行う
と、二値化で抽出できない領域が生じてしまうという問
題点がある。
As a result of extensive studies on various methods for analyzing precipitates, the inventors have developed a variable threshold method for analyzing precipitates using electron microscope images of samples created by the extraction replica method. In order to achieve the objective, it is essential to solve the problem that when precipitates are recognized using a binary image binarized using the value method, there is a region near the center of the precipitate that is not extracted by binarization. I came to the conclusion that it is. The variable threshold method is a method in which, based on the average value of the gray level of the area near each pixel, a value with a gray level higher by a specified number than that value is used as the threshold for binarization. Although it is an excellent method for recognizing precipitates when analyzing precipitates using the extraction replica method, where the density of the replica film (background) usually varies, the density is almost equal near the center of the precipitate. However, when binarization is performed using the variable threshold method, there is a problem in that there are regions that cannot be extracted by binarization.

そこで、本発明者等は、この抽出抜けの問題を解決する
方法を種々検討した結果、レプリカ膜と析出物の境界が
濃淡変化の大きい(濃淡画像の二次元微分値が高い)領
域であることに着目して研究を進めた。而して、鮮明な
境界(fi淡の変化が大きい領域)で囲まれた領域を二
値化によって抽出し、可変しきい値法によって二値化さ
れた二値画像との論理和をとることによって、上記抽出
抜けの問題を解決し、精度良く析出物を認識できるとい
う新しい知見を得た。
Therefore, the present inventors investigated various ways to solve this problem of missing extraction, and found that the boundary between the replica film and the precipitate is an area with large density changes (high two-dimensional differential value of the density image). The research focused on the following. Then, a region surrounded by a clear boundary (region with a large change in fi) is extracted by binarization, and the logical OR is performed with the binary image binarized by the variable threshold method. Through this method, we solved the above-mentioned problem of missing extraction and obtained new knowledge that precipitates can be recognized with high accuracy.

次に、本発明における構成要件の限定理由について述べ
る。
Next, the reasons for limiting the constituent elements in the present invention will be described.

本発明において、抽出レプリカ法で作威された試料の電
子顕微鏡像を用いて析出物を解析する方法において、析
出物の電子顕微鏡像に対して、鮮明な境界で囲まれた領
域の二値画像と、可変しきい値法によって二値化された
画像の論理和により、析出物を認識すると規定したのは
、析出物を可変しきい値法による二値化によって抽出す
る際に生じる析出物中心近傍での抽出抜けをなくすため
には、鮮明な境界(析出物とレプリカ膜の境界)で囲ま
れた領域を二値化によって抽出し、抽出された二値画像
と可変しきい値法による二値化によって得られた二値画
像との論理和をとることが有効なためである。
In the present invention, in a method for analyzing precipitates using an electron microscope image of a sample created by the extraction replica method, a binary image of a region surrounded by a clear boundary is obtained from an electron microscope image of a precipitate. It is specified that precipitates are recognized by the logical sum of images binarized using the variable threshold method. In order to eliminate missing extraction in the vicinity, a region surrounded by a clear boundary (boundary between the precipitate and the replica film) is extracted by binarization, and the extracted binary image is combined with the binary image using the variable threshold method. This is because it is effective to perform a logical sum with the binary image obtained by digitization.

鮮明な境界で囲まれた領域を二値化によって抽出する方
法は、特に限定しない。
The method of extracting a region surrounded by clear boundaries by binarization is not particularly limited.

