JPH03150447A - Method and apparatus for analyzing crystal structure - Google Patents

Method and apparatus for analyzing crystal structure

Info

Publication number
JPH03150447A
JPH03150447A JP1289361A JP28936189A JPH03150447A JP H03150447 A JPH03150447 A JP H03150447A JP 1289361 A JP1289361 A JP 1289361A JP 28936189 A JP28936189 A JP 28936189A JP H03150447 A JPH03150447 A JP H03150447A
Authority
JP
Japan
Prior art keywords
image
crystal structure
binarization
grain boundaries
optical microscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1289361A
Other languages
Japanese (ja)
Inventor
Yasunari Yoshitomi
吉富 康成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1289361A priority Critical patent/JPH03150447A/en
Publication of JPH03150447A publication Critical patent/JPH03150447A/en
Pending legal-status Critical Current

Links

Landscapes

  • Microscoopes, Condenser (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To accurately and efficiency analyze a crystal structure by using the optical microscopic image for which a phase difference method is used as an original image and recognizing the grain boundary by binarization. CONSTITUTION:The optical microscopic image for which the phase difference method is used is used as the original image and the grain boundary is regulated to be recognized by the binarization. A variable threshold method is used in the binarization to extract the grain boundary in addition to technology and further, the grain boundaries cut here and there are restored by using the remov al of isolated points, graphic expansion, graphic contraction, and formation of finer lines after the grain boundary is extracted by the binarization. The crystal structure analyzing apparatus consisting of the optical microscope which can produce the phase difference image and an image analyzing machine which makes the calculation to extract the grain boundary of the optical microscopic phase difference image of the crystal structure by the binarization is provided. The crystal structure is analyzed with the high accuracy and the high efficiency in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は結晶組織の解析方法及びそのための装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a crystal structure analysis method and an apparatus therefor.

〔従来の技術〕[Conventional technology]

結晶組織の解析には、一般に、(1)光学顕微鏡写真の
各結晶粒を切り出し、重量を測定することによって各結
晶粒の面積1粒径を求める方法、(2)光学顕微鏡像(
又は写真)上に直線を描き、その直線を横切る粒界の数
から平均粒径を求める方法、(3)単位面積内の結晶粒
の数から結晶粒の平均面積。
In general, to analyze the crystal structure, there are two methods: (1) cutting out each crystal grain in an optical microscope photograph and measuring its weight to determine the area per grain size of each crystal grain;
(or photo) A method of drawing a straight line and calculating the average grain size from the number of grain boundaries that cross the straight line. (3) Calculating the average area of grains from the number of grains within a unit area.

平均粒径を求める方法、(4)光学顕微鏡写真の粒界を
マニュアルでトレースして、トレース像を画像解析機を
用いて解析する方法等が行われている。
Methods include determining the average grain size, and (4) manually tracing grain boundaries in an optical microscope photograph and analyzing the traced image using an image analyzer.

しかし、(1)、 (41の場合には、効率が極めて悪
く、(2L (3)の場合には、結晶組織の平均情報だ
けで、粒径分布2粒の形状等金属学的に重要な量が測定
できない等の問題がある。
However, in the case of (1) and (41), the efficiency is extremely low, and in the case of (2L (3), only the average information of the crystal structure is used, and the metallurgically important information such as the shape of the two grains in the grain size distribution is used. There are problems such as the inability to measure the amount.

