JPH0339836A - Ice heat accumulating tank device - Google Patents

Ice heat accumulating tank device

Info

Publication number
JPH0339836A
JPH0339836A JP1174392A JP17439289A JPH0339836A JP H0339836 A JPH0339836 A JP H0339836A JP 1174392 A JP1174392 A JP 1174392A JP 17439289 A JP17439289 A JP 17439289A JP H0339836 A JPH0339836 A JP H0339836A
Authority
JP
Japan
Prior art keywords
tank
pipe
water
ice
heat storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1174392A
Other languages
Japanese (ja)
Other versions
JP2698435B2 (en
Inventor
Nobuo Matsuhisa
信夫 松久
Yoshihiko Kominami
小南 義彦
Kota Tanaka
田中 宏太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MORIMATSU KOGYO KK
Takenaka Komuten Co Ltd
Original Assignee
MORIMATSU KOGYO KK
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MORIMATSU KOGYO KK, Takenaka Komuten Co Ltd filed Critical MORIMATSU KOGYO KK
Priority to JP1174392A priority Critical patent/JP2698435B2/en
Publication of JPH0339836A publication Critical patent/JPH0339836A/en
Application granted granted Critical
Publication of JP2698435B2 publication Critical patent/JP2698435B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

PURPOSE:To cause a refrigerant to flow to a heat accumulating tank in a laminar air flow state, to keep temperature distribution in the tank in a uniform state, and to improve thermal efficiency by a method wherein a discharge pipe is extended from an ice making machine to the heat accumulating tank, and discharge holes are formed in the peripheral surface of the discharge pipe positioned in the heat accumulating tank. CONSTITUTION:A discharge pipe 5 is formed in the lower side of a tank body 16 of a heat accumulating tank and extended from an ice making machine to a position located in a level higher than that of a water suction pipe 4 and a feed pipe 6. The discharge pipe 5 is formed with four pipes the tips of which are closed, and arranged in parallel to each other in the heat accumulating tank in which the pipes are extended. A plurality of oblong hole 27 serving as an up-discharge hole are formed on the upper side of the peripheral surface of each pipe at intervals of a specified distance in the longitudinal direction of a pipe. The oblong hole 27 is formed in size determined through calculation of the hole part so that an influence is prevented from being exercised on surroundings by a velocity of flow when ice R delivered through the oblong hole 27 is raised 1m in order to prevent the generation of a turbulent flow at the lower part of the interior of the tank due to the velocity of flow of the ice R. This constitution generates a laminar air flow in which an influence is prevented from being exercised on the periphery of the interior of the tank by the velocity of flow in a position where the ice R delivered through the oblong hole 27 is raised 1m.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明はオフィスビル、病院等の大規模な空気調和設
備の熱a蓄熱用に設置される氷蓄熱槽装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an ice heat storage tank device installed for storing heat a in large-scale air conditioning equipment such as office buildings and hospitals.

[従来の技術] 従来、氷蓄熱槽装置において製氷機で生成された冷媒は
槽本体内に貫入される連結パイプにより蓄熱槽内へ送ら
れ、その連結パイプの先端開口部から冷媒を吐出するよ
うになっていた。
[Prior Art] Conventionally, in an ice heat storage tank device, the refrigerant generated by the ice maker is sent into the heat storage tank through a connecting pipe that penetrates into the tank body, and the refrigerant is discharged from the opening at the tip of the connecting pipe. It had become.

[発明が解決しようとする課趙] ところが、前記従来の氷蓄熱槽装置においては、蓄熱槽
内へ貫入された連結パイプの先端開口部から吐出される
冷媒のため槽内下部に乱流がおこり、そのため槽内の温
度分布が均一に保たれないので熱効率が低下するという
問題点があった。
[Problems to be Solved by the Invention] However, in the conventional ice heat storage tank device, turbulence occurs in the lower part of the tank due to the refrigerant being discharged from the opening at the end of the connecting pipe penetrated into the heat storage tank. Therefore, there was a problem that the temperature distribution within the tank was not maintained uniformly, resulting in a decrease in thermal efficiency.

この発明は従来の技術の有するこのような問題点を解消
するためになされたものであり、その目的とするところ
は製氷機より冷媒を蓄熱槽内へ乱流を起こすことなく層
流で流入させることができ、槽内の温度分布を均一に保
って熱効率を上げることのできる氷蓄熱槽装置を提供す
ることにある。
This invention was made to solve these problems with the conventional technology, and its purpose is to flow the refrigerant from the ice maker into the heat storage tank in a laminar flow without causing turbulence. An object of the present invention is to provide an ice heat storage tank device capable of increasing thermal efficiency by maintaining uniform temperature distribution within the tank.

[課題を解決するための手段] 前記目的を遠戚するために、この発明は製氷機より蓄熱
槽内へ吐出管を貫入し、前記蓄熱槽内に位置する吐出管
の周面に吐出孔を形成してなるものである。なお、前記
吐出管は蓄熱槽内に水平に貫入されたパイプとし、その
吐出孔は蓄熱槽内においてパイプ周面上側に上向きに形
成された複数の長孔としてもよい。
[Means for Solving the Problems] In order to achieve the above object, the present invention penetrates a discharge pipe from an ice maker into a heat storage tank, and provides a discharge hole in the circumferential surface of the discharge pipe located in the heat storage tank. It is something that is formed. The discharge pipe may be a pipe inserted horizontally into the heat storage tank, and the discharge holes may be a plurality of elongated holes formed upward on the circumferential surface of the pipe inside the heat storage tank.

[作用コ 上記のように構成された氷蓄熱槽装置においては製氷機
から送られてきた冷媒は吐出管の先端から主流速のまま
で吹き出されることなく、同吐出管の周面に形成された
複数の吐出孔から主流速が抑制されて吐出される。そし
て、槽内下部で乱流を起こすことなく吐出された冷媒は
層流で上方へ流動する。
[Operation] In the ice heat storage tank device configured as described above, the refrigerant sent from the ice maker is not blown out from the tip of the discharge pipe at the mainstream velocity, but is formed on the circumferential surface of the discharge pipe. The main flow velocity is suppressed and the fluid is discharged from the plurality of discharge holes. The refrigerant discharged from the lower part of the tank without causing turbulence flows upward in a laminar flow.

[実施例] 以下、この発明を具体化した一実施例を第1図から第1
8図に従って説明する。
[Example] Hereinafter, an example embodying the present invention will be described with reference to FIGS. 1 to 1.
This will be explained according to Figure 8.

第3図に示すように氷蓄熱槽装置の蓄熱槽1は冷媒とし
てのスラリー状の水(以下、「氷」と略す、)Rを生成
する製氷機2と空調機3に対し相互に連結されている。
As shown in FIG. 3, the heat storage tank 1 of the ice heat storage tank device is interconnected to an ice maker 2 that generates slurry water (hereinafter abbreviated as "ice") R as a refrigerant and an air conditioner 3. ing.

