JPH03393A - Heat-resisting frp pipe - Google Patents

Heat-resisting frp pipe

Info

Publication number
JPH03393A
JPH03393A JP13244489A JP13244489A JPH03393A JP H03393 A JPH03393 A JP H03393A JP 13244489 A JP13244489 A JP 13244489A JP 13244489 A JP13244489 A JP 13244489A JP H03393 A JPH03393 A JP H03393A
Authority
JP
Japan
Prior art keywords
resin
aromatic compound
acid
cross
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13244489A
Other languages
Japanese (ja)
Inventor
Haruyuki Kano
狩野 治之
Akihiko Nemoto
明彦 根本
Masato Ohira
大平 正人
Kunitoshi Taniguchi
谷口 邦利
Tetsuzo Arai
新井 哲三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Air Water Inc
Original Assignee
Sumitomo Metal Industries Ltd
Sumikin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd, Sumikin Chemical Co Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP13244489A priority Critical patent/JPH03393A/en
Publication of JPH03393A publication Critical patent/JPH03393A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

PURPOSE:To improve high temperature strength by reacting a starting material consisting of a mixture of a condensation polycyclic aromatic compound and a monocyclic aromatic compound with a cross-linking agent consisting of hydroxymethyl by the use of an organic sulfonic acid compound as a catalyst. CONSTITUTION:As the starting material of resin, a mixture of a condensation polycyclic aromatic resin and a monocyclic aromatic compound is used. The condensation polycyclic aromatic compounds include naphthalene and various benzopyrene. The monocyclic aromatic compounds include phenol and alkyl phenols. A cross-linking agent is an aromatic compound having two hydroxymethyl group or halomethyl groups such as benzene and xylene. Such starting material is reacted with the cross-linking agent in the presence of an acid catalyst, and as the acid catalyst, organic aromatic sulfonic acids and hydroxymethyl group are used. The used amount of the acid catalyst is preferably about 1-20wt.%, and the mixing ratio of the cross-linking agent to the cross-linked agent (starting material + acid catalyst) is preferably about 0.7-6 by molar ratio.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、耐熱性に優れたFRP管(繊維強化プラスチ
ツク管)に関し、特にマトリックス樹脂として熱硬化縮
合多環系芳香族樹脂を利用した耐熱11F RP管に関
する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to FRP pipes (fiber-reinforced plastic pipes) with excellent heat resistance. Regarding 11F RP pipe.

(従来の技術) FRP管は、軽量・高強度で耐食性に優れるといった特
徴を生かして、温泉、化学プラント、電力、製鉄設備等
の一般配管から、原油、天然ガス輸送用ラインパイプあ
るいは原油掘削用の油井管といった高圧配管に至るまで
幅広く適用されている。
(Conventional technology) FRP pipes are lightweight, have high strength, and have excellent corrosion resistance, and are used for everything from general piping for hot springs, chemical plants, electric power, and steel manufacturing facilities, to line pipes for transporting crude oil and natural gas, and for crude oil drilling. It is widely applied to high-pressure piping such as oil country tubular goods.

従来、FRP管のマトリックス樹脂としては、不飽和ポ
リエステル樹脂、エポキシ樹脂等の熱硬化性樹脂が使用
されている。
Conventionally, thermosetting resins such as unsaturated polyester resins and epoxy resins have been used as matrix resins for FRP pipes.

これらの樹脂を用いたFRP管は、軽量で、かつ耐食性
に優れるといった長所を有している反面、耐熱性が充分
でなく、100℃以下の比較的低温域でしか使用できな
いという欠点があった。例えば、熱変形温度は、不飽和
ポリエステル樹脂で130°C以下、エポキシ樹脂では
150°C以下であり、温度が100℃を超えると強度
が著しく低下するため、100℃を超える高温域での適
用は困難であった(例、rFRP設計便覧」18頁参照
)。
Although FRP pipes made using these resins have the advantage of being lightweight and having excellent corrosion resistance, they have the disadvantage that they do not have sufficient heat resistance and can only be used at relatively low temperatures below 100°C. . For example, the heat distortion temperature is 130°C or less for unsaturated polyester resins and 150°C or less for epoxy resins.If the temperature exceeds 100°C, the strength decreases significantly, so it is not suitable for application in high temperature ranges exceeding 100°C. (For example, see page 18 of ``rFRP Design Handbook.'')

耐熱性に優れた樹脂として、ポリエーテルエーテルケト
ン(PEEK)、ポリエーテルスルホン(PEs)など
があるが、これらは高価である上に、熱可塑性樹脂であ
るため、最も強度特性に優れるフィラメントワインディ
ング法およびその類似法は適用できないという欠点があ
る。また、最も耐熱性が高い熱硬化性樹脂であるポリイ
ミドをマトリックス樹脂とすることも知られているが、
この樹脂は掻めて高価である上、成形性が悪いという欠
点を有していた。
Resins with excellent heat resistance include polyetheretherketone (PEEK) and polyethersulfone (PEs), but these are expensive and are thermoplastic resins, so the filament winding method has the best strength properties. and similar laws are not applicable. It is also known that polyimide, which is a thermosetting resin with the highest heat resistance, is used as a matrix resin.
This resin has the drawbacks of being extremely expensive and having poor moldability.

(発明が解決しようとする課題) 本発明は、上述したFRP管の実情に鑑み、比較的安価
な熱硬化性樹脂をマトリックス樹脂として、耐熱性すな
わち高温強度に優れたFRP管を提供することである。
(Problems to be Solved by the Invention) In view of the above-mentioned actual situation of FRP pipes, the present invention provides an FRP pipe that uses a relatively inexpensive thermosetting resin as a matrix resin and has excellent heat resistance, that is, high-temperature strength. be.