一方、鉄鋼等材料中の結晶組織は、機械的性質磁気的性
質に大きな影響を与える因子であり、結晶組織を制御す
ることは、材料科学の重要な学問分野の1つとなってい
る。このような製品特性への影響に加えて、各材料の製
造技術の中でも、結晶組織制御は重要な役割をもってい
る。例えば、方向性電磁銅板は、二次再結晶現象を利用
し、集積度の高い結晶方位粒を得ることによって製造さ
れているが、その二次再結晶に先立つ一次再結晶組織の
結晶粒の平均粒径1粒径分布が二次再結晶の良、不良、
二次再結晶粒の方位、製品の特性に影響を与えることが
知られている。さらに結晶粒径が製品の加工性に影響を
与え、製造工程途中での結晶粒径が冷延再結晶後の集合
組織に影響を与えることもよく知られている。
On the other hand, the crystal structure in materials such as steel is a factor that greatly influences mechanical and magnetic properties, and controlling the crystal structure is one of the important academic fields of materials science. In addition to this influence on product properties, crystal structure control plays an important role in the manufacturing technology of each material. For example, grain-oriented electromagnetic copper sheets are manufactured by utilizing the secondary recrystallization phenomenon to obtain crystal oriented grains with a high degree of integration. Particle size 1 Particle size distribution indicates whether secondary recrystallization is good or bad.
It is known that the orientation of secondary recrystallized grains affects the properties of products. Furthermore, it is well known that the crystal grain size affects the workability of the product, and that the crystal grain size during the manufacturing process affects the texture after cold rolling and recrystallization.

この様な背景をふまえ、近年精度、効率共に優れた結晶
組織解析方法の開発が要望されてきた。
Based on this background, there has been a demand in recent years for the development of a crystal structure analysis method with excellent accuracy and efficiency.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、結晶組織を精度良く、効率的に解析すること
が難しいという問題点を解決する方法及び装置を提供す
るものである。
The present invention provides a method and an apparatus for solving the problem that it is difficult to accurately and efficiently analyze a crystal structure.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、結晶組織を画像解析を用いて解析する方法に
おいて、位相差法を用いた光学顕微鏡像を原画像とし、
粒界を二値化によって認識する方法を提供するものであ
る。また、上記技術に加えて、粒界を抽出する二値化に
おいて、可変しきい値法を用いる方法を提供するもので
ある。また、さらに上記技術に加えて、粒界を二値化に
より抽出した後、孤立点除去1図形の膨張1図形の収縮
細線化を用いて切れ切れの粒界を修復する技術を提供す
るものである。また、位相差像現出可能な光学顕微鏡と
結晶組織の光学顕微鏡位相差像の粒界を二値化によって
抽出する計算を行う画像解析機からなる結晶組織解析装
置を提供するものである。
The present invention provides a method for analyzing a crystal structure using image analysis, in which an optical microscope image using a phase contrast method is used as an original image;
This provides a method for recognizing grain boundaries by binarizing them. In addition to the above techniques, the present invention also provides a method using a variable threshold method in binarization for extracting grain boundaries. Furthermore, in addition to the above-mentioned technique, the present invention provides a technique of extracting grain boundaries by binarization and then repairing broken grain boundaries using expansion of one figure with removal of isolated points and contraction and thinning of one figure. . Further, the present invention provides a crystal structure analysis apparatus comprising an optical microscope capable of expressing a phase contrast image and an image analyzer that performs calculations to extract grain boundaries in the optical microscope phase contrast image of a crystal structure by binarization.

本発明は、鉄鋼等材料中の結晶組織を解析する際に、従
来、一般に用いられていた(1)光学顕微鏡写真の各結
晶粒を切り出し、重量を測定することによって各結晶粒
の面積1粒径を求める方法、(2)光学顕微鏡像(又は
写真)上に直線を描き、その直線を横切る粒界の数から
平均粒径を求める方法、(3)単位面積内の結晶粒の数
から結晶粒の平均面積平均粒径を求める方法、(4)光
学顕微鏡写真の粒界をマニュアルでトレースして、トレ
ース像を画像解析機を用いて解析する方法が精度、効率
、情報量等の点で問題があるところを、光学顕微鏡の位
相差像を画像解析することによって結晶組織を高精度、
高効率に解析することを目的とする。
When analyzing the crystal structure in materials such as steel, the present invention has been developed by (1) cutting out each crystal grain in an optical microscope photograph and measuring the weight, which has been generally used in the past to analyze the crystal structure of materials such as steel; (2) Draw a straight line on an optical microscope image (or photograph) and calculate the average grain size from the number of grain boundaries that cross the straight line. (3) Calculate the average grain size from the number of grains within a unit area. The method of determining the average area average grain size of the grains, and (4) the method of manually tracing the grain boundaries in an optical microscope photograph and analyzing the traced image using an image analyzer, are better in terms of accuracy, efficiency, amount of information, etc. Where there is a problem, the crystal structure can be determined with high precision by image analysis of the phase contrast image of an optical microscope.
The purpose is to analyze with high efficiency.

