JPH0340107B2 - - Google Patents
Info
- Publication number
- JPH0340107B2 JPH0340107B2 JP57184172A JP18417282A JPH0340107B2 JP H0340107 B2 JPH0340107 B2 JP H0340107B2 JP 57184172 A JP57184172 A JP 57184172A JP 18417282 A JP18417282 A JP 18417282A JP H0340107 B2 JPH0340107 B2 JP H0340107B2
- Authority
- JP
- Japan
- Prior art keywords
- base material
- plasma
- coating
- chamber
- laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000463 material Substances 0.000 claims description 27
- 238000000576 coating method Methods 0.000 claims description 21
- 239000011248 coating agent Substances 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 9
- 238000000354 decomposition reaction Methods 0.000 claims description 6
- 239000012495 reaction gas Substances 0.000 claims description 6
- 239000007789 gas Substances 0.000 description 11
- 238000010891 electric arc Methods 0.000 description 5
- 239000000376 reactant Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910003902 SiCl 4 Inorganic materials 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 150000001728 carbonyl compounds Chemical class 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- -1 methyl compound Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Chemical Vapour Deposition (AREA)
Description
【発明の詳細な説明】
本発明は母材表面に、金属、半導体等を被覆す
る方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for coating the surface of a base material with a metal, a semiconductor, or the like.
従来半導体製作においてエピタキシヤル成長技
術といつて基板結晶上に半導体を成長させていく
方法がある。Siを例にとれば、シランSiH4の熱
分解反応(約1000℃)により、SiH4→Si+2H2と
Siを析出成長させる。しかし前記基板をヒーター
等で1000℃以上の高温に加熱すること、その加熱
状態を平均して維持させることは極めて困難であ
る。 Conventionally, in semiconductor manufacturing, there is a method called epitaxial growth technology in which a semiconductor is grown on a substrate crystal. Taking Si as an example, due to the thermal decomposition reaction of silane SiH 4 (approximately 1000℃), SiH 4 → Si + 2H 2
Precipitate and grow Si. However, it is extremely difficult to heat the substrate to a high temperature of 1000° C. or higher using a heater or the like and to maintain the heated state on average.
又、基板を程高温に加熱維持しなくても良い方
法としてプラズマ発生装置を用いたプラズマ分解
法が存在するが、このプラズマ分解法による被覆
速度か充分とは言えず、被覆速度と向上が望まれ
ている。 In addition, there is a plasma decomposition method using a plasma generator as a method that does not require heating and maintaining the substrate at a very high temperature, but the coating speed of this plasma decomposition method is not sufficient, and improvements in the coating speed are desired. It is rare.
本発明は、叙上の点に鑑み、プラズマ分解法に
よる被覆速度を向上させることを目的として発明
されたものであり、母材が収納配置されるチヤン
バーとは別にプラズマ発生装置を設け、該プラズ
マ発生装置によりプラズマ状態とした反応ガスを
前記チヤンバー内の母材被覆面に向けて噴流供給
いすると共に、前記母材被覆面にレーザーを照射
し、NC制御装置のプログラム信号により前記母
材を移動させてレーザーの照射点を所望形状に沿
つて走査させるようにしたことを特徴とするもの
である。 In view of the above-mentioned points, the present invention was invented for the purpose of improving the coating speed by plasma decomposition method. A reactant gas made into a plasma state by a generator is supplied in a jet stream toward the base material coated surface in the chamber, and a laser is irradiated to the base material coated surface, and the base material is moved by a program signal from an NC control device. This feature is characterized in that the irradiation point of the laser is scanned along the desired shape.