電子顕微鏡像を画像解析機を用いて微分(一方向微分、
5obel法等)し、微分値の高い領域を二値化(可変
しきい値法、マニュアルしきい値指定法、モード法、微
分ヒストグラム法、判別分析法等)によって抽出し、抽
出された領域(鮮明な境界)で囲まれた領域を穴埋め処
理を行って鮮明な境界で囲まれた領域を抽出する方法或
は、電子顕微鏡像を画像解析機を用いて二値化(マニュ
アルしきい値指定法、モード法、微分ヒストグラム法、
判別分析法等)し、鮮明な境界で囲まれた領域を抽出す
る方法等の何れの方法でもよい。
Differentiate the electron microscope image using an image analyzer (one-way differential,
5obel method, etc.), extract the region with high differential value by binarization (variable threshold method, manual threshold specification method, mode method, differential histogram method, discriminant analysis method, etc.), and extract the extracted region ( A method of extracting a region surrounded by a clear boundary by filling in the holes (with a clear boundary), or a method of binarizing an electron microscope image using an image analyzer (manual threshold specification method) , mode method, differential histogram method,
Any method may be used, such as a method of extracting a region surrounded by sharp boundaries (discriminant analysis method, etc.).

第2の発明において、濃淡画像の二次元微分値(D値)
の高い領域を可変しきい値法により二値化抽出した画像
によって鮮明な境界を認識すると規定したのは、レプリ
カ膜の濃淡レベルは通常変動するので、析出物とレプリ
カ膜との境界を認識する指標にD値を用い、D値が高い
領域が析出物とレプリカ膜の境界(鮮明な境界)と判断
することが有効でありかつ、D値が高い領域を抽出する
際、鮮明な境界ではD値が局所的に高まっており、各画
素の近傍のD値の平均値より高い領域を可変しきい値法
で二値化し、抽出することが鮮明な境界を認識する上で
有効なためである。
In the second invention, a two-dimensional differential value (D value) of a grayscale image
The reason why we specified that clear boundaries should be recognized using images binarized and extracted from regions with high values using the variable threshold method is because the density level of the replica film usually varies, so it is necessary to recognize the boundary between the precipitate and the replica film. It is effective to use the D value as an index and judge that the area with a high D value is the boundary (clear boundary) between the precipitate and the replica film. This is because it is effective to binarize and extract areas where the D value is higher than the average value in the vicinity of each pixel, where the value is locally increased, using the variable threshold method to recognize clear boundaries. .

濃淡画像の二次元微分を行う方法については、特に限定
しない。5obe l法、Prewitt法、Robe
rts法等何れの方法でもよい。
There is no particular limitation on the method of performing two-dimensional differentiation of the grayscale image. 5obel method, Prewitt method, Robe method
Any method such as the rts method may be used.

第3の発明において、抽出レプリカ作成装置、電子顕微
鏡、析出物の電子顕微鏡像に対して鮮明な境界で囲まれ
た領域の二値画像を作威し、また、可変しきい値法によ
り二値化された二値画像を作成し、これら二つの二値画
像の論理和を演算算出する画像解析機からなる析出物解
析装置と規定したのは、抽出レプリカ作成装置、電子顕
微鏡および上記機能を有する画像解析機がなければ、本
発明のアルゴリズムでの析出物解析が不可能であるから
である。電子顕微鏡像の画像解析機への入力方法は、特
に限定しない。電子顕微鏡から電気信号等で画像解析機
へ画像を伝送する方法或は、電子顕微鏡像を撮影し、ネ
ガフィルムまたはポジフィルムの状態でテレビカメラを
用いて画像を入力する方法等信れの方法でもよい、また
、上記規定以外の画像解析機の仕様については、特に限
定しない。
In the third invention, an extraction replica creation device, an electron microscope, and an electron microscope image of the precipitate are used to create a binary image of a region surrounded by clear boundaries, and a variable threshold method is used to generate a binary image. The precipitate analysis device is defined as a precipitate analysis device consisting of an image analyzer that creates a digitalized binary image and calculates the logical OR of these two binary images.It is defined as a precipitate analysis device that has an extraction replica creation device, an electron microscope, and the above functions. This is because, without an image analyzer, precipitate analysis using the algorithm of the present invention is impossible. The method of inputting the electron microscope image to the image analyzer is not particularly limited. There are reliable methods such as transmitting images from an electron microscope to an image analyzer using electrical signals, or taking an electron microscope image and inputting the image in negative or positive film using a television camera. Also, there are no particular limitations on the specifications of the image analyzer other than those stipulated above.