(課題を解決するための手段) 本発明者らは、最近開発されたC0PNA樹脂と命名さ
れている縮合多環芳香族樹脂(Condensed P
a1y−Nuclear Aro@atic Re5i
n+特開昭62−521号および同62−522号公報
参照、ナフタレン等の縮合多環芳香族化合物と少なくと
も2個のヒドロキシメチルもしくはハロメチル基を有す
る芳香族化合物からなる架橋剤とを酸触媒の存在下に反
応させて得た樹脂)や、これらをフェノール等の単環芳
香族化合物で変性せしめた樹脂が、比較的安価で耐熱性
に優れた熱硬化性樹脂であることに着目し、これらをF
RP管のマトリックス樹脂として利用することを試みた
。しかし、単に従来のこの種の樹脂を応用しただけでは
、耐熱性に優れたFRP管が得られるものの、成形金型
の曇りによる成形不能や、マンドレル表面の腐食等によ
る抜き出し不能などの問題があることが判明した。
(Means for Solving the Problems) The present inventors have developed a recently developed condensed polycyclic aromatic resin (Condensed PNA resin) named C0PNA resin.
a1y-Nuclear Aro@atic Re5i
n+ See JP-A-62-521 and JP-A-62-522, a crosslinking agent consisting of a condensed polycyclic aromatic compound such as naphthalene and an aromatic compound having at least two hydroxymethyl or halomethyl groups is combined with an acid catalyst. We focused on the fact that resins obtained by reacting in the presence of phenols (resins obtained by reacting in the presence of phenols) and resins modified with monocyclic aromatic compounds such as phenol are thermosetting resins that are relatively inexpensive and have excellent heat resistance. F
An attempt was made to use it as a matrix resin for RP pipes. However, although it is possible to obtain FRP pipes with excellent heat resistance by simply applying conventional resins of this type, there are problems such as inability to form due to fogging of the mold and inability to extract due to corrosion of the mandrel surface. It has been found.

さらに研究を進めた結果、この問題は、触媒として使用
した酸が硬化時に発生する縮合水によって表面に滲出し
、金型の金属と反応して金属塩を生成することに原因が
あり、樹脂の製造時に、原料成分に反応性のある酸触媒
を使用して酸を樹脂骨格に固定化するか、あるいは水不
溶性の酸触媒を使用することにより、上記問題が回避で
きることを見出し、本発明を完成した。
Further research revealed that this problem was caused by the acid used as a catalyst oozing out to the surface due to condensation water generated during curing, reacting with the metal in the mold, and producing metal salts. We discovered that the above problem could be avoided by using an acid catalyst that is reactive with the raw material components to immobilize the acid on the resin skeleton during production, or by using a water-insoluble acid catalyst, and completed the present invention. did.

ここに、本発明の要旨は、縮合多環芳香族化合物または
縮合多環芳香族化合物と単環芳香族化合物との混合物か
らなる原料物質と、少なくとも2個のヒドロキシメチル
基またはハロメチル基を有する芳香族化合物からなる架
橋剤とを、前記原料物質もしくは架橋剤の少なくとも一
方と反応性を有する有機スルホン酸化合物、または水不
溶性の有機スルホン酸化合物もしくはスルホン酸基含存
重合体を触媒として反応させることにより得られた熱硬
化縮合多環系芳香族樹脂をマトリックス樹脂とすること
を特徴とする、耐熱性FRP管である。
Here, the gist of the present invention is to provide a raw material consisting of a fused polycyclic aromatic compound or a mixture of a fused polycyclic aromatic compound and a monocyclic aromatic compound, and an aromatic material having at least two hydroxymethyl groups or halomethyl groups. A crosslinking agent consisting of a group compound is reacted with an organic sulfonic acid compound having reactivity with at least one of the raw material or the crosslinking agent, or a water-insoluble organic sulfonic acid compound or a sulfonic acid group-containing polymer as a catalyst. This is a heat-resistant FRP pipe characterized in that the thermosetting condensed polycyclic aromatic resin obtained by the above method is used as a matrix resin.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明のFRP管においてマトリックス樹脂として用い
る縮合多環系芳香族樹脂およびその製造についてまず説
明する。
First, the condensed polycyclic aromatic resin used as the matrix resin in the FRP pipe of the present invention and its production will be explained.

この樹脂の原料物質は、縮合多環芳香族化合物またはこ
れ七草環芳香族化合物との混合物である。
The raw material for this resin is a condensed polycyclic aromatic compound or a mixture thereof with a seven-herb aromatic compound.

縮合多環芳香族化合物としては、ナフタレン、アセナフ
テン、フェナントレン、アントラセン、ピレン、クリセ
ン、ナフタセン、フルオランテン、ペリレン、ビセンお
よびそれらのアルキル誘導体、各種ベンゾピレン、各種
ベンゾペリレン等の縮合多環炭化水素類、ならびにナフ
トール等のヒドロキシ置換誘導体が挙げられ、これらの
2種以上の混合物も使用できる。原料物質として使用で
きる単環芳香族化合物としては、フェノール、アルキル
フェノール、レゾルシン等のフェノール類やジフェニル
、ジフェニルエーテル、アルキルベンゼン等の単環芳香
族化合物が挙げられ、これらを前記縮合多環芳香族化合
物と併用することができる。
Examples of fused polycyclic aromatic compounds include fused polycyclic hydrocarbons such as naphthalene, acenaphthene, phenanthrene, anthracene, pyrene, chrysene, naphthacene, fluoranthene, perylene, bicene and their alkyl derivatives, various benzopyrenes, and various benzoperylenes; Examples include hydroxy-substituted derivatives such as naphthol, and mixtures of two or more of these can also be used. Examples of monocyclic aromatic compounds that can be used as raw materials include phenols such as phenol, alkylphenol, and resorcinol, and monocyclic aromatic compounds such as diphenyl, diphenyl ether, and alkylbenzene. can do.

以上のような2以上の芳香族化合物がメチレン基、フェ
ニレン基またはキシリレン基等で連結された多核構造の
芳香族化合物も原料物質として使用できる。また、上記
のような芳香族化合物を主成分とする石炭系または石油
系の重質油類、ピッチ類も原料物質として使用可能であ
る。
Aromatic compounds having a polynuclear structure in which two or more aromatic compounds as described above are connected by a methylene group, a phenylene group, a xylylene group, etc. can also be used as the raw material. Further, coal-based or petroleum-based heavy oils and pitches containing the above-mentioned aromatic compounds as main components can also be used as raw materials.

好ましい原料物質は、縮合多環芳香族化合物としてナフ
タレンを含むものである。特に好ましい原料物質は、ナ
フタレン単独またはこれとフェノ−ルとの混合物である
A preferred raw material is one containing naphthalene as the fused polycyclic aromatic compound. A particularly preferred raw material is naphthalene alone or a mixture thereof with phenol.