前記製氷機2は吸水管4を介して蓄熱槽1より吸入した
冷水を前記氷Rに生成し、量水Rを後述する吐出管5を
介して前記蓄熱槽1へ供給している。また、前記空調機
3は供給管6を介して蓄熱槽1下部より供給された冷水
を利用して冷房等のための熱交換を行うとともにその熱
交換により温度の高くなった水を送水管7を介して前記
蓄熱槽1へ送っている。
The ice maker 2 generates the ice R by sucking cold water from the heat storage tank 1 through a water suction pipe 4, and supplies the water R to the heat storage tank 1 through a discharge pipe 5, which will be described later. Further, the air conditioner 3 exchanges heat for cooling etc. by using the cold water supplied from the lower part of the heat storage tank 1 via the supply pipe 6, and also transfers the water whose temperature has become high due to the heat exchange to the water supply pipe 6. The heat is sent to the heat storage tank 1 via the heat storage tank 1.

次に、この蓄熱槽1について説明すると第1゜2図に示
すように蓄熱槽1は槽内平断面形状が円形となる円筒形
状に形成され、ビルの屋上に設けられた突条のベースコ
ンクリート8に対し支持枠9等を介して支持固定されて
いる。
Next, to explain about this heat storage tank 1, as shown in Fig. 1.2, the heat storage tank 1 is formed into a cylindrical shape with a circular planar cross-section inside the tank, and is made of a base concrete of protrusions provided on the roof of a building. 8 is supported and fixed via a support frame 9 or the like.

前記支持枠9は第6.8図に示すように周縁部9aと枝
部9b、補強部9C及び固定部9dとからなっている。
As shown in Fig. 6.8, the support frame 9 consists of a peripheral portion 9a, a branch portion 9b, a reinforcing portion 9C, and a fixed portion 9d.

周縁部9aは断面積チャンネル状の鋼材にて形成され、
前記ベースコンクリート8上に蓄熱槽1の下端縁と略同
−の円形状に配置されている。なお、周縁部9aは4つ
の円弧部分に分割できるようになっている0弦部9bは
断面積短形状の鋼材にて形成され、前記周縁部9a内に
一定の間隔をおいて架設されている。補強部9cは断面
り字形状の鋼材にて形成され、前記枝部9bに直交して
各枝部9b及び周縁部9a間に等間隔に架設されている
。なお、周縁部9a、枝部9b及び補強部9cの各上端
面は同一平面を形成している。固定部9dは板状に形成
され、前記周縁部9aのベースコンクリート8と当接す
る下端縁内側に対し水平状態に突出して溶接固定されて
いる。そして、この支持枠9はベースコンクリート8に
埋設された基礎ボルト10に対し前記固定部9dにおい
て固定支持されている。
The peripheral edge part 9a is formed of a steel material with a channel-shaped cross section,
They are arranged on the base concrete 8 in a circular shape that is substantially the same as the lower edge of the heat storage tank 1. Incidentally, the peripheral edge part 9a can be divided into four circular arc parts.The zero chord part 9b is formed of a steel material with a short cross-sectional area, and is constructed at a constant interval within the peripheral edge part 9a. . The reinforcing portions 9c are made of a steel material having a cross-sectional shape, and are installed perpendicularly to the branch portions 9b at equal intervals between each of the branch portions 9b and the peripheral portion 9a. Note that the upper end surfaces of the peripheral portion 9a, the branch portions 9b, and the reinforcing portions 9c form the same plane. The fixing portion 9d is formed into a plate shape, and is welded and protrudes horizontally from the inner side of the lower edge of the peripheral edge portion 9a that contacts the base concrete 8. This support frame 9 is fixedly supported by foundation bolts 10 buried in the base concrete 8 at the fixed portions 9d.

前記支持枠9の上端面には前記周縁部9aの上端面外周
縁と略同−の円形状に形成されたステンレス鋼製の基板
11が載置され、同基板11上には第7図に示す受台1
2が載置されている。
A substrate 11 made of stainless steel is placed on the upper end surface of the support frame 9, and is formed in a circular shape approximately the same as the outer periphery of the upper end surface of the peripheral edge portion 9a. cradle 1 shown
2 is placed.

受台12は木枠13と保温材14とからなり、同木枠1
3は前記支持枠9の上端面形状と同一に形成され、同様
に周縁部13a、弦部13b及び補強部13Cとから構
成されている。なお、前記木枠13の周縁部13a内に
おいて弦部13bと補強部13Cとにより仕切られた空
間には発泡スチロール製の保温材13が嵌め込まれてい
る。そして、前記基板11と受台12とにより蓄熱槽1
の底板】、5に対する保温構造を構成している。
The pedestal 12 consists of a wooden frame 13 and a heat insulating material 14.
3 is formed to have the same shape as the upper end surface of the support frame 9, and similarly includes a peripheral portion 13a, a chord portion 13b, and a reinforcing portion 13C. Note that a heat insulating material 13 made of styrene foam is fitted into a space partitioned by the chord part 13b and the reinforcing part 13C within the peripheral edge part 13a of the wooden frame 13. The substrate 11 and the pedestal 12 make up the heat storage tank 1.
], constitutes a heat insulation structure for 5.

前記受台12上には第7図に二点鎖線で示すように同受
台12上面を覆う正十二角形に形成されたステンレス鋼
製の底板15が載置され、同底板15上には蓄熱槽1の
槽本体16が載置されている。
A stainless steel bottom plate 15 formed in a regular dodecagon is placed on the pedestal 12, as shown by the two-dot chain line in FIG. A tank body 16 of the heat storage tank 1 is placed.

同槽本体16は同径に形成され四段に積層されたステン
レス鋼製の円筒から構成され、各円筒の接合部分は槽本
体16の外面側において互いに当接するフランジ部17
が等間隔をおいてクサビ止め溶接されるとともに槽本体
16の内面側においてその接合部分が溶接固定されてい
る。なお、前記積層された円筒のうち最上段の円筒のみ
その高さが他の円筒に比べて半分となっている。
The tank main body 16 is composed of stainless steel cylinders formed in the same diameter and stacked in four stages, and the joint portion of each cylinder is a flange portion 17 that abuts each other on the outer surface side of the tank main body 16.
are wedged and welded at equal intervals, and their joints are fixed by welding on the inner surface of the tank body 16. Note that among the stacked cylinders, the height of only the uppermost cylinder is half that of the other cylinders.