以下図面の一実施例によつて説明すると、1が
被覆加工しようとする母材で、ヒータ3を有する
加工台2に固定する。4及び5は加工台2をX軸
及びY軸に駆動するモータで、NC制御装置6に
よる分配信号により駆動し制御される。7は加工
台2上の母材1を囲むチヤンバーで、排気口71
は真空ポンプに接続され内部を所定の一定気圧に
維持する。8はプラズマ発生装置で、筒体81の
先端に陽極82を設け、筒体内に同軸上に陰極棒
83を挿入し、この陰極83と陽極82との間に
アーク放電を起し、そのアーク放電状態に供給口
84から反応ガスを供給し渦気流をつくり、プラ
ズマとして先端陽極82口から噴流する。プラズ
マ流は母材1の被覆表面に向けて噴流供給するよ
うにしてある。85は陰陽極間にアーク放電を発
生させる電源、86は電流制御抵抗である。9は
レーザー発振器、10は反射鏡、11は集光レン
ズである。 The following description will be given with reference to one embodiment of the drawings. Reference numeral 1 denotes a base material to be coated, which is fixed to a processing table 2 having a heater 3. Motors 4 and 5 drive the processing table 2 in the X-axis and Y-axis, and are driven and controlled by distribution signals from the NC control device 6. 7 is a chamber surrounding the base material 1 on the processing table 2, and an exhaust port 71
is connected to a vacuum pump to maintain the internal pressure at a predetermined constant pressure. 8 is a plasma generating device, in which an anode 82 is provided at the tip of a cylindrical body 81, a cathode rod 83 is coaxially inserted into the cylindrical body, an arc discharge is caused between the cathode 83 and the anode 82, and the arc discharge A reaction gas is supplied from the supply port 84 to create a vortex airflow, which is jetted from the tip anode 82 port as plasma. The plasma stream is supplied as a jet toward the coated surface of the base material 1. 85 is a power source that generates an arc discharge between the cathode and anode, and 86 is a current control resistor. 9 is a laser oscillator, 10 is a reflecting mirror, and 11 is a condenser lens.
加工台2上の母材1をヒータ3加熱して予じめ
適当な温度に予熱維持させる。チヤンバー7は真
空ポンプによつて排気口71から排気が行われ、
そこにプラズマ発生装置8から被覆元素を含む反
応ガスが母材1に向けて供給される。プラズマ発
生装置は陰陽極82,83間にアーク放電を行
い、ガス供給口84から反応ガス或いはH2、CO
等の作動ガスとともに反応ガスを供給すると、こ
のガスはアーク放電によつてプラズマ状態となつ
て先端陽極噴出口から噴射する。噴出気体は被覆
母材1に当つて被覆元素の析出成長が行われる。
このように、チヤンバー7とは別に設けたプラズ
マ発生装置8から母材被覆面に向かつて反応ガス
のプラズマ流が噴流供給されることにより、母材
被覆面以外の例えばチヤンバー内壁等に被覆され
ることが少なく、母材被覆面に効率良く被覆が行
われる。Siを被覆するにはSiH4ガスを用い、ま
たSiCl4+2H2を用いれば水素還元してSiを被覆
することができる。また母材1の被覆加工部分に
はレーザー照射が行われる。即ち発振器9から増
巾された強力レーザー光が出力し反射鏡10によ
つて母材1面に焦点を結ぶよう集光する。このレ
ーザー照射により表面照射点は高温に加熱され反
応ガスの分解析出反応を促進し被覆効果を高める
ことができる。 A base material 1 on a processing table 2 is heated by a heater 3 to maintain preheating at an appropriate temperature. The chamber 7 is evacuated from an exhaust port 71 by a vacuum pump,
There, a reaction gas containing a coating element is supplied toward the base material 1 from the plasma generator 8 . The plasma generator generates an arc discharge between the cathode and anode 82 and 83, and supplies reactive gas or H 2 , CO from the gas supply port 84.
When a reactant gas is supplied together with a working gas such as, this gas is turned into a plasma state by arc discharge and is injected from the tip anode jet port. The ejected gas hits the coating base material 1 and the coating elements are deposited and grown.
In this way, the plasma flow of the reactant gas is supplied in a jet direction from the plasma generating device 8 provided separately from the chamber 7 toward the base material coating surface, thereby coating other surfaces other than the base material coating surface, such as the inner wall of the chamber. The coating is carried out efficiently on the coated surface of the base material. SiH 4 gas is used to coat Si, and SiCl 4 +2H 2 can be used to reduce hydrogen and coat Si. Further, the coating portion of the base material 1 is irradiated with a laser. That is, an amplified and powerful laser beam is outputted from the oscillator 9 and is focused by the reflecting mirror 10 on one surface of the base material. By this laser irradiation, the surface irradiation point is heated to a high temperature, which promotes the separation reaction of the reaction gas and enhances the coating effect.
例えば反応ガスにSiH4を用いSi被覆加工を行
うとき、プラズマとして0.5〜1Torr、1500V、3
mAを用い、被覆速度は、約55Å/minであつ
た。次に加工中アルゴンレーザー2740Å、5Wを
照射したときSi析出速度は約120Å/minに増加
した。 For example, when performing Si coating using SiH 4 as the reaction gas, the plasma is 0.5 to 1 Torr, 1500 V, 3
Using mA, the coating rate was approximately 55 Å/min. Next, when argon laser was irradiated with 2740 Å and 5 W during processing, the Si precipitation rate increased to about 120 Å/min.