原料物質として、フェノールなどの単環芳香族化合物を
併用した場合には、硬化時にヘキサミン(ヘキサメチレ
ンテトラミン)、あるいはフェノール樹脂、脂肪酸、エ
ポキシ樹脂などの他の適当な硬化剤を添加してもよい。
When a monocyclic aromatic compound such as phenol is used as a raw material, hexamine (hexamethylenetetramine) or other suitable curing agent such as phenolic resin, fatty acid, or epoxy resin may be added during curing. .

本発明で用いる樹脂の製造に使用する架橋剤は、少なく
とも2個のヒドロキシメチル基またはハロメチル基を有
する芳香族化合物であり、このような化合物の例として
は、ベンゼン、キシレン、ナフタレン、アントラセン、
ピレン等の単環もしくは縮合多・環芳香族化合物または
それらのアルキル誘導体等の炭化水素化合物のポリ (
ヒドロキシメチル)またはポリ (ハロメチル)ifa
誘導体が挙げられる。特に好ましい架橋剤は、ジヒドロ
キシメチルベンゼン(キシレングリコール)、ジヒドロ
キシメチルキシレン、トリヒドロキシメチルベンゼン、
ジヒドロキシメチルナフタレン等である。
The crosslinking agent used in the production of the resin used in the present invention is an aromatic compound having at least two hydroxymethyl or halomethyl groups; examples of such compounds include benzene, xylene, naphthalene, anthracene,
Poly(
hydroxymethyl) or poly(halomethyl)ifa
Examples include derivatives. Particularly preferred crosslinking agents are dihydroxymethylbenzene (xylene glycol), dihydroxymethylxylene, trihydroxymethylbenzene,
Dihydroxymethylnaphthalene and the like.

上記の原料物質と架橋剤とを酸触媒の存在下に反応させ
るが、本発明で用いる樹脂の製造においては、原料物質
または架橋剤の少なくとも一方と反応性のある酸触媒か
、水不溶性の酸触媒を使用する。
The above raw material and crosslinking agent are reacted in the presence of an acid catalyst, but in the production of the resin used in the present invention, an acid catalyst that is reactive with at least one of the raw material or the crosslinking agent or a water-insoluble acid is used. Use a catalyst.

反応性の酸触媒の例としては、架橋剤のヒドロキシメチ
ル基またはハロメチル基と反応し易い有機芳香族スルホ
ン酸、あるいは原料芳香族化合物と反応するヒドロキシ
メチル基、ハロメチル基またはホルミル基を有する有機
芳香族スルホン酸を挙げることができる。
Examples of reactive acid catalysts include organic aromatic sulfonic acids that easily react with the hydroxymethyl group or halomethyl group of the crosslinking agent, or organic aromatic acids that have a hydroxymethyl group, halomethyl group, or formyl group that reacts with the raw material aromatic compound. Mention may be made of the group sulfonic acids.

架橋剤のヒドロキシメチル基やハロメチル基と反応し易
い酸触媒としては、縮合多環芳香族核(ナフタレン核な
ど)またはフェノール核を有する有機スルホン酸、また
はカルボキシル基、アミノ基、エポキシ基、不飽和炭化
水素基等を有する有機芳香族スルホン酸が挙げられる。
Acid catalysts that easily react with the hydroxymethyl group or halomethyl group of the crosslinking agent include organic sulfonic acids having a condensed polycyclic aromatic nucleus (such as a naphthalene nucleus) or a phenol nucleus, or carboxyl groups, amino groups, epoxy groups, and unsaturated Examples include organic aromatic sulfonic acids having hydrocarbon groups and the like.

このうち特に好ましいのは、縮合多環芳香族スルホン酸
およびフェノールスルホン酸であり、具体的には、ナフ
タレンスルホン酸、アルキルナフタレンスルホン酸、ア
セナフテンスルホン酸、アントラセンスルホン酸、フェ
ノールスルホン酸、ナフトールスルホン酸等である。
Among these, particularly preferred are fused polycyclic aromatic sulfonic acids and phenolsulfonic acids, specifically naphthalenesulfonic acids, alkylnaphthalenesulfonic acids, acenaphthenesulfonic acids, anthracenesulfonic acids, phenolsulfonic acids, and naphtholsulfonic acids. Acids etc.

一方、原料芳香族化合物と反応するヒドロキシメチル基
、ハロメチル基またはホルミル基を有する有機スルホン
酸としては、ヒドロキシメチルベンゼンスルホン酸、ヒ
ドロキシメチルナフタレンスルホン酸、ジヒドロキシメ
チルナフタレンスルホン酸、クロロメチルベンゼンスル
ホン酸、クロロメチルナフタレンスルホン酸、ホルミル
ベンゼンスルホン酸、ホルミルナフタレンスルホン酸等
が挙げられる。
On the other hand, examples of organic sulfonic acids having a hydroxymethyl group, halomethyl group, or formyl group that react with raw material aromatic compounds include hydroxymethylbenzenesulfonic acid, hydroxymethylnaphthalenesulfonic acid, dihydroxymethylnaphthalenesulfonic acid, chloromethylbenzenesulfonic acid, Examples include chloromethylnaphthalenesulfonic acid, formylbenzenesulfonic acid, formylnaphthalenesulfonic acid, and the like.

水不溶性の酸触媒としては、スチレン重合体をジビニル
ベンゼンで架橋させたものをスルホン化したポリスチレ
ンスルホン酸樹脂、フェノールスルホン酸、ナフタレン
スルホン酸等をアルデヒドか少なくとも2個のヒドロキ
シメチル基またはハロメチル基を有する芳香族化合物か
らなる架橋剤と縮合させたフェノールスルホン酸樹脂、
あるいは縮合多環多核芳香族樹脂のスルホン化物等を挙
げることができる。縮合多環多核芳香族樹脂のスルホン
化物は、縮合多環多核芳香族樹脂を濃硫酸でスルホン化
したのち、水溶性の酸を水洗浄等で除去することにより
容易に得ることができる。
Examples of water-insoluble acid catalysts include polystyrene sulfonic acid resin obtained by sulfonating a styrene polymer cross-linked with divinylbenzene, phenol sulfonic acid, naphthalene sulfonic acid, etc., with aldehyde or at least two hydroxymethyl groups or halomethyl groups. A phenol sulfonic acid resin condensed with a crosslinking agent consisting of an aromatic compound,
Alternatively, sulfonated products of condensed polycyclic polynuclear aromatic resins can be mentioned. The sulfonated product of the condensed polycyclic polynuclear aromatic resin can be easily obtained by sulfonating the condensed polycyclic polynuclear aromatic resin with concentrated sulfuric acid, and then removing the water-soluble acid by washing with water or the like.