本発明のアルゴリズムに従って析出物をLi!識するに
際しては、その前処理として、画像のスムージング、鮮
明化、コントラスト強調に関する公知の方法を用いるこ
とは、精度向上の点でさらに好ましい、また、鮮明な境
界を微分像の二値化によって得た後、細線化、火線連結
を順次施すと、鮮明な境界の抽出抜けをなくす効果があ
り、精度向上の点でさらに好ましい。
Li! precipitate according to the algorithm of the present invention! In order to improve accuracy, it is preferable to use known methods for image smoothing, sharpening, and contrast enhancement as preprocessing. After that, thinning and connecting the caustic lines are performed sequentially, which has the effect of eliminating omissions in the extraction of sharp boundaries, which is more preferable in terms of improving accuracy.

また、本発明のアルゴリズムに従って析出物が認識され
た後、通常、析出物のサイズ(円相当径等)、分布状態
(最近接粒重心間距離等)が定量化される。画像解析機
では、通常、析出物の円相当径、真円度、周長等の測定
が可能であり、測定パラメータの仕様については、特に
限定しない。
Further, after the precipitates are recognized according to the algorithm of the present invention, the size (circular equivalent diameter, etc.) and distribution state (distance between nearest neighboring grain centroids, etc.) of the precipitates are usually quantified. The image analyzer can usually measure the equivalent circle diameter, circularity, circumference, etc. of the precipitate, and the specifications of the measurement parameters are not particularly limited.

以下、本発明をさらに図面にもとづいて説明する。Hereinafter, the present invention will be further explained based on the drawings.

第1図は、抽出レプリカ作成の前処理となるエツチング
を行う装置の一例を示している。
FIG. 1 shows an example of an apparatus that performs etching, which is a preprocess for creating an extracted replica.

これは、飽和甘木電極1およびクーロンメータ2を有す
る定電位装置3と電解槽4から構成されている。
This consists of a potentiostatic device 3 having a saturated Amagi electrode 1 and a coulomb meter 2, and an electrolytic cell 4.

予め、エメリー研磨およびパフ研磨、ダイヤモンド研磨
などによって、鏡面状態に仕上げられた試料5は非水溶
媒系の電解液6中で白金電極7との間で所定の電位で電
解される。電解を完了した試料は、乾燥しない状態しで
アセトン8中に移す。
The sample 5, which has been previously finished into a mirror-like state by emery polishing, puff polishing, diamond polishing, etc., is electrolyzed at a predetermined potential between it and a platinum electrode 7 in a non-aqueous electrolyte 6. The sample that has undergone electrolysis is transferred into acetone 8 without drying.

第2図は、抽出レプリカ作成の装置及び作成手順の一例
を示している。
FIG. 2 shows an example of an extraction replica creation device and creation procedure.

エツチング処理を施された試料は清浄なメタノールll
中に移しスポイト12で液を吹きつけ試料表面を洗浄す
る。更にメタノール13を替え洗浄をくり返す。次に試
料のエツチング面に酢酸メチル14に浸したアセチルセ
ルローズ・フィルム15を密着するように張りつける。
The etched sample was cleaned with clean methanol.
The surface of the sample is cleaned by spraying the sample with the liquid using the dropper 12. Furthermore, change the methanol 13 and repeat the washing. Next, an acetylcellulose film 15 soaked in methyl acetate 14 is attached to the etched surface of the sample so as to tightly adhere it.

アセチルセルローズ・フィルムが十分に乾燥した後試料
面より剥離する。
After the acetylcellulose film is sufficiently dried, it is peeled off from the sample surface.