前記槽本体16は下端縁を前記底板15に対し溶接固定
されるとともに、その下端外周縁部を固定部材18によ
り密着包囲されている。同固定部材18は断面り字状で
前記槽本体16の外周縁に沿う円弧状に形成されている
。なお、固定部材18には一定の間隔をおいて補強用リ
ブが設けられている。そして、固定部材18は第8図に
示すようにその下方に重合する底板15、受台12の木
枠周縁部13a及び基板11とともに前記支持枠9の周
縁部9aに対しボルト19とナツト20によりしめつけ
固定されている。
The lower edge of the tank body 16 is fixed to the bottom plate 15 by welding, and the outer peripheral edge of the lower edge is tightly surrounded by a fixing member 18. The fixing member 18 has an angular cross section and is formed in an arc shape along the outer peripheral edge of the tank body 16. Note that the fixing member 18 is provided with reinforcing ribs at regular intervals. As shown in FIG. 8, the fixing member 18 is attached to the peripheral edge 9a of the support frame 9 by bolts 19 and nuts 20, together with the bottom plate 15, the wooden frame peripheral part 13a of the pedestal 12, and the base plate 11, which are overlapped below. It is tightened and fixed.

また、前記底板15の外縁を構成する各辺部15aには
第8図に示すように支持板21が取付けられている。同
支持板21は前記辺部15aから上方に延びる垂立片2
1aと同じく辺部15aから斜め下方に延びる斜状片2
1bとからなり、同斜状片21bの先端部は基板11と
木枠13との間に挟着固定されている。そして、支持板
21の斜状片21b、底板15及び木枠周縁部13aに
より囲まれる空間には保温材22が嵌め込まれている。
Further, a support plate 21 is attached to each side portion 15a constituting the outer edge of the bottom plate 15, as shown in FIG. The support plate 21 has a vertical piece 2 extending upward from the side portion 15a.
A diagonal piece 2 extending obliquely downward from the side 15a as in 1a.
1b, and the tip of the diagonal piece 21b is clamped and fixed between the substrate 11 and the wooden frame 13. A heat insulating material 22 is fitted into a space surrounded by the diagonal piece 21b of the support plate 21, the bottom plate 15, and the wooden frame peripheral portion 13a.

なお、支持板21の垂立片21aの内側、すなわち槽本
体16と対応する側には後述する保温パネル23のうち
最下部の保温パネル23の各下端部外面が当接し、この
垂立片21aにより前記gA温パネル23の下端部が位
置決め支持されている。
Note that the outer surface of each lower end of the lowermost heat insulating panel 23 of the heat insulating panels 23 to be described later comes into contact with the inside of the vertical piece 21a of the support plate 21, that is, the side corresponding to the tank body 16, and this vertical piece 21a The lower end of the gA temperature panel 23 is positioned and supported.

前記槽本体16の外周面には同槽本体16の形状に沿っ
て吹き付けられた発泡ポリスチレンによるラギング層2
4が施され、さらにその表面には第9.10図に示す多
数の保温パネル23が槽本体16の外周面全体を覆うよ
うに取付けられている。なお、前記保温パネル23は槽
本体16の外周面と対応する内面が凹状にプレス加工さ
れており、その凹部には同凹部に対し嵌合可能に成型さ
れた発泡ポリスチレン製の保温部材25が嵌め込まれて
いる。
A lagging layer 2 made of expanded polystyrene is sprayed on the outer peripheral surface of the tank body 16 along the shape of the tank body 16.
4 is applied to the tank body 16, and a large number of heat insulation panels 23 shown in FIGS. 9 and 10 are attached to the surface thereof so as to cover the entire outer peripheral surface of the tank body 16. The inner surface of the heat insulation panel 23 corresponding to the outer peripheral surface of the tank body 16 is pressed into a concave shape, and a heat insulation member 25 made of foamed polystyrene molded to fit into the recess is fitted into the recess. It is.

第4.5図に示すように槽本体16の下部側面には製氷
機2と連結される吸水管4が貫設されるとともに同様に
空調機3と連結される供給管6が貫設され、また作業者
の視認可能な高さの位置に槽内部点検用の二重ガラス構
造の下部点検口26が設けられている。また、同じく下
部側面には前記吸水管4及び供給管6よりも上方となる
位置に製氷機2から延設された吐出管5が貫通されてい
る。
As shown in FIG. 4.5, a water suction pipe 4 connected to the ice maker 2 is installed through the lower side of the tank body 16, and a supply pipe 6 connected to the air conditioner 3 is also installed through the lower side surface of the tank body 16. Further, a lower inspection port 26 with a double glass structure for inspecting the inside of the tank is provided at a height that is visible to the operator. Further, a discharge pipe 5 extending from the ice maker 2 is passed through the lower side surface at a position above the water suction pipe 4 and the supply pipe 6.

前記吐出管5は第2図に示すように先端が閉塞された4
本のパイプからなり、貫入された蓄熱槽1内において互
いに平行に配列され各パイプの周面上側にはパイプの長
手方向に一定の間隔をおいて上向きの吐出孔としての長
孔27が複数個形成されている。同長孔27は吐出され
る氷Rの流速による槽内下部における乱流を防止するた
め、同長孔27から吐出される氷Rが1m上昇するとそ
の流速による周囲への影響がなくなるようにその孔部分
が計算して求めた大きさに形成されている。
The discharge pipe 5 has a closed end 4 as shown in FIG.
The pipes are arranged parallel to each other in the penetrated heat storage tank 1, and each pipe has a plurality of elongated holes 27 as upward discharge holes at regular intervals in the longitudinal direction of the pipes on the upper side of the circumferential surface of each pipe. It is formed. In order to prevent turbulence in the lower part of the tank due to the flow rate of the ice R being discharged, the long hole 27 is designed so that when the ice R discharged from the long hole 27 rises by 1 m, the influence of the flow rate on the surrounding area disappears. The hole portion is formed to the calculated size.

因に、この実施例においてはパイプ断面積を50CII
、氷Rのパイプ内流量Qを14 ofl /ninとし
、同パイプに幅2 C11,長さ50cmの長孔27を
3箇所設けている。したがって、長孔27により構成さ
れる吐出孔の面積AはA= (0,5x0゜02)x3
==o、03m2と求められ、同吐出孔からの氷Rの初
流速VOはVO=Q/Aから0゜078m/sと求めら
れる。そして、ここから静止流体内における粉流定数を
3.5(実験値)として、吐出孔からの距MXが1mの
位置での氷Rの流速Umを求めると、Um= (3,5
xUo )÷J7フ丁丁τイー2.73X10−”m/
sとなる。よって、長孔27から吐出された氷Rは1m
上昇した位置ではその流速により槽内周囲へ影響を与え
ることのない層流となる。
Incidentally, in this example, the pipe cross-sectional area is 50CII.
, the flow rate Q of ice R in the pipe is set to 14 ofl/nin, and the pipe is provided with three elongated holes 27 each having a width of 2 C11 and a length of 50 cm. Therefore, the area A of the discharge hole constituted by the elongated hole 27 is A = (0,5x0°02)x3
==o, 03 m2, and the initial flow velocity VO of ice R from the same discharge hole is found to be 0°078 m/s from VO=Q/A. From this, assuming that the powder flow constant in the stationary fluid is 3.5 (experimental value), the flow velocity Um of the ice R at a position where the distance MX from the discharge hole is 1 m is calculated as follows: Um = (3,5
xUo ) ÷ J7fudingdingτE2.73X10-”m/
It becomes s. Therefore, the ice R discharged from the long hole 27 is 1 m.
At the elevated position, the flow velocity creates a laminar flow that does not affect the surroundings inside the tank.