また、ジノニルナフタレンスルホン酸、ジドデシルベン
ゼンスルホン酸等の疎水基を有する水不溶性の有機スル
ホン酸化合物も使用することができる。
Furthermore, water-insoluble organic sulfonic acid compounds having a hydrophobic group such as dinonylnaphthalenesulfonic acid and didodecylbenzenesulfonic acid can also be used.

酸触媒の使用量は、原料物質の反応性、反応温度などに
より異なるが、−船釣には原料物質と架橋剤との混合物
に対し0.2重量%以上必要で、好ましくは、1〜20
重量%である。酸触媒の使用量が、0.2重量%以下で
は十分に縮合反応が進行せず、生成する樹脂が十分な熱
硬化性を示さない。
The amount of acid catalyst used varies depending on the reactivity of the raw material, reaction temperature, etc., but - for boat fishing, it is required to be 0.2% by weight or more based on the mixture of raw material and crosslinking agent, preferably 1 to 20% by weight.
Weight%. If the amount of acid catalyst used is less than 0.2% by weight, the condensation reaction will not proceed sufficiently and the resulting resin will not exhibit sufficient thermosetting properties.

また、20重量%以上では、反応速度が速くなり過ぎて
反応制御が困難となるばかりでなく、生成する樹脂も不
均質なものとなり好ましくない。
Further, if the amount is 20% by weight or more, the reaction rate becomes too high and reaction control becomes difficult, and the resin produced becomes non-uniform, which is not preferable.

架橋剤と被架橋原料(原料物質+酸触媒)の配合比は、
モル比で0.7〜6が好ましい、0.7以下であると生
成する樹脂は熱硬化性を示さず、逆に6以上になると架
橋剤が過剰となり、反応が逆に抑制傾向を示し、やや不
均質な生成物を与えることとなる、より好ましい範囲と
してはモル比で1〜3である。
The blending ratio of the crosslinking agent and the raw material to be crosslinked (raw material + acid catalyst) is
A molar ratio of 0.7 to 6 is preferable; if it is 0.7 or less, the resin produced will not exhibit thermosetting properties, and if it is 6 or more, the crosslinking agent will be excessive, and the reaction will tend to be suppressed, A more preferred range is a molar ratio of 1 to 3, which results in a somewhat heterogeneous product.

前記原料物質、架橋剤および酸触媒を所定の割合で混合
して付加縮合反応させると、酸触媒が反応性スルホン酸
である場合には、反応中に触媒が原料物質または架橋剤
と反応して、生成する接脂中間縮合物の骨格中に固定化
され、使用した触媒が水溶性のものであっても水に対し
て実質的に溶解性を示さなくなる。また、水不溶性の触
媒を使用した場合も、樹脂生成物に含まれる酸触媒は水
に溶解しない、そのため、成形金型の曇りや腐食という
問題が回避できる。
When the raw material, crosslinking agent, and acid catalyst are mixed in a predetermined ratio and subjected to an addition condensation reaction, if the acid catalyst is a reactive sulfonic acid, the catalyst reacts with the raw material or the crosslinking agent during the reaction. , is immobilized in the skeleton of the produced fat-attached intermediate condensate, and even if the catalyst used is water-soluble, it becomes substantially insoluble in water. Further, even when a water-insoluble catalyst is used, the acid catalyst contained in the resin product does not dissolve in water, so problems such as fogging and corrosion of the molding die can be avoided.

これに対して、従来のC0PNA樹脂の製造では、メタ
ンスルホン酸、p−トルエンスルホン酸などの一般的な
有機スルホン酸が酸触媒として使用されているが、これ
らは水不溶性ではなく、また原料や架橋剤と反応性を有
していないので、マトリックス樹脂中に含まれる酸触媒
が縮合水中に溶出して、上記の問題を引き起こす。
In contrast, in the production of conventional C0PNA resin, common organic sulfonic acids such as methanesulfonic acid and p-toluenesulfonic acid are used as acid catalysts, but these are not water-insoluble and are Since it has no reactivity with the crosslinking agent, the acid catalyst contained in the matrix resin is eluted into the condensation water, causing the above-mentioned problem.

反応温度は約50〜200℃、好ましくは80〜180
°Cである0反応圧力は、通常常圧ないし若干の加圧で
あるが、反応の結果生成する縮合水を反応系から除去し
て反応効率を高めるためには、減圧下で反応せしめるこ
ともできる。
The reaction temperature is about 50-200°C, preferably 80-180°C.
The reaction pressure at 0 °C is usually normal pressure or slightly elevated pressure, but in order to remove condensed water produced as a result of the reaction from the reaction system and increase reaction efficiency, the reaction may be carried out under reduced pressure. can.

反応は、溶融状態で行なうのが簡単であるが、適当な溶
媒または分散媒を用いて実施することもできる。また、
溶媒等を用いて反応させた場合、未反応の水溶性の遊離
酸が残留していても、溶媒分離時に除去できるので有利
である。溶融重合の場合でも、適当な溶媒で水溶性の遊
離酸を除去することができる。
Although it is easy to carry out the reaction in a molten state, it can also be carried out using a suitable solvent or dispersion medium. Also,
When the reaction is carried out using a solvent or the like, even if unreacted water-soluble free acid remains, it is advantageous because it can be removed during solvent separation. Even in the case of melt polymerization, water-soluble free acids can be removed with a suitable solvent.