剥離したフィルムは、剥離面を表にして、スライドグラ
ス16上に固定する。フィルムを固定したスライドグラ
ス18は真空蒸着装置17中に蒸着源19に直角になる
ようにセットし、カーボン20を蒸着する。カーボン膜
21は約 160〜200人とする。蒸着を施したフィ
ルムは、スライドグラス22上に溶解したパラフィン2
3をのせたものに、フィルム24の蒸着面側が密着する
ように張りつける。フィルムを張ったスライドグラスを
酢酸メチル25の入った容器26に浸漬する。恒温槽で
60°Cl2O分間加熱し、パラフィンとアセチルセル
ローズフィルム ン膜27を分離する。
The peeled film is fixed on a slide glass 16 with the peeled side facing up. The slide glass 18 to which the film is fixed is set in the vacuum evaporation device 17 so as to be perpendicular to the evaporation source 19, and carbon 20 is evaporated thereon. The carbon film 21 has about 160 to 200 people. The vapor-deposited film is made of paraffin 2 dissolved on a slide glass 22.
The film 24 is attached so that the vapor-deposited side of the film 24 is in close contact with the material on which the film 3 is placed. A slide glass covered with a film is immersed in a container 26 containing methyl acetate 25. The paraffin and acetyl cellulose film membrane 27 are separated from each other by heating in a constant temperature bath for 60° C. Cl2O minutes.

カーボン膜を清浄な酢酸メチルで洗浄した後、メタノー
ル28の液に移す。メタノール中のカーボン膜を電子顕
微鏡検鏡用のシートメツシュ29に掬い濾紙30上で乾
燥、固定する。
After washing the carbon membrane with clean methyl acetate, it is transferred to a solution of 28 methanol. A carbon film in methanol is scooped onto a sheet mesh 29 for electron microscopy, dried and fixed on a filter paper 30.

第3図は析出物の観察、撮影用の電子顕微鏡の一例を示
す。
FIG. 3 shows an example of an electron microscope for observing and photographing precipitates.

電子顕微鏡は通常の透過型電子顕微鏡である。The electron microscope is a normal transmission electron microscope.

鏡体31は高真空に保持され、その頂部に電子銃32が
取りつけられており、電子銃より放出された電子ビーム
は励磁レンズで構成されている照射系レンズ33、拡大
系レンズ34を通り螢光板35に投影される。この時レ
プリカ試料36は、対物レンズ中にセットされている。
The mirror body 31 is maintained in a high vacuum, and an electron gun 32 is attached to the top of the mirror body 31. The electron beam emitted from the electron gun passes through an irradiation system lens 33, which is composed of an excitation lens, and a magnification system lens 34, and becomes a fluorescent light. It is projected onto the light plate 35. At this time, the replica sample 36 is set in the objective lens.

像の記録は螢光板の下部のカメラ室37中のフィルム3
8に直接、電子線を露光することによって行なわれる。
The image is recorded using film 3 in the camera chamber 37 below the fluorescent plate.
This is done by directly exposing 8 to an electron beam.

第4図に析出物解析用の画像解析機の一例を示す。Figure 4 shows an example of an image analyzer for precipitate analysis.

画像解析機は、テレビカメラ42から入力される析出物
観察用の電子顕微鏡写真49(ネガフィルム又はポジフ
ィルム)のアナログ信号をデジタル信号に変換するA−
D変換機43、画像メモリ44を介してA−D変換機4
3に接続された中央処理装置45を備えている。中央処
理装置45には、メインメモリ41、イメージプロセッ
サ47、CRTデイスプレィ46及びプリンタ48が接
続されている。画像メモリ44は、A−D変換器43か
らの信号をメインメモリ41に送り込む際にバッファの
働きをする。イメージプロセッサ47は雑音の除去、各
種フィルタリング処理などの画像処理を行う。
The image analyzer converts an analog signal of an electron micrograph 49 (negative film or positive film) for observing precipitates inputted from a television camera 42 into a digital signal.
A-D converter 4 via D converter 43 and image memory 44
The central processing unit 45 is connected to the central processing unit 3. A main memory 41 , an image processor 47 , a CRT display 46 , and a printer 48 are connected to the central processing unit 45 . The image memory 44 functions as a buffer when sending the signal from the A-D converter 43 to the main memory 41. The image processor 47 performs image processing such as noise removal and various filtering processes.