なお、前記吐出管5は各パイプ先端部を底板15から立
設した支持棒28により水平状態に固定支持されている
Note that the discharge pipes 5 are fixedly supported in a horizontal state by support rods 28 that extend from the bottom plate 15 at the tip ends of each pipe.

第13.14図に示すように槽本体16の中間部一部外
面には第一転倒防止部材29の先端が溶接固定され、同
第−転倒防止部材29はその基端がコンクリート梁Aに
ボルト着されている。また、槽本体16に対し前記第一
転倒防止部材29と180度反対間であって同槽本体1
6の上端近傍の位置には第二転倒防止部材30の先端が
溶接固定され、同第二転倒防止部材30はその基端がコ
ンクリート梁Bにボルト着されている。なお、前記mA
よりも梁Bの方が槽本体16の外周面に対し離間して設
けられているため、第一転倒防止部材29のアーム部2
9aよりも第二転倒防止部材30のアーム部30aの方
が長く形成されている。
As shown in Figures 13 and 14, the tip of a first fall prevention member 29 is welded and fixed to the outer surface of a part of the middle part of the tank body 16, and the base end of the first fall prevention member 29 is bolted to the concrete beam A. It is worn. Also, the tank body 16 is located 180 degrees opposite to the first fall prevention member 29 with respect to the tank body 16.
The tip of the second fall prevention member 30 is welded and fixed to a position near the upper end of the second fall prevention member 6, and the base end of the second fall prevention member 30 is bolted to the concrete beam B. In addition, the mA
Since the beam B is provided at a distance from the outer circumferential surface of the tank body 16, the arm portion 2 of the first fall prevention member 29
The arm portion 30a of the second fall prevention member 30 is formed longer than the arm portion 9a.

また、槽本体、16の上部測面すなわち最上段の円筒部
分には前記下部点検口26と同様の上部点検口31が設
けられるとともに、槽本体16の平断面略中心点を通り
水平方向に延びる直線が同種本体16の上部側面を交差
する二位置には光センサ用窓32が設けられている。ま
た、熱交換後の水を送るために空調機3から配設された
送水管7が同槽本体16の上部側面に対し貫入されると
ともに、冷媒溶液給水用の給水管33が貫通されている
Further, an upper inspection port 31 similar to the lower inspection port 26 is provided on the upper surface of the tank body 16, that is, the topmost cylindrical portion, and extends horizontally through approximately the center point of the planar section of the tank body 16. Photosensor windows 32 are provided at two positions where the straight line intersects the upper side surface of the homogeneous main body 16. In addition, a water pipe 7 installed from the air conditioner 3 to send water after heat exchange is penetrated into the upper side of the tank body 16, and a water supply pipe 33 for supplying refrigerant solution is penetrated. .

槽本体16の上端縁には断面すげ傘状の天板34が嵌合
され、その周縁部が槽本体i6に対し溶接固定されてい
る。同天板34の上面には第5図に示すように中央に後
述する支柱35の上端部が露出し、同支柱35を中心と
して四方に内部点検用入り口としてのマンホール36が
設けられている。なお、同図において37は天板34上
面に露出した槽内湯度検知用サーモパイプの上端であり
、38は検知用予備孔である。
A top plate 34 having an umbrella-shaped cross section is fitted to the upper edge of the tank body 16, and its peripheral edge is welded and fixed to the tank body i6. As shown in FIG. 5, on the upper surface of the top plate 34, the upper end of a pillar 35, which will be described later, is exposed at the center, and manholes 36 as entrances for internal inspection are provided on all sides around the pillar 35. In the figure, 37 is the upper end of a thermopipe for detecting the hot water temperature in the tank exposed on the upper surface of the top plate 34, and 38 is a preliminary hole for detection.

また、前記天板34の上面には第15図に二点鎖線で示
すように保温性を有する発泡ポリスチレンによりラギン
グが施され、その上にステンレス鋼板が被覆されている
。そして、さらにその上面周縁部には手摺り39が設け
られ、回生摺り39と連結された手摺りばしご4oが槽
本体16の一側外面に沿って下方へ延設されている。
Further, the upper surface of the top plate 34 is lagged with foamed polystyrene having heat retaining properties, as shown by the two-dot chain line in FIG. 15, and a stainless steel plate is coated thereon. Further, a handrail 39 is provided on the peripheral edge of the upper surface, and a handrail ladder 4o connected to the regenerative handrail 39 extends downward along one outer surface of the tank body 16.

また、前記底板15、槽本体16及び天板34からなる
蓄熱槽1内の中央部には底板15がら天板34を貫通す
る筒状の支柱35が立設されている。また、同支柱35
と平行に蓄熱槽1内の一側部には槽内の温度検知用サー
モパイプ37が底板15から天板34を貫通して立設さ
れている。前記支柱35の天板34上方に露出した上端
部には通気孔41が設けられ、一方、支柱35の下端部
には底板15に対し支柱35を固定支持する支・持部材
42との接合部分に開口43が形成されている。
Further, a cylindrical support 35 is erected at the center of the heat storage tank 1, which is made up of the bottom plate 15, the tank body 16, and the top plate 34, and penetrates through the bottom plate 15 and the top plate 34. In addition, the same pillar 35
A thermopipe 37 for detecting the temperature inside the tank is erected on one side of the heat storage tank 1 in parallel with this, penetrating from the bottom plate 15 to the top plate 34. A ventilation hole 41 is provided at the upper end of the pillar 35 exposed above the top plate 34, while a joint part with a support/holding member 42 that fixedly supports the pillar 35 with respect to the bottom plate 15 is provided at the lower end of the pillar 35. An opening 43 is formed in the opening 43 .

第15.16図に示すように蓄熱槽1内において前記支
柱35の上部には槽本体16内周面と水平状態で密着嵌
合する散水板としての主散水板44が貫装され、同主散
水板44よりさらに上部には断面が盆状であって主散水
板44に比較して小径に形成された副成水板45がその
中央部で貫装されている。なお、前記主散水板44は前
記槽本体16の上部開面に設けられた上部点検口31及
び光センサ用窓32の設置位置より上方であって、同じ
く給水管33及び送水管7の貫通位置よりも下方に位置
し、槽本体16の内周面間に架設したアングル46上に
スポット溶接されている。tた、副成水板45の上方に
は蓄熱槽1内において二叉に分岐された送水管7の注水
口7aが上方より注水可能に配置されている。
As shown in FIGS. 15 and 16, in the heat storage tank 1, a main water sprinkling plate 44 as a water sprinkling plate is inserted through the upper part of the support column 35 in a horizontal state and tightly fitted to the inner circumferential surface of the tank body 16. Further above the water sprinkling plate 44, a secondary water forming plate 45 having a tray-shaped cross section and a smaller diameter than the main water sprinkling plate 44 is inserted through the central portion thereof. The main water sprinkling plate 44 is above the installation position of the upper inspection port 31 and the optical sensor window 32 provided in the upper opening of the tank body 16, and is also located at the penetration position of the water supply pipe 33 and the water supply pipe 7. It is spot welded onto an angle 46 located below the tank body 16 and constructed between the inner peripheral surfaces of the tank body 16. Additionally, above the sub-water forming plate 45, a water inlet 7a of a water pipe 7 branched into two in the heat storage tank 1 is arranged so that water can be injected from above.