前記の反応の進行に伴って反応物の粘度が上昇し、熱硬
化性樹脂(Bステージ樹脂)が得られるが、さらにこれ
を加熱して反応を進めると、不溶不融性の硬化体が生成
する。したがって、FRP管の製造用のマトリックス樹
脂として使用するには、Bステージの段階で温度を下げ
て、反応を停止させる。この段階の樹脂は、未だ加熱溶
融性および溶剤溶解性を有している、流動点150°C
以下の未硬化中間線金物である。この状態の樹脂は、1
00〜350℃に加熱することによって、容易に熱硬化
物となる。
As the reaction progresses, the viscosity of the reactant increases and a thermosetting resin (B-stage resin) is obtained, but if this is further heated to advance the reaction, an insoluble and infusible cured product is produced. do. Therefore, in order to use it as a matrix resin for manufacturing FRP pipes, the temperature is lowered at the B stage to stop the reaction. The resin at this stage still has heat meltability and solvent solubility, and has a pour point of 150°C.
The following uncured intermediate wire hardware. The resin in this state is 1
By heating to 00 to 350°C, it easily becomes a thermoset.

本発明のFRP管に用いる強化繊維としては、ガラス繊
維が一般的であるが、炭素繊維、アラミド繊維、ならび
にFRPの製造に利用しうるその他の任意の無機もしく
は有機繊維を使用することができる。繊維は1種類のみ
を用いても、2種以上の繊維を組合わせて用いてもよい
。強化繊維の種類および形状は、FRP管の用途や成形
方法に応じて適宜選択すればよい。
The reinforcing fibers used in the FRP pipe of the present invention are generally glass fibers, but carbon fibers, aramid fibers, and any other inorganic or organic fibers that can be used in the production of FRP can also be used. Only one type of fiber may be used, or two or more types of fiber may be used in combination. The type and shape of the reinforcing fibers may be appropriately selected depending on the use and molding method of the FRP pipe.

FRP管の成形は、従来より公知の各種の方法で実施で
きる。
The FRP pipe can be formed by various conventionally known methods.

油井管のような高圧配管に供するFRP管の製造にあっ
ては、繊維強化の効果が高いフィラメントワインディン
グ法(FW法)による成形が好ましい、FW法は、樹脂
を含浸させた連続長繊維(ロービング)を、張力をかけ
ながらマンドレル金型の周りに巻付けて成形する方法で
ある0通常は巻付は後、樹脂を硬化させ、マンドレルを
引抜いて、パイプとする。
When manufacturing FRP pipes used for high-pressure piping such as oil country tubular goods, it is preferable to use the filament winding method (FW method), which is highly effective in reinforcing fibers.The FW method uses resin-impregnated continuous fibers (roving ) is formed by wrapping it around a mandrel mold while applying tension. Usually, after wrapping, the resin is cured and the mandrel is pulled out to form a pipe.

本発明で用いる芳香族樹脂の中間槽金物は熱硬化性であ
り、100〜350℃に加熱することにより容易に熱硬
化させることができる。また、FW法においては、含浸
掻作を円滑に進めるために樹脂粘度が重要であるが、上
記中間槽金物は40〜100°Cに加温し、さらにγ−
ブチロラクトン、ニトロベンゼン、ジオキサン等の適当
な溶媒を30〜70重量%添加することにより、含浸に
適した粘度に調整することができる。従って、本発明で
用いる芳香族樹脂は、FW法による成形にマトリックス
樹脂として支障なく使用できる。
The aromatic resin intermediate tank hardware used in the present invention is thermosetting, and can be easily thermoset by heating to 100 to 350°C. In addition, in the FW method, resin viscosity is important for smooth impregnation and scraping, but the intermediate tank hardware is heated to 40 to 100°C, and then γ-
By adding 30 to 70% by weight of a suitable solvent such as butyrolactone, nitrobenzene, dioxane, etc., the viscosity can be adjusted to a value suitable for impregnation. Therefore, the aromatic resin used in the present invention can be used as a matrix resin in molding by the FW method without any problem.

本発明のFRP管は、予めロービングに樹脂を含浸させ
たプリプレグシートをマンドレルに巻付けるテープワイ
ンディング法(シートラッピングもしくはテープラッピ
ング法ともいう)によっても成形できる。その後の処理
はFW法と同様に行う、この場合も、FW法と同様か、
それ以上の高強度を示すFRP管が得られる。プリプレ
グシートの製造方法としては、マトリックス樹脂を有機
溶剤に溶解し、強化繊維群に含浸させた後、加熱により
脱溶剤し、プリプレグを得る溶剤法と、マトリックス樹
脂フィルムを加熱融解させ、強化繊維群に含浸させる無
溶剤法とがあるが、本発明のFRP管の成形においては
、いずれの方法も採用できる。
The FRP pipe of the present invention can also be formed by a tape winding method (also referred to as sheet wrapping or tape wrapping method) in which a prepreg sheet whose rovings are impregnated with resin in advance is wound around a mandrel. The subsequent processing is performed in the same way as the FW method.
An FRP tube exhibiting even higher strength can be obtained. There are two methods for producing prepreg sheets: a solvent method in which the matrix resin is dissolved in an organic solvent, the reinforcing fibers are impregnated, the solvent is removed by heating, and the prepreg is obtained; Although there is a solvent-free method in which the FRP pipe is impregnated with water, either method can be adopted in forming the FRP pipe of the present invention.

シート状もしくはマット状のプリプレグを型に入れて加
熱加圧成形するバッグ成形(オートクレーブ成形)法も
、肉厚バイブなどの製造においては採用できる。
A bag molding (autoclave molding) method in which sheet-like or mat-like prepreg is placed in a mold and molded under heat and pressure can also be adopted in the production of thick-walled vibrators.

それほど強度特性を必要としない配管に対しては、チリ
ツブトストランドなどの短繊維を前記芳香族樹脂の中間
環金物と混練した後、押出あるいは射出などの通常の成
形法により本発明のFRP管を成形することもできる。
For piping that does not require much strength, the FRP pipe of the present invention can be made by kneading short fibers such as chilibut strands with the intermediate ring metal material of the aromatic resin, and then using a conventional molding method such as extrusion or injection. It can also be molded.

この場合、短繊維の長さは0.01〜50m5の範囲、
その配合量は5〜50重景%の範囲が適当である。さら
に、充填材などの慣用の添加剤を添加してもよい、適当
な充填材の例はシリカ粉末、離型剤、シランカップリン
グ剤等である。また、原料物質として縮合多環芳香族化
合物にフェノール類などの単環化合物を併用した場合に
は、硬化を促進させるために、ヘキサメチレンテトラミ
ン、多価エポキシドなどの適当な硬化剤を添加してもよ
い。
In this case, the short fiber length is in the range of 0.01 to 50 m5,
The appropriate amount is in the range of 5 to 50%. Furthermore, customary additives such as fillers may be added; examples of suitable fillers are silica powder, mold release agents, silane coupling agents, etc. In addition, when a monocyclic compound such as phenol is used in combination with a condensed polycyclic aromatic compound as a raw material, an appropriate curing agent such as hexamethylenetetramine or polyepoxide may be added to accelerate curing. Good too.