本発明者らは、結晶組織の解析のための種々の方法を広
汎に亙って検討した結果、試料の凹凸を明暗のレベル差
として現出させる光学顕微鏡の位相差像を原画像として
用い、粒界を二値化によって抽出することが極めて有効
であるという新知見を得た。また、通常、位相差像のマ
トリックスの明暗が場所によって異なることから、二値
化に際し、固定しきい値法よりも可変しきい値法の方が
精度が高まるという新知見を得た。さらに粒界を−値化
によって抽出した後、通常、粒界は切れ切れになってお
り、さらに研磨キズ、介在物等のノイズを含んでおり、
この二値画像を、孤立点除去図形の膨張2図形の収縮、
細線化を用いて、粒界のみが含まれる画像へ変換するこ
とが極めて有効であるという新知見を得た。
As a result of extensive studies on various methods for analyzing crystal structures, the present inventors used a phase contrast image of an optical microscope as an original image, which reveals the unevenness of a sample as a difference in brightness and darkness. We obtained new knowledge that extracting grain boundaries by binarization is extremely effective. In addition, since the brightness of the matrix of a phase contrast image usually differs depending on the location, new findings were obtained that the variable threshold method is more accurate than the fixed threshold method during binarization. Furthermore, after extracting the grain boundaries by converting them into negative values, the grain boundaries are usually cut off and also contain noise such as polishing scratches and inclusions.
This binary image is expanded,
We have obtained new knowledge that it is extremely effective to convert images containing only grain boundaries using line thinning.

次に本発明の構成要件の限定理由について述べる。Next, reasons for limiting the constituent elements of the present invention will be described.

本発明において、結晶組織を画像解析を用いて解析する
方法において、位相差法を用いた光学顕微鏡像を原画像
とし、粒界を二値化によって認識すると規定したのは、
位相差法が試料の凹凸を明暗のレベル差として現出させ
る方法であり、通常の腐食で現出しにくい小傾角粒界で
もマトリックスと明暗差をつけることが可能であるため
、二値化によって粒界を抽出するのに有利なためである
In the present invention, in the method of analyzing crystal structures using image analysis, it is specified that an optical microscope image using a phase contrast method is used as the original image and grain boundaries are recognized by binarization.
The phase contrast method is a method that reveals the unevenness of the sample as a difference in brightness and darkness, and it is possible to create a difference in brightness and darkness from the matrix even at small angle grain boundaries that are difficult to appear in normal corrosion. This is because it is advantageous for extracting the field.

光学顕微鏡像を画像解析機に入力する方法は特に限定し
ない。光学顕微鏡写真をテレビカメラを用いて入力する
方法、光学顕微鏡から電気信号で直接画像解析機に入力
する方法等いずれの方法でもよい。また、入力画像に対
する濃淡画像の画像処理に関しては特に限定しないが、
シェーディング補正、スムージング、濃淡レベルの規格
化等を行うことは、精度向上の点で好ましい。
The method of inputting the optical microscope image into the image analyzer is not particularly limited. Any method may be used, such as inputting an optical microscope photograph using a television camera or directly inputting an electrical signal from an optical microscope to an image analyzer. In addition, there is no particular limitation regarding the image processing of the grayscale image for the input image, but
It is preferable to perform shading correction, smoothing, standardization of gray level, etc. from the viewpoint of improving accuracy.