入力された析出物の画像に対して、例えば、ポジフィル
ムに対して第5図に示すフローに従って画像処理が行わ
れ、析出物が認識され、次いで、析出物のサイズ(円相
5径)、分散状B(最近接粒重心間距M)等が測定され
、結果がプリンタ48に出力される。
For example, image processing is performed on the input precipitate image on a positive film according to the flow shown in FIG. The dispersion pattern B (distance M between nearest grain centroids) and the like are measured, and the results are output to the printer 48.

(実施例) 実施例1 重量で、C:0.0015%、Si:3.25%、Mn
: 0. 1 4%、S : 0. 0 0 7%、酸
可溶性M:0、 0 2 6%、N : 0. O O
 B 2%、残部Pa及び不可避的不純物からなる0.
285mm厚さの珪素鋼焼鈍板の板厚の1/2の面の析
出物観察用試料を抽出レプリカ法で作威し、電子顕微鏡
を用いて写真をとり、テレビカメラにより画像を画像解
析機に人力し、第5図に示す画像解析フローを用いて析
出物の二値画像を作威した6第6図(a)は前記試料の
析出物賦存状態を示す電子顕微鏡による金属組織写真(
原画像)、同図(b)はその二値画像を示す金属組織写
真である。
(Example) Example 1 By weight, C: 0.0015%, Si: 3.25%, Mn
: 0. 14%, S: 0. 0 0 7%, acid soluble M: 0, 0 2 6%, N: 0. O O
0.0% consisting of B 2%, balance Pa and unavoidable impurities.
A sample for precipitate observation on a half-thickness side of a 285 mm thick silicon steel annealed plate was prepared using the extraction replica method, a photograph was taken using an electron microscope, and the image was sent to an image analyzer using a television camera. A binary image of the precipitates was created manually using the image analysis flow shown in Figure 5. Figure 6 (a) is a metallographic photograph taken with an electron microscope showing the presence of precipitates in the sample.
(original image), and FIG. 6(b) is a metal structure photograph showing the binary image.

実施例2 重量で、C: 0. OO12%、Si:3.24%、
Mn: 0.075%、S : 0.024%、酸可溶
性N:0、027%、N : 0.0081%、Sn 
: 0. l 0%、Cu : 0.06%、残部Fe
及び不可避的不純物からなる0、220mm厚さの珪素
鋼焼鈍板の板厚の115の面の析出物観察用試料を抽出
レプリカ法で作威し、電子顕微鏡を用いて写真をとり、
ネガフィルムを原画像として画像解析機に人力し、第7
図に示す画像解析フローを用いて析出物のサイズ(円相
当径)、数を測定した。また、析出物の認識精度調査の
ため、目視で析出物の数を測定した。測定結果を、第1
表に示す。
Example 2 By weight, C: 0. OO12%, Si:3.24%,
Mn: 0.075%, S: 0.024%, acid soluble N: 0.027%, N: 0.0081%, Sn
: 0. l 0%, Cu: 0.06%, balance Fe
A sample for observing the precipitates on the 115th plane of the thickness of a silicon steel annealed plate with a thickness of 0.220 mm, consisting of unavoidable impurities, was prepared using the extraction replica method, and a photograph was taken using an electron microscope.
The negative film is used as the original image and manually inputted into the image analysis machine.
The size (equivalent circle diameter) and number of precipitates were measured using the image analysis flow shown in the figure. In addition, to investigate the recognition accuracy of precipitates, the number of precipitates was visually measured. The measurement results are shown in the first
Shown in the table.