短繊維、樹脂、および任意の添加剤の混練は、乾式で固
体状態のまま行うこともできるが、ロール混線機等を用
い、樹脂を熔融状態にして行うことが望ましい、成形中
または成形直後、適当な温度に加熱して、熱硬化させる
。この硬化は、押出では押出ダイを加熱するか、押出直
後に成形バイブを加熱する二とで、射出の場合には金型
内での加熱により行うことができる。
The short fibers, resin, and optional additives can be kneaded in a dry state in a solid state, but it is preferable to knead the resin in a molten state using a roll mixer or the like, during or immediately after molding. Heat to an appropriate temperature to harden. This curing can be performed by heating the extrusion die in extrusion or by heating the molding vibrator immediately after extrusion, or by heating within the mold in the case of injection.

上述したような各種の方法で得られたFRP管は、最後
に170〜230℃の温度に8〜12時間加熱すること
によりボストキュア(後硬化)させることが好ましい、
この熱処理により架橋がさらに進み、FRP管の耐熱性
および機械的特性が著しく向上する。
It is preferable that the FRP pipe obtained by the various methods described above is finally post-cured by heating it to a temperature of 170 to 230 ° C. for 8 to 12 hours.
This heat treatment further promotes crosslinking and significantly improves the heat resistance and mechanical properties of the FRP pipe.

以下、実施例により本発明をさらに具体的に説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

実m 縮合多環芳香族化合物としてナフタレン(NAP)10
0重量部、架橋剤としてパラキシレングリコール(PX
G) 173重量部CPXG/NAP −1−ル比1.
6) 、酸触媒として架橋剤のヒドロキシメチル基と反
応性のあるβ−ナフタレンスルホン酸8.3重量部から
なる混合物を、110°Cに8時間加熱することにより
、付加縮合反応させて、Bステージ状態の樹脂を得た。
Naphthalene (NAP) 10 as a fused polycyclic aromatic compound
0 parts by weight, paraxylene glycol (PX
G) 173 parts by weight CPXG/NAP-1-Ratio 1.
6) A mixture consisting of 8.3 parts by weight of β-naphthalene sulfonic acid, which is reactive with the hydroxymethyl group of the crosslinking agent as an acid catalyst, is heated to 110°C for 8 hours to cause an addition condensation reaction, and B A resin in a stage state was obtained.

この樹脂は外観が褐色透明であり、軟化点が60°C1
数平均分子量が920であった。
This resin has a brown transparent appearance and a softening point of 60°C1.
The number average molecular weight was 920.

この樹脂に、長さ2Hのガラス繊維のチョツプドストラ
ンドを樹脂重量に対して20重量%の量で混練配合し、
押出により内径100 m、肉に4mのバイブに成形し
た。使用した押出機のシリンダ温度は100″C、スク
リエー回転数は30 rpmであった。
Chopped strands of glass fiber with a length of 2H are kneaded and blended into this resin in an amount of 20% by weight based on the weight of the resin,
It was extruded into a vibrator with an inner diameter of 100 m and a width of 4 m. The cylinder temperature of the extruder used was 100''C, and the screw speed was 30 rpm.

成形されたFRP管をオーブン中で加熱してマトリック
ス樹脂を熱硬化させ、FRP管を得た。
The molded FRP tube was heated in an oven to thermoset the matrix resin to obtain an FRP tube.

得られたFRP管から試験片を採取し、各種温度で引張
試験を行って、引張強度を測定した。試験結果を第1図
に示す、第1図かられかるように、二のFRP管は耐熱
性に優れ、200°Cを超える高温でもなお高強度を保
持していた。
Test pieces were taken from the obtained FRP pipes and tensile tests were conducted at various temperatures to measure the tensile strength. The test results are shown in Figure 1. As can be seen from Figure 1, the second FRP tube had excellent heat resistance and maintained high strength even at high temperatures exceeding 200°C.

1旌■呈 実施例1で使用したガラス繊維の代わりに炭素繊維のチ
ョツプドストランド(長さ21m)を用いた以外は、実
施例1と同様の方法によりFRP管を製造した。
1. An FRP pipe was manufactured in the same manner as in Example 1, except that chopped carbon fiber strands (21 m in length) were used in place of the glass fibers used in Example 1.

得られたFRP管の引張試験結果をやはり第1図に示す
、ガラス繊維より高強度の炭素繊維を使用したことによ
り、実施例1より全体に引張強度が高くなった。温度上
昇に伴う強度低下の傾向は実施例1のFRP管と同様で
あり、優れた耐熱性を示した。
The results of the tensile test of the obtained FRP tube are shown in FIG. 1. The overall tensile strength was higher than that of Example 1 due to the use of carbon fiber, which has a higher strength than glass fiber. The tendency of the strength to decrease with increasing temperature was similar to that of the FRP tube of Example 1, indicating excellent heat resistance.

止較■土 市販のポリプロピレン樹脂(軟化点150℃)に、実施
例1に使用したのと同じガラス繊維のチョツプドストラ
ンドを20重量%混練配合し、実施例1で用いたのと同
じ押出機によりシリンダ温度230℃で押出して、同様
の形状のFRP管を成形した。
Comparison ■ Commercially available polypropylene resin (softening point: 150°C) was kneaded with 20% by weight of the same chopped strands of glass fiber used in Example 1, and the same extrusion process as used in Example 1 was carried out. It was extruded using a machine at a cylinder temperature of 230° C. to form an FRP pipe of a similar shape.

得られたFRP管の引張強度を実施例1と同様に測定し
、結果を第1図に併せて示した。第1図かられかるよう
に、温度の上昇に伴う強度の低下が著しく、特に100
°C以上で強度低下が顕著であって、耐熱性が低い。
The tensile strength of the obtained FRP pipe was measured in the same manner as in Example 1, and the results are also shown in FIG. As can be seen from Figure 1, the strength decreases significantly as the temperature rises, especially at 100
The strength decreases significantly at temperatures above °C, and the heat resistance is low.