また、上記発明に加えて、粒界を抽出する二値化におい
て、可変しきい値法を用いると規定したのは、光学顕微
鏡の位相差像のマトリックスの明暗レベルは場所的に連
続的に変化しており、固定しきい値法で二値化するより
も可変しきい値法で二値化する方が粒界を抽出するのに
有効なためである。可変しきい値法は、通常、画像の場
所によって二値化のしきい値を変える方法であるが、ス
ムージング等によってパックグラウンドの濃淡レベルを
求め、ハックグラウンドより所定の濃淡レベルだけ高い
領域を抽出する方法1画像をいくつかの領域に分割して
、各領域において判別分析法で二値化する方法等いずれ
の方法でもよい。
In addition to the above invention, the variable threshold method is specified to be used in the binarization for extracting grain boundaries, because the brightness level of the matrix of the phase contrast image of the optical microscope changes continuously from place to place. This is because binarization using the variable threshold method is more effective in extracting grain boundaries than binarizing using the fixed threshold method. The variable threshold method is a method that usually changes the binarization threshold depending on the location of the image, but it calculates the density level of pack ground by smoothing etc., and extracts areas that are higher than hack ground by a predetermined density level. Method 1: Any method may be used, such as dividing the image into several regions and binarizing each region using a discriminant analysis method.

さらに上記発明に加えて、粒界を二値化によって抽出し
た後、孤立点除去2図形の膨張5図形の収縮、細線化を
用いて、切れ切れの粒界を修復すると規定したのは、粒
界を二値化によって抽出した後、通常、粒界は切れ切れ
になっており、研磨キズ、介在物等のノイズを含んだ画
像になっているため、この二値化像をノイズを含まず、
粒界が完全につながった画像へと変換するためには、孤
切れ切れの粒界の接続及びひき続く図形の収縮により粒
界の幅を元に戻す処理と、粒径等の測定のために粒界幅
を最小にする細線化が有効なためである。
Furthermore, in addition to the above invention, it is specified that after grain boundaries are extracted by binarization, broken grain boundaries are repaired by expansion of isolated point removal 2 figures, 5 contraction and thinning of figures, and broken grain boundaries are repaired. After extraction by binarization, the grain boundaries are usually cut off and the image contains noise such as polishing scratches and inclusions, so this binarized image is extracted without noise.
In order to convert to an image in which the grain boundaries are completely connected, it is necessary to restore the width of the grain boundaries to the original size by connecting the isolated grain boundaries and subsequently shrinking the shape. This is because line thinning that minimizes the boundary width is effective.

さらに、二値化像を粒界のみの像へ修復する際、孤立点
除去−図形の膨張−図形の収縮を一連の処理とし、孤立
点除去のサイズ、図形の膨張の膨張幅(−図形の収縮の
収縮幅)を小さい値から大きい値へ変えて、上記一連の
処理を繰り返すことは精度向上の点でさらに好ましい。
Furthermore, when restoring a binarized image to an image containing only grain boundaries, the removal of isolated points, the expansion of the figure, and the contraction of the figure are performed as a series of processes. It is further preferable to repeat the above series of processes by changing the shrinkage width) from a small value to a large value in order to improve accuracy.

細線化の方法については特に限定しない。There are no particular limitations on the method of thinning.

Hilditchの方法、鶴岡の方法、板弁の方法。Hilditch's method, Tsuruoka's method, Itaben's method.

Dentschの方法、円相の方法等いずれの方法でも
よい。
Any method such as Dentsch's method or Enso's method may be used.

さらに、細線化後、孤立点除去、ヒゲ除去、矢線連結等
を適時行うことは精度向上の点でさらに好ましい。
Further, after thinning, it is more preferable to perform isolated point removal, whisker removal, arrow connection, etc. in a timely manner from the viewpoint of improving accuracy.

また、上記発明に加えて、位相差像現出可能な光学顕微
鏡と、結晶組織の光学顕微鏡位相差像の粒界を二値化に
よって抽出する計算を行う画像解析機からなる結晶組織
の解析装置と規定したのは、本発明のアルゴリズムでの
結晶組織解析を行うためには、上記ハードが必要なため
である。また、上記規定以外の光学顕微鏡及び画像解析
機の仕様については特に限定しない。
In addition to the above invention, a crystal structure analysis device comprising an optical microscope capable of displaying a phase contrast image and an image analyzer that performs calculations to extract grain boundaries in the optical microscope phase contrast image of the crystal structure by binarization. This is specified because the above-mentioned hardware is required in order to perform crystal structure analysis using the algorithm of the present invention. Further, specifications of the optical microscope and image analyzer other than those stipulated above are not particularly limited.