一方、前記支柱35には主散水板44と副成水板45と
の間にオーバーフロー穴47が設けられている。なお、
この実施例では主成水板44より10cm上方の位置に
設けられている。また、前記支柱35には前記主散水板
44の直近下方の位置に連通孔48が設けられている。
On the other hand, an overflow hole 47 is provided in the support column 35 between the main water distribution plate 44 and the sub-water generation plate 45. In addition,
In this embodiment, it is provided at a position 10 cm above the main water plate 44. Further, a communication hole 48 is provided in the support column 35 at a position directly below the main water spray plate 44 .

そして、前記通気孔41、オーバーフロー穴47、連通
孔48及び開口43は相互に連通状態となっており、支
柱35はオーバーフローパイプ及び槽内の負圧調整用パ
イプとしての機能らはたすようになっている。
The ventilation hole 41, overflow hole 47, communication hole 48, and opening 43 are in communication with each other, and the support column 35 functions as an overflow pipe and a pipe for adjusting negative pressure in the tank. There is.

なお、前記支柱35は前記連通孔48と開口43との間
の部分に内筒49が形成され、同支柱35内周面と内f
!’i49外周面との間の間隙には発泡ポリウレタン5
0が充填され、二重構造となっている。
The support column 35 has an inner cylinder 49 formed between the communication hole 48 and the opening 43, and an inner cylinder 49 is formed between the inner peripheral surface of the support column 35 and the inner f.
! 'i49 The gap between the outer peripheral surface and the polyurethane foam 5
It is filled with 0 and has a double structure.

前記主散水板44は第17図に示すように蓄熱槽1の平
面形状を分割して形成される10枚のパンチングボード
51から構成され、各パンチングボード51間の接合面
及び種本#16内周面との接合面はスポット溶接されて
いる。なお、同図において52は前記支柱35を貫通さ
せるための支柱貫通用孔であり、53は温度検知用サー
モパイプ貫通用孔、54は予備用貫通孔である。また、
55は前記マンホール36の下方に位置する点検孔であ
る。
The main sprinkler plate 44 is composed of ten punching boards 51 formed by dividing the planar shape of the heat storage tank 1, as shown in FIG. The joint surface with the peripheral surface is spot welded. In the same figure, 52 is a support through hole through which the support 35 passes, 53 is a temperature detection thermopipe through hole, and 54 is a preliminary through hole. Also,
55 is an inspection hole located below the manhole 36.

前記主散水板44を構成する各パンチングボード51に
は第18図に示すような上方が小径の断面テーパ状に形
成された滴下孔56が設けられている。この滴下孔56
は蓄熱槽1内の水面へ水を均一に滴下させるための孔で
あり、前記送水管7より副成水板45を介して主散水板
44上に注水され滞留した水が水位を41から10cn
の間に保って均一滴下がはかれるようにその孔の大きさ
と数が計算されている。
Each punching board 51 constituting the main sprinkler plate 44 is provided with a drip hole 56 having a tapered cross-section with a small diameter at the top, as shown in FIG. This drip hole 56
is a hole for uniformly dropping water onto the water surface in the heat storage tank 1, and the water injected from the water pipe 7 onto the main water spray plate 44 via the sub-water generation plate 45 and stagnant water increases the water level from 41 to 10 cm.
The size and number of the holes are calculated to ensure uniform dripping.

因、この実施例では主散水板44の直径りを35501
11、滴下孔56の径を61とし、散水量Qを最大で2
2oo1771in、a小で440J2/ninと設定
した場合の前記均一滴下をするための滴下孔56を次の
ように配置している。
Incidentally, in this embodiment, the diameter of the main water spray plate 44 is 35,501 mm.
11. The diameter of the dripping hole 56 is 61, and the water sprinkling amount Q is 2 at maximum.
The dripping holes 56 for uniform dripping when set to 2oo1771in, a small and 440J2/nin are arranged as follows.

すなわち、流量計数Cを0.76 (実験値〉、滴下孔
56の面積Aを2.83X10’m2主散水板44上の
水位高さHを0.1mとして滴下孔56の一単位当たり
の散水量QlをQ1=CA許「7Kから求め、次に滴下
孔56の数NをN=Q/Qlから求めている。その計算
の結果はQ1=1.807.(/min 、N=121
7個である。そして、さらに第17図に示すような配置
パターンでのピッチPをD=1.15PN’°5用いて
求め、各滴下孔54間のピッチPを9oIlllとして
いる。
That is, the flow rate C is 0.76 (experimental value), the area A of the drip hole 56 is 2.83 x 10'm2, the water level height H on the main sprinkler plate 44 is 0.1 m, and the spray per unit of the drip hole 56 is calculated. The amount of water Ql is calculated from Q1 = CA 7K, and then the number N of drip holes 56 is calculated from N = Q/Ql.The result of the calculation is Q1 = 1.807.(/min, N = 121
There are 7 pieces. Further, the pitch P in the arrangement pattern as shown in FIG. 17 is determined using D=1.15PN'°5, and the pitch P between each drip hole 54 is set to 9oIlll.

なお、前記のように計算上京められる孔の数は1217
個であるが、スポット溶接された各パンチングボード5
1のすき間がらも漏れることを考慮し、実際には109
8個の滴下孔56が設けられている。
In addition, the number of holes that can be calculated as described above is 1217.
each punching board 5 pieces but spot welded
Taking into consideration that leakage may occur from the gap in 1, the actual number is 109.
Eight drip holes 56 are provided.

また、前記主散水板44上、に設けられた副成水板45
には送水管7の注水口7aより注水され滞留した水を主
散水板44へ滴下するための断面テーパ状の副滴下孔5
7が12個設けられている。
Further, a sub-water generation plate 45 provided on the main water distribution plate 44
There is a sub drip hole 5 with a tapered cross section for dripping water injected from the water inlet 7a of the water pipe 7 and stagnant onto the main water sprinkling plate 44.
There are 12 numbers 7.

なお、副滴下孔57は前記滴下孔56よりも径が大きく
形成されている。
Note that the sub-drop hole 57 is formed to have a larger diameter than the drop hole 56.

次に、以上のように構成された氷蓄熱槽装置の作用につ
いて説明する。
Next, the operation of the ice heat storage tank device configured as described above will be explained.