災施■主 縮合多環芳香族化合物としてメチルナフタレン(MNA
P) 100重量部、架橋剤としてバラキシレングリコ
−/l/140重量部(PXG/MN/l P −[−
/l、比1.3) 、酸触媒としてβ−ナフタレンスル
ホン酸8.3重量部からなる混合物を、110°Cに5
時間加熱することにより、付加縮合反応させて、Bステ
ージ状態の樹脂を得た。この樹脂は外観が褐色透明であ
り、軟化点が40°C1数平均分子量が500であった
■ Methylnaphthalene (MNA) is the main condensed polycyclic aromatic compound.
P) 100 parts by weight, 140 parts by weight of baraxylene glyco-/l as a crosslinking agent (PXG/MN/l P-[-
/l, ratio 1.3), a mixture consisting of 8.3 parts by weight of β-naphthalenesulfonic acid as an acid catalyst was heated to 110 °C for 5
By heating for a period of time, an addition condensation reaction was carried out to obtain a resin in a B-stage state. This resin had a brown transparent appearance, a softening point of 40° C., and a number average molecular weight of 500.

この樹脂に溶媒としてジオキサンを樹脂に対し50ff
i量%の量で添加した混合物を80°Cに加温し、得ら
れた樹脂液に連続長繊維のガラスロービングを順次含浸
させながら、含浸したロービングを70℃に予熱された
外径76■のマンドレル金型に巻き付けた0巻付は方法
は、55°ヘリカル巻きと5゜インブレーン巻きとし、
インブレーン巻きロービング層が全体のガラスロービン
グの30重量%になるように行った。巻付は完了後、1
00°Cで2時間加熱して樹脂を熱硬化させ、引き続い
て180℃に8時間加熱して後硬化を行つた。その後、
マンドレル金型を脱型して、外径86閤のFRP管を得
た。
Add dioxane to this resin as a solvent at a rate of 50ff per resin.
The mixture added in an amount of i% is heated to 80°C, and the resulting resin liquid is sequentially impregnated with glass rovings made of continuous filaments. The method of 0 winding around the mandrel mold is 55° helical winding and 5° in-brane winding.
The inbrain-wound roving layer was made to account for 30% by weight of the total glass roving. After wrapping is completed, 1
The resin was thermally cured by heating at 00°C for 2 hours, followed by post-curing by heating at 180°C for 8 hours. after that,
The mandrel mold was demolded to obtain an FRP pipe with an outer diameter of 86 mm.

このFRP管のガラス繊維体積含有率を測定したところ
、約50%であった。
When the glass fiber volume content of this FRP pipe was measured, it was approximately 50%.

このFRP管から試験片を採取し、各種温度で引張強度
を測定することにより耐熱性を評価した。
Test pieces were taken from this FRP pipe, and the heat resistance was evaluated by measuring the tensile strength at various temperatures.

結果を第2図に示す、樹脂の後硬化を行ったこと、また
連続繊維で補強したことにより、実施例1に比べて、温
度上昇に伴う引張強度の低下が非常に少なくなり、耐熱
性がさらに向上したことがわかる。
The results are shown in Figure 2. By post-curing the resin and reinforcing it with continuous fibers, the decrease in tensile strength due to temperature rise was much smaller than in Example 1, and the heat resistance was improved. It can be seen that there has been further improvement.

此lピIL マトリックス樹脂としてビスフェノールA型エポキシ樹
脂(分子量380)と芳香族アミン硬化剤を重量比10
0/23で混合した混合物を使用し、実施例3と同様に
連続長繊維のガラスロービングをこれに含浸した後、外
径76I1mのマンドレルに巻付けた0巻付は方法は実
施例3と同様である0巻付は後、160″Cに8時間加
熱して樹脂を硬化させ、次いでマンドレル金型を脱型し
て、外径89■のFRP管を得た。
This product uses bisphenol A type epoxy resin (molecular weight 380) as a matrix resin and aromatic amine curing agent in a weight ratio of 10.
Using a mixture of 0/23 and impregnating it with glass roving made of continuous fibers in the same manner as in Example 3, the method for 0 winding was the same as in Example 3. After 0 winding, the resin was cured by heating at 160''C for 8 hours, and then the mandrel mold was removed to obtain an FRP tube with an outer diameter of 89 mm.

このFRP管の引張強度の結果も第2図に併せて示す。The results of the tensile strength of this FRP pipe are also shown in FIG.

第2図かられかるように、常温での引張強度は実施例3
のFRP管より若干高いが、高温での引張強度の低下が
著しく、150°Cで常温強度の約半分、200°Cで
は常温強度の約1/10近くにまで引張強度が低下し、
耐熱性に乏しい。
As can be seen from Figure 2, the tensile strength at room temperature was in Example 3.
However, the tensile strength decreases significantly at high temperatures, with the tensile strength decreasing to about half of the normal temperature strength at 150°C and about 1/10 of the normal temperature strength at 200°C.
Poor heat resistance.

裏血孤土 連続長ガラス繊維を1方向に互いに平行にシート状に引
き揃えたものに、実施例3で用いた樹脂を溶剤方式(ジ
オキサン50重量%添加)により含浸させ、加熱により
脱溶剤して、ガラス繊維体積含有率約55%、厚み約0
.3 tnaのプリプレグを作成した。
A sheet of continuous length glass fibers arranged parallel to each other in one direction was impregnated with the resin used in Example 3 using a solvent method (adding 50% by weight of dioxane), and the solvent was removed by heating. The glass fiber volume content is approximately 55% and the thickness is approximately 0.
.. 3. A prepreg of tna was prepared.

次に、このプリプレグを60°Cに予熱した外径76閣
のマンドレル金型に、繊維の方向がマンドレルの軸方向
に対して±551ヘリカル層と±5′のインブレーン層
とになるようにローラーを使用して巻付けた。この上に
熱収縮性テープを巻付け、約180℃に8時間加熱して
樹脂を硬化させた後、マンドレル金型を引き抜いて、外
径88閣のFRP管を得た。
Next, this prepreg was preheated to 60°C and placed in a mandrel mold with an outer diameter of 76 mm, so that the fiber direction was ±551 helical layer and ±5' inplane layer with respect to the axial direction of the mandrel. Wrapped using a roller. A heat-shrinkable tape was wrapped around this, and the resin was cured by heating at about 180° C. for 8 hours, and then the mandrel mold was pulled out to obtain an FRP pipe with an outer diameter of 88 cm.