第 表 実施例3 重量で、C: 0.056%、Si:3.24%、Mn
:0.15%、S : O,OO6%、酸可溶性A7:
0.025%、N : 0.0079%、残部Fe及び
不可避的不純物からなる2、311IIm厚さの珪素鋼
熱延板を、■1200℃まで昇温後急冷、■1150℃
に30秒間保持し、900℃まで2分間で降温した後急
冷、の2つの条件で処理し、次いで、0.285mm厚
まで冷間圧延した後、N、15%、Hz:75%、露点
:59°Cの雰囲気中で830 ”Cに70秒間保持後
、900℃に20秒間保持する焼鈍を施した0次いで、
この2種類の焼鈍板の板厚の1/2の面の析出物観察用
試料を、抽出レプリカ法で作放し、電子顕微鏡を用いて
各試料25枚の写真をとり、ネガフィルムを原画像とし
て画像解析機に入力し、第7図に示す画像解析フローを
用いて析出物のサイズ(円相当径)の分布を測定した。
Table Example 3 By weight, C: 0.056%, Si: 3.24%, Mn
: 0.15%, S: O, OO6%, acid soluble A7:
0.025%, N: 0.0079%, balance Fe and unavoidable impurities. A hot rolled silicon steel plate with a thickness of 2,311 IIm was heated to 1200°C and then rapidly cooled to 1150°C.
It was treated under two conditions: held for 30 seconds, cooled down to 900°C for 2 minutes, and then rapidly cooled. Then, after cold rolling to a thickness of 0.285 mm, N, 15%, Hz: 75%, dew point: After annealing at 830"C for 70 seconds and then at 900"C for 20 seconds in a 59°C atmosphere,
Samples for precipitate observation on the 1/2 side of the plate thickness of these two types of annealed plates were prepared using the extraction replica method, 25 photographs of each sample were taken using an electron microscope, and the negative film was used as the original image. The data were input into an image analyzer and the size distribution (equivalent circle diameter) of the precipitates was measured using the image analysis flow shown in FIG.

測定結果を、第8図に示す。なお、ここでは、レプリカ
膜に抽出された観察領域の厚さを析出物の平均サイズで
近似し、析出物の数密度を測定した。
The measurement results are shown in FIG. Note that here, the thickness of the observation region extracted on the replica film was approximated by the average size of the precipitates, and the number density of the precipitates was measured.