まず初めに、給水管33から給水され蓄熱槽1内に蓄え
られた水は吸水管4を介して製氷812へ送られる。そ
して同製氷機2により生成された氷Rが吐出管5の長孔
27を介して蓄熱槽1内下部へ吐出される。吐出される
氷Rは長孔27から10上昇すると流速がほぼOlとな
り、その後は水と氷Rとの比重差により層流で上方へ流
動する。
First, water supplied from the water supply pipe 33 and stored in the heat storage tank 1 is sent to the ice making 812 via the water intake pipe 4. The ice R produced by the ice maker 2 is discharged into the lower part of the heat storage tank 1 through the elongated hole 27 of the discharge pipe 5. When the discharged ice R rises 10 degrees from the elongated hole 27, the flow velocity becomes approximately O1, and thereafter it flows upward in a laminar flow due to the difference in specific gravity between the water and the ice R.

したがって、蓄熱槽1内下部に乱流は起きずまた氷Rは
上方へ流動するので吐出管5の下方には常に冷水が貯留
される。
Therefore, no turbulence occurs in the lower part of the heat storage tank 1, and the ice R flows upward, so that cold water is always stored below the discharge pipe 5.

この状態から供給管6を介して蓄熱槽1内下部の冷水が
空調機3へ送られる。そしてこのとき、この実施例に係
る蓄熱槽1は槽内形状が円筒状となっているので、槽内
の氷R及び冷水は全体的に流動しその一部が停滞するこ
とはない。
From this state, the cold water in the lower part of the heat storage tank 1 is sent to the air conditioner 3 via the supply pipe 6. At this time, since the heat storage tank 1 according to this embodiment has a cylindrical internal shape, the ice R and cold water in the tank flow as a whole, and no part of them stagnates.

また、前記吸水管4スは供給管6を介して蓄熱槽1内下
部の冷水が槽外へ送り出されると、これに伴い槽内水位
が下がる。すると槽内の水面上空間は負圧となるが通気
孔41及び連通孔48を介して外気と連通され負圧調整
がされる。
Further, when the cold water in the lower part of the heat storage tank 1 is sent out of the tank through the supply pipe 6, the water level in the tank decreases accordingly. Then, the space above the water surface in the tank becomes a negative pressure, but it is communicated with the outside air through the ventilation hole 41 and the communication hole 48, and the negative pressure is adjusted.

空調機3を経て温度の高くなった水が送水管7の注水口
7aを介して副散水板45上へ注水されると、その水は
副滴下孔57から主散水板44上へ滴下される。そして
主散水板44上に滞留した水は滴下孔56がら槽内全体
に均一に滴下される。
When the water whose temperature has become high after passing through the air conditioner 3 is injected onto the sub-water sprinkling plate 45 through the water inlet 7a of the water pipe 7, the water is dripped onto the main water-sprinkling plate 44 from the sub-drip hole 57. . The water accumulated on the main water sprinkling plate 44 is uniformly dripped throughout the tank through the drip holes 56.

なお、主散水板44上に滞留する水が滴下能力を越える
所定の高さ以上(この実施例ではloCII以上)の水
位に達すると、支柱35のオーバーフロー穴47からオ
ーバーフロー水が支柱35内を通り蓄熱槽1内下部の冷
水側に開口4oを経て流出される。
Note that when the water remaining on the main sprinkler plate 44 reaches a water level exceeding a predetermined height exceeding the dripping capacity (loCII or higher in this embodiment), overflow water passes through the overflow hole 47 of the support post 35 into the support support 35. It flows out to the cold water side of the lower part of the heat storage tank 1 through the opening 4o.

主散水板44上の水が全部滴下されると、その際滴下孔
56は残存する水の表面張力により水の膜で塞がれる。
When all the water on the main water sprinkling plate 44 is dripped, the drip hole 56 is blocked with a film of water due to the surface tension of the remaining water.

しがし、同滴下孔56は上方が小径の断面テーパ状とな
っているので塞がれるのは滴下孔56上方の小径部のみ
であり、その結果槽内下方からの冷気により凍結した場
合には滴下孔56の深さ方向の上方一部分だけが凍結さ
れる。
However, since the drip hole 56 has a tapered cross section with a small diameter at the top, only the small diameter portion above the drip hole 56 is blocked, and as a result, if it freezes due to cold air coming from below in the tank. Only the upper part of the drip hole 56 in the depth direction is frozen.

蓄熱槽1内の水位Wが主散水板44の直近下方まで上昇
すると、すなわち氷Rが多量となり体積膨脹した氷Rが
増えすぎると、光センサ用窓32を通して光センサ(図
示しない)がこれを検知し、製氷機2の稼動を制限する
When the water level W in the heat storage tank 1 rises to the level immediately below the main water spray plate 44, that is, when the volume of ice R increases too much, an optical sensor (not shown) detects this through the optical sensor window 32. is detected, and the operation of the ice maker 2 is restricted.

また、保温パネル23は外部からの衝撃に対し蓄熱槽1
を保護し、同保温パネル23の内側の保温部材25は槽
本体16を通しての外部への熱放出を防止している。
In addition, the heat insulation panel 23 protects the heat storage tank 1 from external impact.
The heat insulating member 25 inside the heat insulating panel 23 prevents heat from being released to the outside through the tank body 16.

さらに、受台12は底板15を通しての外部への熱放出
を防止するとともに、底板15と支持枠9間に介在する
ことによりWI撃を吸収し防諜構造を構成する。
Further, the pedestal 12 prevents heat from being released to the outside through the bottom plate 15, and is interposed between the bottom plate 15 and the support frame 9 to absorb WI attacks and constitute a counterintelligence structure.

このように、この実施例においては槽内形状を円筒状と
したことにより槽内に氷R及び冷水が停滞しないので槽
内容量を100%有効に利用することができる。しがち
、円筒状とすることにより同一容積なら種本#16を高
くすることにより設置面積を小さくでき、かつ槽内湯度
分布を上下で高温部、低温部に分けられるので、蓄熱槽
1の設置スペースを少なくできるとともにムラのない温
度分布で良好な熱効率を実現することができる。
As described above, in this embodiment, since the tank interior is cylindrical in shape, the ice R and cold water do not stagnate in the tank, so that the tank interior capacity can be used 100% effectively. However, by making it cylindrical, if the volume is the same, the installation area can be made smaller by raising the seed head #16, and the hot water temperature distribution in the tank can be divided into upper and lower high-temperature areas and low-temperature areas, so it is easier to install heat storage tank 1. It is possible to reduce space and achieve good thermal efficiency with even temperature distribution.