なおプラズマ及びレーザー照射位置は析出形状
が予じめプログラム入力してあるNC制御装置6
によつて制御される。NC制御装置6はモータ
4,5を駆動して加工台2を所望の形状に移動さ
せるから母材1上の照射点は所望形状を走査し、
そこにSiを析出成長させることができる。 The plasma and laser irradiation positions are controlled by the NC control device 6 in which the deposition shape is programmed in advance.
controlled by. The NC control device 6 drives the motors 4 and 5 to move the processing table 2 to a desired shape, so that the irradiation point on the base material 1 scans the desired shape.
Si can be precipitated and grown there.
なおレーザー照射はQスイツチングによりパル
ス的に行うことができる。また反応ガスを供給す
るプラズマ発生装置には高周波電界による無極放
電を利用したものが利用され、これによれば放電
電極材の混合が防止でき被覆層の純度を高めるこ
とができる。 Note that laser irradiation can be performed in a pulsed manner by Q-switching. Furthermore, a plasma generator that supplies the reactive gas is one that utilizes non-polar discharge using a high-frequency electric field, which can prevent mixing of discharge electrode materials and improve the purity of the coating layer.
被覆材反応ガスとしては、メチル化合物、M
(CH3)x,M=Al,Bi,Cd,Ge,Sn,Zn,そ
の他、カルボニル化合物、M(CO)n,M=Cr,
Fe,W、その他等が利用でき、分解反応により
前記M元素を析出成長させることができる。 As the coating material reaction gas, methyl compound, M
(CH 3 )x, M=Al, Bi, Cd, Ge, Sn, Zn, others, carbonyl compounds, M(CO)n, M=Cr,
Fe, W, and the like can be used, and the M element can be precipitated and grown by a decomposition reaction.
以上のように、本発明によれば、プラズマ分解
法にレーザー照射を併用するようにしたことによ
り、被覆速度を顕著に高めることができ、又、母
材が収納配置されるチヤンバーとは別にプラズマ
発生装置を設け、該プラズマ発生装置によりプラ
ズマ状態とした反応ガスを前記チヤンバー内の母
材被覆面に向けて噴流供給するようにしたことに
より、母材被覆面以外の例えばチヤンバー内壁面
等に被覆されることが少なくなり、母材被覆面に
効率良く被覆することができる。又、レーザー照
射点をNC制御装置のプログラム信号により走査
させるようにしたことにより、高速度の被覆を母
材表面の所望部位に対して行なうことかできる。 As described above, according to the present invention, by using laser irradiation in combination with the plasma decomposition method, the coating speed can be significantly increased. By providing a generating device and supplying a jet of reactive gas made into a plasma state by the plasma generating device toward the base material coated surface in the chamber, it is possible to coat surfaces other than the base material coated surface, such as the inner wall surface of the chamber. Therefore, the surface of the base material can be efficiently coated. Furthermore, by scanning the laser irradiation point using a program signal from the NC control device, high-speed coating can be performed on a desired portion of the surface of the base material.
図面は本発明の一実施例説明図である。
1……被覆母材、2……加工台、4,5……モ
ータ、6……NC制御装置、7……チヤンバー、
8……プラズマ発生装置、9……レーザー発振
器、10……反射鏡、11……レンズ。
The drawings are explanatory diagrams of one embodiment of the present invention. 1... Coating base material, 2... Processing table, 4, 5... Motor, 6... NC control device, 7... Chamber,
8...Plasma generator, 9...Laser oscillator, 10...Reflector, 11...Lens.