(発明の効果) 以上述べたように、本発明によれば、鉄鋼等材料の機械
的性質、磁気的性質に大きな影響を与えかつ、諸種の材
料の製造技術の中でも重要な材料科学的因子である析出
物のサイズ、分布状態等の高い精度下での解析が可能と
なるから、その学術的、工業的効果は大なるものがある
(Effects of the Invention) As described above, according to the present invention, it has a great influence on the mechanical properties and magnetic properties of materials such as steel, and is an important material science factor among the manufacturing technologies of various materials. Since it becomes possible to analyze the size, distribution state, etc. of a certain precipitate with high precision, it has great academic and industrial effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は抽出レプリカ作成の前処理となるエツチングを
行う装置の一例を示す図、第2図は抽出レプリカ作成の
装置及び作成手順の一例を示す図、第3図は析出物の観
察、撮影用の電子顕微鏡の一例を示す図、第4図は析出
物解析用の画像解析機の一例を示す図、第5図は析出物
の電子顕微鏡写真を原画像として、析出物の二値画像を
得るための画像解析フローを示す図、第6図(a)は前
記試料の析出物賦存状態を示す電子顕微鏡による金属組
織写真(原画像)、同図(ハ)はその二値画像を示す金
属組織写真、第7図は析出物の電子顕微鏡写真のネガフ
ィルムを原画像として析出物の二値画像を得、次いで析
出物のサイズ、数を測定する画像解析のフローを示す図
、第8図は第7図のフローを用いて測定された析出物の
分級結果の例を示す図である。 26:B 第4図 D師の浄書 (a) (b) 一一一← P トーー 2)tnt 第8図 耕出物円相当経C,tL7り 手続補正群 (方式) 平!1 年11月21日 持バ′「庁長官吉田文毅殿 1、事件の表示 平成1年特許願第173181号 2、発明の名称 析出物の解析方法および装置 3、補正をする者 事件との関係 特許山順人 6゜ 補正の対象 (1)明細書15頁1〜4行「第6図(a)は・・・・
・・・・・・・・・・・金属組織写真である。」を下記
の通り補正する。 「第6図(、)は前記試料の析出物の存在状態を示す電
子顕微鏡による写真(原画像)を模式的に示す図、同図
(b)はその二値画像を模式的に示す図である。」 (2)同18頁2〜5行「第6図(a)は・・・・・・
・・・・・・・・・金属組織写真、」を下記の通り補正
する。 「第6図(a)は析出物の存在状態を示す電子顕微鏡に
よる写真(原画像)を模式的に示す図、同図(b)はそ
の二値画像を模式的に示す図、」 (3)第6図を別紙の通り補正する。 手 続 補 正 書 (自発) 平成 年1 月21 日
Figure 1 is a diagram showing an example of a device that performs etching, which is a pretreatment for creating an extraction replica, Figure 2 is a diagram showing an example of the equipment and procedure for creating an extraction replica, and Figure 3 is a diagram showing the observation and photographing of precipitates. Figure 4 shows an example of an image analyzer for precipitate analysis. Figure 5 shows a binary image of the precipitate using an electron micrograph of the precipitate as the original image. Figure 6(a) is a metallographic photograph (original image) taken by an electron microscope showing the precipitate presence state of the sample, and Figure 6(c) is its binary image. Metal structure photograph, Figure 7 is a diagram showing the flow of image analysis in which a binary image of the precipitate is obtained using the negative film of the electron micrograph of the precipitate as the original image, and then the size and number of the precipitate are measured. The figure is a diagram showing an example of the classification results of precipitates measured using the flow shown in FIG. 7. 26:B Fig. 4 Master D's engraving (a) (b) 111← P To 2) tnt Fig. 8 Cultivated product circle equivalent sutra C, tL7 procedure correction group (method) Hei! 1 November 21, 2015, ``Affiliate Commissioner Yoshida Bunki 1, Indication of the case 1999 Patent Application No. 173181 2, Name of the invention Method and apparatus for analyzing precipitates 3, Person making the amendment Related Patent Yama Junjin 6° Subject of amendment (1) Specification page 15, lines 1 to 4 “Figure 6 (a) is...
......This is a photograph of the metal structure. ' shall be corrected as follows. ``Figure 6 (,) is a diagram schematically showing an electron microscope photograph (original image) showing the state of the precipitate in the sample, and Figure 6 (b) is a diagram schematically showing its binary image. (2) Page 18, lines 2 to 5, ``Figure 6 (a) is...''
......Metal structure photograph,'' is corrected as follows. ``Figure 6 (a) is a diagram schematically showing an electron microscope photograph (original image) showing the state of existence of precipitates, and Figure 6 (b) is a diagram schematically showing its binary image.'' (3 ) Correct Figure 6 as shown in the attached sheet. Procedural amendment (voluntary) January 21, 2008

Claims (3)