また、本発明のアルゴリズムに従って、結晶粒界が認識
された後、必要に応じて、粒界の切れている部分をマニ
ュアルで結ぶことも、極めて高い精度を必要とする場合
は行ってもよい。その後通常、結晶粒のサイズ(円相光
径)、真円度2周囲長、縦横比等が測定される。
Further, after grain boundaries are recognized according to the algorithm of the present invention, broken portions of the grain boundaries may be manually connected, if necessary, if extremely high precision is required. Thereafter, the crystal grain size (circular diameter), circularity 2 perimeter length, aspect ratio, etc. are usually measured.

〔実施例〕〔Example〕

実施例I C: 0.0010%、Si:3.25%、Mn:0.
14%、S:0.006%、酸可溶性A7: 0.02
6%N : 0.0081%を含有し、残部はFeおよ
び不可避的不純物からなる0、285mm厚の珪素鋼焼
鈍板の断面を光学顕微鏡観察用に研磨した後ナイタール
で腐食し、光学顕微鏡で位相差像を現出して、テレビカ
メラより画像を画像解析機に入力し、第1図に示す画像
解析フローを用いて、粒界像を作成した。原画像(位相
差像)((a))、粒界像((b))を第2図に示す。
Example I C: 0.0010%, Si: 3.25%, Mn: 0.
14%, S: 0.006%, acid soluble A7: 0.02
6% N: Contains 0.0081%, the remainder being Fe and unavoidable impurities. A cross section of a silicon steel annealed plate with a thickness of 0.285 mm was polished for optical microscopic observation, then corroded with nital, and the remaining part was Fe and unavoidable impurities. A phase contrast image was developed, the image was input from a television camera into an image analyzer, and a grain boundary image was created using the image analysis flow shown in FIG. The original image (phase contrast image) ((a)) and grain boundary image ((b)) are shown in FIG.

実施例2 C: 0. OO15%、Si:3.28%、Mn:0
.15%、s:o、oo7%、酸可溶性IV: 0.0
27%N : 0.0083%を含有し、残部Feおよ
び不可避的不純物からなる0、285mm厚の珪素鋼板
の断面を光学顕微鏡観察用に研磨した後ナイタールで腐
食し、光学顕微鏡で位相差像を現出して、テレビカメラ
より画像を画像解析機に入力し、第1図に示す画像解析
フローを用いて粒界像を作成した後、各結晶粒の直径(
円相当直径)を測定し、その平均値と標準偏差を計算し
た。また、比較のため、画像解析機に入力した位相差像
の粒界をマニュアルでトレースし、トレース像で同様に
各結晶粒の直径の平均値と標準偏差を測定した。また、
上記位相差像をマニュアルしきい値指定二値化法で粒界
を抽出し、同様に各結晶粒の直径の平均値0 と標準偏差を測定した。
Example 2 C: 0. OO15%, Si:3.28%, Mn:0
.. 15%, s:o, oo7%, acid soluble IV: 0.0
A cross-section of a silicon steel plate with a thickness of 0.285 mm containing 0.0083% of 27% N and the remainder Fe and unavoidable impurities was polished for observation with an optical microscope, then corroded with nital, and a phase contrast image was obtained using an optical microscope. After inputting the image from the TV camera into an image analyzer and creating a grain boundary image using the image analysis flow shown in Figure 1, the diameter of each crystal grain (
The average value and standard deviation were calculated. For comparison, the grain boundaries of the phase contrast image input into the image analyzer were manually traced, and the average value and standard deviation of the diameter of each crystal grain were similarly measured using the traced image. Also,
Grain boundaries were extracted from the above phase contrast image using a manual threshold specification binarization method, and the average value 0 and standard deviation of the diameter of each crystal grain were similarly measured.