Claims (1)
て、母材が収納配置されるチヤンバーとは別にプ
ラズマ発生装置を設け、該プラズマ発生装置によ
りプラズマ状態とした反応ガスを前記チヤンバー
内の母材被覆面に向けて噴流供給すると共に、前
記母材被覆面にレーザーを照射し、NC制御装置
のプログラム信号により前記母材を移動させてレ
ーザーの照射点を所望形状に沿つて走査させるこ
とを特徴とする表面被覆方法。1. In surface coating using the plasma decomposition method, a plasma generator is provided separately from the chamber in which the base material is housed, and a reaction gas made into a plasma state by the plasma generator is applied to the base material coated surface in the chamber. The method is characterized in that the base material is supplied with a jet stream and a laser is irradiated onto the coated surface of the base material, and the base material is moved according to a program signal from an NC control device so that the laser irradiation point is scanned along a desired shape. Surface coating method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18417282A JPS5973045A (en) | 1982-10-19 | 1982-10-19 | Surface coating method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18417282A JPS5973045A (en) | 1982-10-19 | 1982-10-19 | Surface coating method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5973045A JPS5973045A (en) | 1984-04-25 |
JPH0340107B2 true JPH0340107B2 (en) | 1991-06-17 |
Family
ID=16148619
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18417282A Granted JPS5973045A (en) | 1982-10-19 | 1982-10-19 | Surface coating method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5973045A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59157274A (en) * | 1983-02-25 | 1984-09-06 | Agency Of Ind Science & Technol | Patterning method using ion beam |
JPS61119676A (en) * | 1984-11-15 | 1986-06-06 | Ulvac Corp | Film forming device using sheet plasma and laser light |
JPH01301865A (en) * | 1988-05-30 | 1989-12-06 | Nippon Telegr & Teleph Corp <Ntt> | Method and apparatus for growing thin film |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5045759A (en) * | 1973-08-29 | 1975-04-24 | ||
JPS5266884A (en) * | 1975-12-01 | 1977-06-02 | Nippon Telegr & Teleph Corp <Ntt> | Process for forming film on base material |
JPS5558362A (en) * | 1978-10-26 | 1980-05-01 | Matsushita Electric Ind Co Ltd | Preparation of thin film |
JPS56124229A (en) * | 1980-03-05 | 1981-09-29 | Matsushita Electric Ind Co Ltd | Manufacture of thin film |
JPS5721669B2 (en) * | 1978-05-04 | 1982-05-08 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5721669U (en) * | 1980-07-11 | 1982-02-04 |
-
1982
- 1982-10-19 JP JP18417282A patent/JPS5973045A/en active Granted
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5045759A (en) * | 1973-08-29 | 1975-04-24 | ||
JPS5266884A (en) * | 1975-12-01 | 1977-06-02 | Nippon Telegr & Teleph Corp <Ntt> | Process for forming film on base material |
JPS5721669B2 (en) * | 1978-05-04 | 1982-05-08 | ||
JPS5558362A (en) * | 1978-10-26 | 1980-05-01 | Matsushita Electric Ind Co Ltd | Preparation of thin film |
JPS56124229A (en) * | 1980-03-05 | 1981-09-29 | Matsushita Electric Ind Co Ltd | Manufacture of thin film |
Also Published As
Publication number | Publication date |
---|---|
JPS5973045A (en) | 1984-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0286306B1 (en) | Method and apparatus for vapor deposition of diamond | |
EP0439135B1 (en) | Method for producing boron nitride film | |
JP2589033B2 (en) | Laser assisted chemical vapor deposition. | |
US5108543A (en) | Method of surface treatment | |
WO1999059759A3 (en) | Low work function surface layers produced by laser ablation using short-wavelength photons | |
EP3291279B1 (en) | Diamond manufacturing system and method via chemical vapor deposition assisted with laser initiated plasma fed with microwave energy | |
JPH0340107B2 (en) | ||
US5334252A (en) | Method of and apparatus for preparing oxide superconducting film | |
RU2032765C1 (en) | Method of diamond coating application from vapor phase and a device for it realization | |
JP2000349041A (en) | Laser annealing apparatus | |
KR930005010B1 (en) | Microwave enhanced cvd method and apparatus | |
JPH0857753A (en) | Diamond machining method and machining device | |
JPH0480116B2 (en) | ||
JP2633640B2 (en) | Gas phase synthesis of diamond | |
JPH01201481A (en) | Method and apparatus for vapor phase synthesis of high-pressure phase boron nitride | |
JPS62290120A (en) | Formation of single crystal of polycrystalline semiconductor film | |
JPH06279184A (en) | Method for synthesizing diamond in vapor phase | |
JP2995339B2 (en) | How to make a thin film | |
JP3712442B2 (en) | Laser ablation deposition system | |
JP4377008B2 (en) | Chemical vapor deposition method and chemical vapor deposition apparatus | |
KR100377476B1 (en) | Laser MBE System and Fabrication method of Oxide films using the same | |
KR100359136B1 (en) | Diamond thin film and bulk formation method by laser ablation combined with high voltage discharge plasma CVD | |
JP3152548B2 (en) | High frequency induction plasma deposition equipment | |
JP2770520B2 (en) | Method and apparatus for synthesizing diamond film | |
KR200199402Y1 (en) | Diamond formation method by laser ablation combined with high voltage discharge plasma cvd |