【特許請求の範囲】[Claims] (1)抽出レプリカ法で作成された試料の電子顕微鏡像
を用いて析出物を解析する方法において、析出物の電子
顕微鏡像に対して鮮明な境界で囲まれた領域の二値画像
と、可変しきい値法により二値化された画像の論理和に
より析出物を認識することを特徴とする析出物の解析方
法。
(1) In a method of analyzing precipitates using an electron microscope image of a sample created by the extraction replica method, a binary image of a region surrounded by clear boundaries and a variable A precipitate analysis method characterized by recognizing precipitates by logical sum of images binarized using a threshold method.
(2)濃淡画像の二次元微分値の高い領域を可変しきい
値法により二値化抽出した画像によって鮮明な境界を認
識することを特徴とする特許請求の範囲第1項記載の方
法。
(2) The method according to claim 1, wherein a clear boundary is recognized by an image obtained by binarizing and extracting a region with a high two-dimensional differential value of a grayscale image using a variable threshold method.
(3)抽出レプリカ作成装置、電子顕微鏡、析出物の電
子顕微鏡像に対して鮮明な境界で囲まれた領域の二値画
像を作成し、可変しきい値法により二値化された二値画
像を作成し、該二つの二値画像の論理和を演算算出する
画像解析機からなることを特徴とする析出物の解析装置
(3) Extraction replica creation device, electron microscope, creates a binary image of a region surrounded by clear boundaries from the electron microscope image of the precipitate, and binarizes the binary image using the variable threshold method. 1. A precipitate analysis device comprising an image analyzer that creates a binary image and calculates a logical sum of the two binary images.
JP17318189A 1989-07-05 1989-07-05 Analyzing method and device for educed object Pending JPH0340351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17318189A JPH0340351A (en) 1989-07-05 1989-07-05 Analyzing method and device for educed object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17318189A JPH0340351A (en) 1989-07-05 1989-07-05 Analyzing method and device for educed object

Publications (1)

Publication Number Publication Date
JPH0340351A true JPH0340351A (en) 1991-02-21

Family

ID=15955594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17318189A Pending JPH0340351A (en) 1989-07-05 1989-07-05 Analyzing method and device for educed object

Country Status (1)

Country Link
JP (1) JPH0340351A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013243128A (en) * 2012-05-17 2013-12-05 Fei Co Scanning microscope having adaptive scanning

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013243128A (en) * 2012-05-17 2013-12-05 Fei Co Scanning microscope having adaptive scanning

Similar Documents

Publication Publication Date Title
CN105352873B (en) The characterizing method of shale pore structure
TWI403714B (en) Determination of Particle Size Distribution of Microparticles in Metallic Materials
WO2012139313A1 (en) Method for identifying cancer cell pattern using soft x-ray microscopic imaging
JP2001512824A (en) System and method for automatically detecting malignant cells and cells with malignant-related changes
JPH10506484A (en) Biological analysis self-calibration device
CN111896523A (en) Surface-enhanced Raman scattering substrate and preparation method and application thereof
Caya et al. Detection and counting of red blood cells in human urine using canny edge detection and circle hough transform algorithms
Phelps et al. Electron Diffraction and Electron Microscope Study of Oxide Films Formed on Metals and Alloys at Moderate Temperatures Stripped Oxide Films of Metals
CN114022539A (en) Microscopic image cell position judgment method
JPH0340351A (en) Analyzing method and device for educed object
JP3034975B2 (en) Pattern feature extraction method
CN105043948B (en) The measuring system and measuring method of single nanoparticle particle diameter
CN110705539A (en) Image acquisition method and system for improving low-power center segregation rating precision of continuous casting billet
WO2022227389A1 (en) Machine learning-based molybdenum disulfide sample three-dimensional characterization method and model, and application
CN110363740A (en) Sperm fragment recognition methods in DNA image
Kudrya et al. Possibilities of digital optical microscopy for objective certification of the quality of metalware
He et al. Texture detection of aluminum foil based on top-hat transformation and connected region segmentation
CN114581468A (en) Activated sludge strain segmentation method based on anisotropic phase stretch transformation
Remya et al. Automated karyotyping of metaphase chromosome images based on texture features
CN113281337B (en) Extraction method of complex compound Raman spectrum
Brittain et al. The influence of annealing on the structure and hardness of electrodeposited chromium
JPH03150447A (en) Method and apparatus for analyzing crystal structure
CN107328757B (en) Composite membrane for latent fingerprint transfer, development or inclusion integrated full-dry state detection and detection method
Tychinsky et al. Three-dimensional living cell imaging with high spatial and time resolutions
Usaj et al. Automatic cell detection in phase-contrast images for evaluation of electroporation efficiency in vitro