示す。show.

第 上記測定結果を第1表に 表 実施例3 C:0.0011%、Si:3.21%、Mn:0.1
4%、s:o、oo7%、酸可溶性A1: o、 02
8%。
The above measurement results are shown in Table 1. Example 3 C: 0.0011%, Si: 3.21%, Mn: 0.1
4%, s: o, oo7%, acid soluble A1: o, 02
8%.

N : O,OO78%を含有し、残部Feおよび不可
避的不純物からなる0、 285鵬厚の珪素鋼板の断面
を光学顕微鏡観察用に研磨した後ナイタールで腐食し、
光学顕微鏡で位相差像を現出して、テレビカメラより画
像を画像解析機に入力し、第1図に示す画像解析フロー
を用いて粒界像を作成した後、各結晶粒の直径(円相当
直径)を測定し、粒1 径分布を計算した。また、比較のため、画像解析機に入
力した位相差像の粒界をマニュアルでトレースし、トレ
ース像で同様に各結晶粒の直径を測定し、粒径分布を計
算した。本発明法、トレース法での結果を第3図に示す
N: A cross section of a silicon steel plate with a thickness of 0.285mm containing 78% O, OO and the balance Fe and unavoidable impurities was polished for optical microscopic observation and then corroded with nital.
After developing a phase contrast image using an optical microscope and inputting the image from a TV camera into an image analyzer and creating a grain boundary image using the image analysis flow shown in Figure 1, the diameter of each crystal grain (equivalent to a circle) is calculated. diameter) and calculated the particle size distribution. For comparison, the grain boundaries of the phase contrast image input into the image analyzer were manually traced, the diameter of each crystal grain was similarly measured in the traced image, and the grain size distribution was calculated. The results obtained using the method of the present invention and the tracing method are shown in FIG.

〔発明の効果] 以上のとおり、本発明によれば、鉄鋼等材料の機械的性
質、磁気的性質に大きな影響を与え、かつ各材料の製造
技術の中でも重要な金属学的因子である結晶組織におけ
る結晶粒のサイズ、分布状態等の高精度な解析が効率よ
(行えるため、その学問的、工業的効果は大である。
[Effects of the Invention] As described above, according to the present invention, the crystal structure, which has a great influence on the mechanical properties and magnetic properties of materials such as steel, and is an important metallurgical factor in the manufacturing technology of each material. It has great academic and industrial effects because highly accurate analysis of crystal grain size, distribution state, etc. can be carried out efficiently.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、結晶組織の光学顕微鏡位相差像を原画像とし
て、粒界像を得るための画像解析フローであり、第2図
は、(a)結晶組織の光学顕微鏡位相差像と、(b)本
発明法を用いて得られる粒界像の例を示す結晶組織の光
学顕微鏡写真図であり、第3図は、本発明法及びトレー
ス法で得られた結晶粒径分布の例である。 2 2図 (b) 0IIm 手続補正書(自発) 平成 2 年5 月28日 1゜ 2゜ 事件の表示 Y成1年債5′「前節289 :36]号発明の名称 結品絹織の解析方法及び装置 3、補正をする者 事件との関係 特バ′l出願人 東京都千代11’1区大手町二丁目6番3号(665)
新日本製鐵株式會社 代表者 山  本  全 作 4゜ 代 埋入〒100 東京都千代田区丸の内二丁目4番1号 5、補正命令の日付 平成  年  月  日6、補正
の月象 明細書の発明の詳細な説明の欄9図面の簡単な説明 る。 (2)同12頁18行1−光学顕微鏡写真図−Jを「写
真図」に補正する。 (3)第1図及び第2図を別紙の通り夫々補正する。 27゛Σ゛ (b)
Figure 1 is an image analysis flow for obtaining a grain boundary image using an optical microscope phase contrast image of a crystal structure as an original image, and Figure 2 shows (a) an optical microscope phase contrast image of a crystal structure, and ( b) An optical micrograph of a crystal structure showing an example of a grain boundary image obtained using the method of the present invention, and FIG. 3 is an example of crystal grain size distribution obtained by the method of the present invention and the tracing method. . 2 Figure 2 (b) 0IIm Procedural amendment (spontaneous) May 28, 1990 1゜2゜ Incident representation Y 1999 bond 5'"Previous section 289:36" Name of the invention Analysis of knotted silk fabric Method and device 3, relationship with the case of the person making the amendment Applicant: 6-3 Otemachi 2-chome, 11'1-ku, Chiyo, Tokyo (665)
Nippon Steel Corporation Representative Zen Yamamoto 4゜Embedded 2-4-1-5 Marunouchi, Chiyoda-ku, Tokyo 100 Date of amendment order Month Day 6, 1998 Invention of the amended lunar description Detailed explanation column 9 Brief explanation of the drawings. (2) Correct page 12, line 18, 1 - Optical microscope photograph - J to "photograph". (3) Correct each of Figures 1 and 2 as shown in the attached sheet. 27゛Σ゛(b)

Claims (1)

【特許請求の範囲】 (1)結晶組織を画像解析を用いて解析する方法におい
て、位相差法を用いた光学顕微鏡像を原画像とし、粒界
を二値化によって認識することを特徴とする結晶組織の
解析方法。(2)粒界を抽出する二値化において、可変
しきい値法を用いることを特徴とする請求項1記載の結
晶組織の解析方法。 (3)粒界を二値化により抽出した後、孤立点除去、図
形の膨張、図形の収縮、細線化を用いて、切れ切れの粒
界を修復することを特徴とする請求項1または2記載の
結晶組織の解析方法。 (4)位相差像現出可能な光学顕微鏡と、結晶組織の光
学顕微鏡位相差像の粒界を二値化によって抽出する計算
を行う画像解析機からなることを特徴とする結晶組織の
解析装置。
[Claims] (1) A method for analyzing a crystal structure using image analysis, characterized in that an optical microscope image using a phase contrast method is used as an original image, and grain boundaries are recognized by binarization. Method of analyzing crystal structure. (2) The crystal structure analysis method according to claim 1, wherein a variable threshold method is used in the binarization for extracting grain boundaries. (3) After the grain boundaries are extracted by binarization, broken grain boundaries are repaired by removing isolated points, expanding the figure, shrinking the figure, and thinning the line. A method for analyzing the crystal structure of. (4) A crystal structure analysis device characterized by comprising an optical microscope capable of displaying a phase contrast image, and an image analyzer that performs calculations to extract grain boundaries in the optical microscope phase contrast image of the crystal structure by binarization. .
JP1289361A 1989-11-07 1989-11-07 Method and apparatus for analyzing crystal structure Pending JPH03150447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1289361A JPH03150447A (en) 1989-11-07 1989-11-07 Method and apparatus for analyzing crystal structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1289361A JPH03150447A (en) 1989-11-07 1989-11-07 Method and apparatus for analyzing crystal structure

Publications (1)

Publication Number Publication Date
JPH03150447A true JPH03150447A (en) 1991-06-26

Family

ID=17742211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1289361A Pending JPH03150447A (en) 1989-11-07 1989-11-07 Method and apparatus for analyzing crystal structure

Country Status (1)

Country Link
JP (1) JPH03150447A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006093077A1 (en) * 2005-03-02 2006-09-08 Matsushita Electric Industrial Co., Ltd. Protein crystal detecting device and protein crystal detecting method
JP2010025820A (en) * 2008-07-22 2010-02-04 Nippon Steel Corp Crystal grain analyzer, and crystal grain analysis method and computer program
JP2010091536A (en) * 2008-10-10 2010-04-22 Nippon Steel Corp Crystal grain analyzer, crystal grain analysis method, and computer program
CN104833677A (en) * 2015-05-06 2015-08-12 南京信息工程大学 Optical microscopic technology for determining solution crystal growth solubility curve
JP2015203643A (en) * 2014-04-15 2015-11-16 Jfeスチール株式会社 Grain diameter measuring method, grain diameter measuring apparatus and grain diameter measuring program
JP2015210648A (en) * 2014-04-25 2015-11-24 住友電気工業株式会社 Image processing method and device for metallographic image, and image processing program