また、吐出管5は先端が閉塞されたバイブの周面上側に
長平方向に上向きの長孔27を一定間隔をおいて形成し
、水Rを吐出管5の先端から主流速のままで吹き出すこ
となく、その長孔27がら上方へ主流速を抑制されて吐
出するようにしているので蓄熱槽1内下部に乱流を起こ
さず、層流で氷Rを上方へ流動させることができる。そ
の結果槽内高温部と低温部の混合を防ぎ、適切な温度分
布を維持できるとともに吐出管5の下方に常に冷水を貯
留できるので熟使用効率を上げることができる。
In addition, the discharge pipe 5 has elongated holes 27 facing upward in the oblong direction at regular intervals on the upper side of the circumferential surface of the vibrator whose tip is closed, so that the water R can be blown out from the tip of the discharge pipe 5 at the mainstream velocity. Since the ice R is discharged upward through the elongated hole 27 with the main flow velocity being suppressed, no turbulence is caused in the lower part of the heat storage tank 1, and the ice R can be caused to flow upward in a laminar flow. As a result, mixing of the high-temperature and low-temperature parts in the tank can be prevented, an appropriate temperature distribution can be maintained, and cold water can always be stored below the discharge pipe 5, so that the efficiency of full use can be increased.

さらに、送水管7から温がい水の蓄熱槽1内への注水構
造を副成水板45と主散水板44との二段構成による滴
下構造としているので、蓄熱槽1内の水面全体により安
定的に均一に滴下させることができ、その結果槽内上部
の氷Rと滴下された温かい水との間で均一に効率よく速
やかに熱交換させることができる。また、滴下孔56を
上方が小径の断面テーバ状とし、表面張力により水の膜
が彊って凍結する部分をその滴下孔56の水掻部分のみ
としたので、装置稼動浸すぐに凍結部分を融解させるこ
とができ、均一滴下をさせることができる。
Furthermore, since the water injection structure from the water pipe 7 into the heat storage tank 1 is a dripping structure with a two-stage configuration of the sub-water formation plate 45 and the main water spray plate 44, the entire water surface in the heat storage tank 1 is more stable. As a result, heat can be exchanged uniformly, efficiently, and quickly between the ice R at the top of the tank and the warm water that has been dropped. In addition, the dripping hole 56 has a tapered cross section with a small diameter at the top, and the only part of the dripping hole 56 where the water film breaks down and freezes due to surface tension is the webbed part of the dripping hole 56. It can be melted and dripped uniformly.

加えて、主散水板44上に滞留する水が滴下能力を越え
た水量となると、オーバーフロー穴47から支柱35内
を通りオーバーフローした水が支柱35下部の開口43
から蓄熱槽1内下部へ流入されるので主散水板44を通
して常に適切な滴下状態を鱈持させることができる。
In addition, when the amount of water remaining on the main sprinkler plate 44 exceeds the dripping capacity, the overflowing water passes through the overflow hole 47 into the support 35 and flows through the opening 43 at the bottom of the support 35.
Since the water flows into the lower part of the heat storage tank 1 through the main water sprinkling plate 44, an appropriate dripping state can be maintained at all times.

また、吸水管4または供給管6から蓄熱槽1内の冷水が
槽外へ送り出され、槽内水位が下がると蓄熱槽1内の冷
水が槽外へ送り出され、槽内水位が下がると蓄熱槽1内
の水面上空間は負圧となるが、外気と連通ずる通気孔3
8及び連通孔44により槽内の負圧が調整されるので槽
本体16等が前記負圧により変形するのを防止すること
ができる。
Also, the cold water in the heat storage tank 1 is sent out from the water absorption pipe 4 or the supply pipe 6 to the outside of the tank, and when the water level in the tank decreases, the cold water in the heat storage tank 1 is sent out to the outside of the tank. The space above the water surface inside 1 has negative pressure, but there is a ventilation hole 3 that communicates with the outside air.
8 and the communication hole 44 to adjust the negative pressure inside the tank, it is possible to prevent the tank main body 16 and the like from deforming due to the negative pressure.

また、槽本体16の外周面を覆う保温パネル23は内側
凹部23aに保温部材25を嵌め込み、しかも槽本体1
6の外周面には発泡スチレンによるラギング層24が施
されているので槽本体16を通しての熱放出を防止でき
るとともに、前記保温部材25とラギング層24が衝撃
吸収作用をするので外部からのWi撃による蓄熱槽1の
破損を防止することができる。
Further, the heat insulating panel 23 that covers the outer peripheral surface of the tank body 16 has a heat insulating member 25 fitted into the inner recess 23a, and
A lagging layer 24 made of expanded styrene is applied to the outer peripheral surface of the tank 6, which prevents heat from being released through the tank body 16.The heat insulating member 25 and the lagging layer 24 act as shock absorbers to prevent external shocks. It is possible to prevent damage to the heat storage tank 1 due to

さらに、この実施例では蓄熱槽1の支持構造において底
板15と基板11間に木枠13と保温材14からなる受
台12を配置したことにより底板15を通しての熱放出
を防止することができるとともに、同受台12が19吸
収作用をらはたすので防諜構造としての機能をはたすこ
ともできる。
Furthermore, in this embodiment, in the support structure of the heat storage tank 1, a pedestal 12 made of a wooden frame 13 and a heat insulating material 14 is arranged between the bottom plate 15 and the substrate 11, so that heat release through the bottom plate 15 can be prevented. Since the pedestal 12 has a 19 absorption function, it can also function as a counterintelligence structure.

なお、この発明は前記実施例に限定されることなく、た
とえば吐出孔としての長孔を周面全体に設けられた複数
の細孔とするなどこの発明の趣旨を逸脱しない範囲で任
意に変更することも可能である。
Note that the present invention is not limited to the above-mentioned embodiments, and may be arbitrarily modified without departing from the spirit of the present invention, such as changing the elongated hole as the discharge hole to a plurality of pores provided over the entire circumference. It is also possible.

[効果] この発明は以上説明したように構成されているので次の
ような特有の効果を奏する。
[Effects] Since the present invention is configured as described above, it has the following unique effects.

請求項1の氷W熟檀装置においては槽内に貫入された吐
出管の周面に複数の吐出孔を形成したので冷媒は吐出管
の先端から主流速のまま吹き出されることなく吐出孔か
ら主流速が抑制されて吐出され、その結果槽内下部に乱
流が生じないので槽内の高温部と低温部の温度分布が均
一に保たれ、良好な熱効率を維持することができる。
In the ice W judan apparatus according to claim 1, a plurality of discharge holes are formed on the circumferential surface of the discharge pipe penetrated into the tank, so that the refrigerant is not blown out from the tip of the discharge pipe at the mainstream speed but from the discharge hole. The main flow velocity is suppressed and discharged, and as a result, no turbulence occurs in the lower part of the tank, so the temperature distribution between the high temperature and low temperature parts in the tank is maintained uniform, and good thermal efficiency can be maintained.