得られたFRP管の引張強度の試験結果を第2図に併せ
て示す0図かられかるように、本例のテープワインディ
ング法により製造したFRP管は、実施例3のFW法に
より製造したFRP管より高強度を示し、高温強度も同
様に優れている。
As can be seen from Figure 0, which also shows the test results of the tensile strength of the obtained FRP pipe in Figure 2, the FRP pipe manufactured by the tape winding method of this example is different from the FRP pipe manufactured by the FW method of Example 3. It exhibits higher strength than pipe, and its high temperature strength is also excellent.

(発明の効果) 以上に説明したように、本発明のFRP管は高温強度が
高く、200〜250℃程度の温度までは充分に使用可
能な優れた耐熱性を示す、また、本発明で用いるマトリ
ックス樹脂は、従来より耐熱性樹脂として使用されてき
たポリイミド樹脂に比べて安価で、しかも成形性に優れ
た熱硬化性樹脂であるので、FW法を始めとする各種の
成形法を容易に適用できる。従って、本発明のFRP管
は、製造が容易で、耐熱性および機械的特性に優れ、し
かも比較的安価であるので、FRP管の使用拡大に大き
く貢献するものと考えられる。
(Effects of the Invention) As explained above, the FRP pipe of the present invention has high high-temperature strength and exhibits excellent heat resistance that can be used sufficiently up to temperatures of about 200 to 250°C. Matrix resin is a thermosetting resin that is cheaper than polyimide resin, which has traditionally been used as a heat-resistant resin, and has excellent moldability, so it can be easily applied to various molding methods including the FW method. can. Therefore, since the FRP pipe of the present invention is easy to manufacture, has excellent heat resistance and mechanical properties, and is relatively inexpensive, it is believed that it will greatly contribute to the expansion of the use of FRP pipes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は、実施例および比較例で得られた
FRP管の高温引張強度を示すグラフである。
FIGS. 1 and 2 are graphs showing the high temperature tensile strength of FRP pipes obtained in Examples and Comparative Examples.

Claims (1)

【特許請求の範囲】[Claims] (1)縮合多環芳香族化合物または縮合多環芳香族化合
物と単環芳香族化合物との混合物からなる原料物質と、
少なくとも2個のヒドロキシメチル基またはハロメチル
基を有する芳香族化合物からなる架橋剤とを、前記原料
物質もしくは架橋剤の少なくとも一方と反応性を有する
有機スルホン酸化合物、または水不溶性の有機スルホン
酸化合物もしくはスルホン酸基含有重合体を触媒として
反応させることにより得られた架橋縮合多環系芳香族樹
脂をマトリックス樹脂とすることを特徴とする、耐熱性
FRP管。
(1) a raw material consisting of a fused polycyclic aromatic compound or a mixture of a fused polycyclic aromatic compound and a monocyclic aromatic compound;
A crosslinking agent consisting of an aromatic compound having at least two hydroxymethyl groups or halomethyl groups is combined with an organic sulfonic acid compound having reactivity with at least one of the raw materials or the crosslinking agent, or a water-insoluble organic sulfonic acid compound or A heat-resistant FRP pipe characterized in that a matrix resin is a crosslinked condensed polycyclic aromatic resin obtained by reacting a sulfonic acid group-containing polymer as a catalyst.
JP13244489A 1989-05-25 1989-05-25 Heat-resisting frp pipe Pending JPH03393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13244489A JPH03393A (en) 1989-05-25 1989-05-25 Heat-resisting frp pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13244489A JPH03393A (en) 1989-05-25 1989-05-25 Heat-resisting frp pipe

Publications (1)

Publication Number Publication Date
JPH03393A true JPH03393A (en) 1991-01-07

Family

ID=15081510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13244489A Pending JPH03393A (en) 1989-05-25 1989-05-25 Heat-resisting frp pipe

Country Status (1)

Country Link
JP (1) JPH03393A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06224330A (en) * 1993-01-22 1994-08-12 Sumitomo Metal Ind Ltd Insulation film for semiconductor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06224330A (en) * 1993-01-22 1994-08-12 Sumitomo Metal Ind Ltd Insulation film for semiconductor

Similar Documents

Publication Publication Date Title
KR950012870B1 (en) Molding process for fiber reinforced plastics
US4649080A (en) Fiber-reinforced materials
RU2702630C2 (en) Benzoxazines and compositions containing same
CN108276578A (en) High temperature resistant high tenacity bimaleimide resin and its preparation method and application
CN102892810A (en) Composite polyamide article
US3881977A (en) Treatment of graphite fibers
US4476191A (en) Resorcinol-aldehyde resin composition for an adhesive system to be applied to glass fibers
KR102118285B1 (en) Towpreg for filament winding and manufacturing method thereof
RU2509653C1 (en) Composite reinforcements
FI78489B (en) FOERFARANDE FOER HAERDNING AV FENOLHARTSER.
JPH03393A (en) Heat-resisting frp pipe
WO2020115937A1 (en) Fiber-reinforced thermoplastic resin sheet, molded body of fiber-reinforced thermoplastic resin sheet and method for producing fiber-reinforced thermoplastic resin sheet
JPH05501282A (en) Plastic impregnated mat and its manufacturing method and use
US4873128A (en) Process for pultruding fiber reinforced phenolic resin products
JP7194536B2 (en) Method for producing fiber-reinforced thermoplastic resin prepreg, and method for producing fiber-reinforced thermoplastic resin
JPH06155651A (en) Fiber reinforced thermosetting resin composite laminated sheet
TW202328311A (en) Tow prepreg and method of producing the same
JP2882044B2 (en) Thermosetting resin prepreg
JP2926733B2 (en) Thermosetting resin and method for producing the same
RU2708846C1 (en) Production method of composite core of power transmission line
JP3232647B2 (en) Method for producing thermosetting resin prepreg
SU857186A1 (en) Prepreg
CN112694749A (en) non-PMR type polyimide carbon fiber prepreg, composite material and preparation method thereof
JPH04263671A (en) Fiber and resin useful as component thereof
JPS6059258B2 (en) Fiber reinforced resin composition