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006093077A1 (en) * 2005-03-02 2006-09-08 Matsushita Electric Industrial Co., Ltd. Protein crystal detecting device and protein crystal detecting method
JP2006242690A (en) * 2005-03-02 2006-09-14 Matsushita Electric Ind Co Ltd Detector and detecting method for protein crystal
JP2010025820A (en) * 2008-07-22 2010-02-04 Nippon Steel Corp Crystal grain analyzer, and crystal grain analysis method and computer program
JP2010091536A (en) * 2008-10-10 2010-04-22 Nippon Steel Corp Crystal grain analyzer, crystal grain analysis method, and computer program
JP2015203643A (en) * 2014-04-15 2015-11-16 Jfeスチール株式会社 Grain diameter measuring method, grain diameter measuring apparatus and grain diameter measuring program
JP2015210648A (en) * 2014-04-25 2015-11-24 住友電気工業株式会社 Image processing method and device for metallographic image, and image processing program
CN104833677A (en) * 2015-05-06 2015-08-12 南京信息工程大学 Optical microscopic technology for determining solution crystal growth solubility curve
CN104833677B (en) * 2015-05-06 2019-04-16 南京信息工程大学 A kind of optical microscopy of determining crystal growth from solution solubility curve

Similar Documents

Publication Publication Date Title
US10895521B2 (en) Full-view-field quantitative statistical distribution characterization method of precipitate particles in metal material
US11667983B2 (en) Method for manufacturing metal plate
WO2007099977A1 (en) Production method for steel continuously cast piece and system for caring surface defect of cast piece
CN104880389A (en) Mixed crystal degree automatic measurement and fine classification method for steel crystal grains, and system thereof
US20210108312A1 (en) Metal plate for manufacturing deposition mask, method for manufacturing metal plate, deposition mask and method for manufacturing deposition mask
CN111161260A (en) Hot-rolled strip steel surface defect detection method and device based on deep learning
CN111860176B (en) Non-metal inclusion full-view-field quantitative statistical distribution characterization method
Kim et al. Strain analysis of multi-phase steel using in-situ EBSD tensile testing and digital image correlation
CN115035106A (en) Strip steel defect intelligent detection method
JPH03150447A (en) Method and apparatus for analyzing crystal structure
CN114565314A (en) Hot rolled steel coil end face quality control system and method based on digital twinning
CN108760419A (en) A kind of cold acid corrosion reagent and its preparation and application of high nitrogen Retaining Ring Steel
Turner et al. Modeling large-strain deformation behavior and neighborhood effects during hot working of a coarse-grain nickel-base superalloy
Si et al. Deep learning-based defect detection for hot-rolled strip steel
Foecke et al. Sheet metal formability studies at the National Institute of Standards and Technology
Soares et al. Metallographic specimen imaging classification: A machine learning approach
KR970007072B1 (en) Determining impurities in samples
Krebs et al. Quantitative analysis of banded structures in dual-phase steels
CN115112509A (en) Material surface indentation measuring method based on Mask R-CNN network
EP3805415A1 (en) Metal plate for manufacturing deposition mask, method for manufacturing metal plate, deposition mask and method for manufacturing deposition mask
Tarafder et al. Stretch-zone analysis by image processing for the evaluation of initiation fracture toughness of a HSLA steel
Shi et al. On the study of the sheet bendability in AA5754-O temper alloy
Hayakawa et al. Visualization of subgrain structure for a ferritic 12Cr–2W steel using backscattered scanning electron microscopy
CN111398281A (en) Method for judging minimum strength area of aluminum magnesium alloy hot-rolled thick plate
Inokuti et al. Computer color mapping analyses of deformation bands and recrystallized grains inside elongated grains near surface of hot-rolled silicon steel sheet