請求項2の氷蓄熱槽装置においては、槽内に対し吐出管
を水平に貫入させるとともに吐出管の周面上側に複数の
上向きの長孔を形成したので冷媒を同長孔から乱流を起
こさず層流で上方へ流動させ、槽内の温度分布を保ちつ
つ良好な熱効率を維持できるとともに吐出管の下方には
常に冷水を貯留させることができる。
In the ice heat storage tank device of claim 2, the discharge pipe penetrates horizontally into the tank, and a plurality of upwardly directed long holes are formed on the upper side of the circumferential surface of the discharge pipe, so that turbulent flow of the refrigerant is caused through the long holes. By making the water flow upward in a laminar flow, it is possible to maintain good thermal efficiency while maintaining temperature distribution within the tank, and cold water can always be stored below the discharge pipe.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明を具体化した一実施例の蓄熱槽全#狂
面図、第2図は第1図のA−Aili面図、第3図はこ
の発明に係る氷蓄熱槽装置の概略図、第4図は第1図か
ら保温パネル等の外装を取除いた図、第5図は同平面図
、第6図は支持棒の平面図、第7図は受台平面図、第8
図は蓄熱槽の支持構造要部断面図、第9図は保温パネル
正面図、第10図は同平断面図、第11図は保温部材正
面図、第12図は同平断面図、第13図は転倒防止部材
の取付位置を示す1!!i略側面図、第14図は同平面
図、第15図は蓄熱槽内要部破断面図、第16図は同要
部平面図、第17図は主散水板平面図、第18図は同一
部断面図である。
FIG. 1 is a full-plane view of a heat storage tank according to an embodiment of the present invention, FIG. 2 is an A-Aili plane view of FIG. 1, and FIG. 3 is a schematic diagram of an ice heat storage tank device according to the present invention. Figure 4 is a diagram with the exterior such as a heat insulation panel removed from Figure 1, Figure 5 is the same plan view, Figure 6 is a plan view of the support rod, Figure 7 is a plan view of the pedestal, and Figure 8 is a plan view of the support rod.
The figure is a sectional view of the main part of the support structure of the heat storage tank, FIG. 9 is a front view of the heat insulation panel, FIG. The figure shows the installation position of the fall prevention member 1! ! i Schematic side view, Fig. 14 is a plan view of the same, Fig. 15 is a sectional view of the main parts inside the heat storage tank, Fig. 16 is a plan view of the main parts, Fig. 17 is a plan view of the main water plate, and Fig. 18 is a plan view of the main parts. It is a sectional view of the same part.

Claims (1)

【特許請求の範囲】 1、冷媒(R)を生成する製氷機(2)と、同製氷機(
2)と連結され冷媒(R)を蓄える蓄熱槽(1)とを含
む氷蓄熱槽装置において、 前記製氷機(2)より蓄熱槽(1)内へ吐出管(5)を
貫入し、前記蓄熱槽(1)内に位置する吐出管(5)の
周面に複数の吐出孔(27)を形成したことを特徴とす
る氷蓄熱槽装置。 2、前記吐出管(5)は蓄熱槽(1)内に水平に貫入さ
れたパイプからなり、その吐出孔(27)は蓄熱槽(1
)内においてパイプ周面上側に上向きに形成された複数
の長孔であることを特徴とする請求項1記載の氷蓄熱槽
装置。
[Claims] 1. An ice maker (2) that generates a refrigerant (R);
2), a discharge pipe (5) penetrates into the heat storage tank (1) from the ice maker (2) and stores the refrigerant (R), An ice heat storage tank device characterized in that a plurality of discharge holes (27) are formed on the circumferential surface of a discharge pipe (5) located in a tank (1). 2. The discharge pipe (5) consists of a pipe that penetrates horizontally into the heat storage tank (1), and its discharge hole (27) is connected to the heat storage tank (1).
2. The ice heat storage tank device according to claim 1, further comprising a plurality of elongated holes formed upwardly on the upper side of the circumferential surface of the pipe in the inside of the pipe.
JP1174392A 1989-07-06 1989-07-06 Ice thermal storage tank device Expired - Fee Related JP2698435B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1174392A JP2698435B2 (en) 1989-07-06 1989-07-06 Ice thermal storage tank device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1174392A JP2698435B2 (en) 1989-07-06 1989-07-06 Ice thermal storage tank device

Publications (2)

Publication Number Publication Date
JPH0339836A true JPH0339836A (en) 1991-02-20
JP2698435B2 JP2698435B2 (en) 1998-01-19

Family

ID=15977793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1174392A Expired - Fee Related JP2698435B2 (en) 1989-07-06 1989-07-06 Ice thermal storage tank device

Country Status (1)

Country Link
JP (1) JP2698435B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110017716A (en) * 2019-03-20 2019-07-16 华电电力科学研究院有限公司 A kind of heat-accumulator tank water distributing tray and its storage exothermic processes suitable for peak regulation accumulation of heat

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0160130U (en) * 1987-10-08 1989-04-17

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0160130U (en) * 1987-10-08 1989-04-17

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110017716A (en) * 2019-03-20 2019-07-16 华电电力科学研究院有限公司 A kind of heat-accumulator tank water distributing tray and its storage exothermic processes suitable for peak regulation accumulation of heat
CN110017716B (en) * 2019-03-20 2023-11-28 华电电力科学研究院有限公司 Heat storage tank water distribution disc suitable for peak regulation and heat storage method thereof

Also Published As

Publication number Publication date
JP2698435B2 (en) 1998-01-19

Similar Documents

Publication Publication Date Title
CA1252038A (en) Cooling tower with concrete support structure fiberglass panels, and a fan supported by the liquid distribution system
US7922130B2 (en) Mounting device
CN108442717B (en) Side surface maintenance device for concrete structure and construction method
US7708235B2 (en) Mounting device
MX2007003020A (en) Tower/frame structure and components for same.
KR101512673B1 (en) Workshop cooling system using evaporation and formation of a water film on the ceiling
JPH0339836A (en) Ice heat accumulating tank device
JP2698436B2 (en) Ice thermal storage tank device
CN206810022U (en) A kind of desulfuration absorbing tower shower group support meanss
CN206823006U (en) A kind of aluminium alloy structure roof system spraying protection system
JP2698437B2 (en) Thermal storage tank
JP2698438B2 (en) Thermal insulation structure on the bottom of the tank
WO2013108872A1 (en) Wall greening device and method having wall cooling function
CN210433881U (en) A spray protection system and fire engine for fire engine
CN209237635U (en) A kind of honeycomb fashion flue gas disappears White Tower
CN211037209U (en) Fire sprinkler head emergency drainage device that bursts
CN113530274A (en) Building outer wall maintenance equipment and maintenance method
CN207032047U (en) A kind of bridge guardrail base and dripping eaves construction formwork
CN112983061A (en) High-order water stage waterproof construction of theater
CN207044372U (en) Concrete curing chamber
CN206611891U (en) Half reassembling type rear wall of greenhouse
CN214932248U (en) Precast concrete component storage system
CN218714956U (en) Intelligent climbing frame spraying maintenance circulating system
CN107896651A (en) A kind of heat-insulated silo of sound state
CN215106045U (en) Steel construction fire prevention body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees