JPH0339029B2 - - Google Patents

Info

Publication number
JPH0339029B2
JPH0339029B2 JP56118958A JP11895881A JPH0339029B2 JP H0339029 B2 JPH0339029 B2 JP H0339029B2 JP 56118958 A JP56118958 A JP 56118958A JP 11895881 A JP11895881 A JP 11895881A JP H0339029 B2 JPH0339029 B2 JP H0339029B2
Authority
JP
Japan
Prior art keywords
weight
zro
powder
parts
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56118958A
Other languages
Japanese (ja)
Other versions
JPS5820783A (en
Inventor
Toshio Kawanami
Takeshi Mikage
Hirohisa Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON KAGAKU TOGYO KK
Original Assignee
NIPPON KAGAKU TOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON KAGAKU TOGYO KK filed Critical NIPPON KAGAKU TOGYO KK
Priority to JP56118958A priority Critical patent/JPS5820783A/en
Publication of JPS5820783A publication Critical patent/JPS5820783A/en
Publication of JPH0339029B2 publication Critical patent/JPH0339029B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、常温下のみならず高温においても優
れた機械的性質を発揮する窒化珪素(Si3N4)焼
結体の製造方法に関する。 Si3N4焼結体は、耐熱衝撃性その他の高温下で
の機械的強度に優れているので、ガスタービン部
品を始めとする高温構造材料としての応用が期待
されている。しかしながら、Si3N4は焼結性に乏
しい為、単独では分解温度に近い1900℃近傍の高
温で焼結を行なつても、緻密化しない。そこで、
従来から主として次の様な方法で焼結体の製造が
行なわれているが、これ等の方法にもやはり欠点
がある。 () 反応焼結法……これは、金属シリコン粉体
の成形体を窒素雰囲気中で焼結する方法であ
る。この方法では、焼結収縮が殆ど生じない
為、焼結体の寸法精度には優れてはいるもの
の、十分に緻密化した満足すべき高強度の
Si3N4を得ることは困難である。 () 常圧又は加圧焼結法……これは、Si3N4
体に酸化マグネシウム(MgO)、酸化アルミニ
ウム(Al2O3)、酸化イツトリウム(Y2O3)等
の金属酸化物を焼結助剤として加え、常圧又は
加圧下に焼結する方法である。この方法によれ
ば、緻密な焼結体が得られるが、焼結体の
Si3N4粒界に比較的多量の低融点マトリツクス
が生成するので、高温での機械的強度及び破壊
靭性が低くなるのが欠点である。 酸化ジルコニウム(ZrO2)の微細粒子をSi3N4
粒界に均一に分散させる場合には、常温及び高温
での機械的強度及び破壊靭性に優れたSi3N4焼結
体が得られる。しかしながら、本発明者の研究に
よれば、Si3N4とZrO2とは、比重を著るしく異に
する為、ボールミル等の通常の混合方法では、
Si3N4粉体中にZrO2粉体を均一に分散させること
は極めて困難であり、その結果、組成の不均質化
及び焼成中のZrO2の粒成長、更に冷却過程中に
単斜晶系ZrO2への転移は避け難くなり、結局の
ところSi3N4焼結体の機械的性質の向上も満足す
べきものとはなり難いことが判明した。本発明者
は、更に実験及び研究を重ねた結果、予め一定量
のY2O3を固溶させたZrO2粉体を通常の粉砕混合
によりSi3N4粉体に加える場合には、(a)ZrO2中に
固溶しているY2O3の一部が焼結過程において
Si3N4中又はSi3N4と第三成分中に拡散して、新
しい化合物(例えばSi3N4・Y2O3)が形成され、
結果としてSi3N4の焼結が促進されること、(b)更
に、残存しているY2O3を固溶したZrO2微粒子を
マトリツクス中に均質に正方晶系の形で分散させ
ることにより、応力誘起相変態強化効果が発揮さ
れ、高靭性、高強度などが得られること、(c)これ
等の結果の総合的な効果として、緻密で、Y2O3
を固溶した正方晶ZrO2を含有し、常温及び高温
での機械的性質に優れたSi3N4焼結体が得られる
こと等を見出した。本発明は、この様な新知見に
基き完成されたものである。 本発明で主成分として使用するSi3N4粉体は、
α相を50重量%以上、より好ましくは70重量%以
上含み、且つ結晶一次粒子の平均粒径が1.5μm以
下より好ましくは1.0μm以下のものである。但
し、結晶一次粒子の平均粒子は、粒子の形状を真
球と仮定し、粉体の実測比表面積から求めた計算
値である。α相が50重量%未満の場合には、焼成
過程中にα相Si3N4からβ相Si3N4に転移する量
が少なく、柱状結晶がからみ合つた形の組織にな
らない為、機械的性質が劣る。又、Si3N4結晶一
次粒子の平均粒径が1.5μmを上回ると、焼結性が
劣るとともに、焼結体中の結晶粒径が大きく、不
揃いとなるので、好ましくない。尚、Si3N4
Ca、Fe等の酸化物不純物を1重量%程度まで含
んでいても、焼結体の機械的性質を実質的に阻害
することはない。 本発明で第二成分として使用するZrO2粉体は、
Y2O3を3〜15モル%固溶する粉体であり、結晶
一次粒子の平均粒径が0.5μm以下、好ましくは
0.2μm以下のものを使用する。ZrO2中のY2O3
溶量が3モル%未満の場合には、Si3N4の焼結進
行速度が非常に遅く、かつZrO2粒子が正方晶系
の形で封じ込めにくく、好ましくなく、一方1.5
モル%を上回ると、Si3N4中に分散するZrO2粒子
は等軸晶系のものが増大して、Si3N4焼結体の破
壊靭性等の機械的性質の改善が認められなくな
る。ZrO2粉体の結晶一次粒子の平均粒径が0.5μ
mを上回る場合には、Si3N4粒界に微粒子として
均一に分散し難くする。 本発明において使用するY2O3を固溶したZrO2
微粉体は、例えば、次の様にして作成される。先
ず、オキシ塩化ジルコニル0.2モル溶液にZrO2
Y2O3が所定割合となる様に塩化イツトリウム溶
液を加えた後、加水分解またはアンモニア中和法
により、所定量のZrO2を含有する水和ジルコニ
アまたは水酸化ジルコニウムの沈澱物を生成させ
る。生成物を乾燥した後、800〜1250℃程度で焼
成して、結晶一次粒子径が1μm以下のY2O3固溶
ZrO2を得る。次いで、このZrO2をボールミル、
アトリシヨンミルなどの微粉砕機で粉砕および分
散させて、所望のY2O3固溶微粉体を得る。ただ
し、Y2O3固溶体の製造方法は、任意の方法で行
なえば良く、上記の方法に限定されるものではな
い。 尚、ZrO2中にY2O3を固溶させることなく、両
者を別々に添加する場合には、Si3N4焼結体の機
械的性質の向上は、顕著ではない。これは、比重
差や凝集によつて偏析することにより、ミクロ的
にY2O3とSi3N4とによりマトリツクスを形成する
領域とZrO2とSi3N4とによりマトリツクスを形成
する領域とが画然と区別される様になる為、組織
の不均質化、ZrO2粒子の粒成長等が生じ、ZrO2
が単斜晶系中心となつていることによるものと推
定される。 Si3N4粉体とZrO2粉体との混合割合は、前者の
粒度、後者中のY2O3固溶量、焼成条件等により
異なるが、前者70〜97重量部に対し後者3〜30重
量部の合計100重量部となる様にする。ZrO2粉体
の割合が原料全体の3重量部未満の場合には、
Si3N4の焼結を促進させるには不十分であり、一
方、ZrO2粉体の割合が30重量部を上回ると、
Si3N4自体の持つ優れた特性を保持できなくなる
ので、好ましくない。 尚、本発明方法においては、Si3N4粉体とZrO2
粉体との混合粉体100重量部に対しAl2O3及び/
又はMgOの総量10重量部以下、好ましくは2〜
8重量部を加えることにより、より一層緻密な焼
結体を得ることが出来る。 本発明方法は、通常次の様にして実施される。
Si3N4及びZrO2の粉体或いは更にAl2O3及び/又
はMgOを加えた粉体を粉砕混合した後、所定の
形状に成形し、常圧又は加圧下に窒素雰囲気中で
1650〜1800℃で焼結する。必要ならば、Si3N4
体を充填した容器内で焼成しても良い。焼成温度
が、1650℃未満では、緻密化焼結進行速度が極め
て遅く且つβ型Si3N4への転移に長時間を要する
のに対し、1800℃を上回る場合には、Si3N4分解
蒸発が活発となるので、望ましくない。 以下、実施例により本発明の特徴とするところ
を更に詳細に説明する。 実施例 1〜4 Si3N4粉体にY2O3を固溶するZrO2粉体を加え、
Al2O3製ボールミルとAl2O3製メデイアにより、
溶剤として変性アルコールを使用し、48時間湿式
粉砕混合を行なう。Si3N4の結晶一次粒子の平均
粒径、Si3N4中のα相含量、Si3N4の使用量、
ZrO2の結晶一次粒子の平均粒径、Y2O3含量、
ZrO2の使用量等を第1表に示す。 得られた混合粉体を200Kg/cm2で金型プレス成
形し、予備成形体を得た後、更に静水圧プレスに
より3000Kg/cm2で加圧して成形体を得る。得られ
た成形体をSi3N4粉体を充填した容器に入れ、窒
素雰囲気中で所定の焼成温度で所定時間保持し
て、焼結体を得る。焼成温度及び時間、並びに焼
結体の物性を第2表に示す。 尚、3点曲げ強度及びK1cは、以下の様にして
測定した。 3点曲げ強度……焼結体から巾3.5mm、高さ2.5mm
及び全長28mmの角柱を切り出した後、この表面
を600メツシユダイヤモンド砥石により研摩し、
スパン20mmで長さ方向中心部に荷重を加え、曲
げ強度を測定する。 K1c……3点曲げ強度の場合と同様にして得た角
柱の中央底部にビツカース圧痕を入れ、これを
試料として測定する。 実施例 5〜8 Si3N4粉体にY2O3を固溶するZrO2粉体を加え、
プラスチツク製ボールミルとSi3N4製メデイアに
より、溶剤として変性アルコールを使用しつつ48
時間湿式粉砕混合を行なう。粉砕後の混合粉体の
組成は、第1表に示す通りである。 又、実施例1〜4と同様にして得た焼結体の物
性は第2表に示す。 実施例 9 Si3N4粉体にY2O3を固溶するZrO2粉体を加え、
更にAl2O3粉体(純度99.99%)及びMgO粉体
(純度99.9%)を加え、以下実施例5〜8と同様
にして粉砕混合、成形及び焼成を行なう。 混合粉体の組成及び焼結体の物性を第1表及び
第2表に夫々示す。 比較例 1 Y2O3を過剰量(25モル%)含有するZrO3粉体
を使用する以外は、実施例5〜8とほぼ同様の手
順で粉体の粉砕混合、成形及び焼成を行なう。 結果は、第1表及び第2表に示す通りである。 比較例 2 Y2O3とZrO2とを別々に原料粉体に加える以外
は実施例5〜8とほぼ同様の手順で粉体の粉砕混
合、成形及び焼成を行なう。 結果は、第1表及び第2表に示す通りである。 比較例 3 Y2O3を固溶しないZrO2を使用する以外は実施
例5〜8とほぼ同様の手法により粉体の粉砕混
合、成形及び焼成を行なう。 結果は、第1表及び第2表に示す通りである。
The present invention relates to a method for manufacturing a sintered silicon nitride (Si 3 N 4 ) body that exhibits excellent mechanical properties not only at room temperature but also at high temperatures. Si 3 N 4 sintered bodies have excellent thermal shock resistance and other mechanical strength at high temperatures, so they are expected to be used as high-temperature structural materials such as gas turbine parts. However, since Si 3 N 4 has poor sinterability, it does not become densified even if it is sintered alone at a high temperature around 1900° C., which is close to the decomposition temperature. Therefore,
Conventionally, sintered bodies have been mainly manufactured by the following methods, but these methods also have drawbacks. () Reactive sintering method: This is a method in which a molded body of metal silicon powder is sintered in a nitrogen atmosphere. With this method, almost no sintering shrinkage occurs, so the dimensional accuracy of the sintered body is excellent, but the sintered body is sufficiently densified and has satisfactory high strength.
Obtaining Si 3 N 4 is difficult. () Ordinary pressure or pressure sintering method: This method combines Si 3 N 4 powder with metal oxides such as magnesium oxide (MgO), aluminum oxide (Al 2 O 3 ), and yttrium oxide (Y 2 O 3 ). is added as a sintering aid and sintered under normal pressure or pressure. According to this method, a dense sintered body can be obtained, but the sintered body
The disadvantage is that a relatively large amount of low melting point matrix is formed at the Si 3 N 4 grain boundaries, resulting in low mechanical strength and fracture toughness at high temperatures. Fine particles of zirconium oxide (ZrO 2 ) are converted into Si 3 N 4
When uniformly dispersed in the grain boundaries, a Si 3 N 4 sintered body with excellent mechanical strength and fracture toughness at room temperature and high temperature can be obtained. However, according to the research of the present inventor, Si 3 N 4 and ZrO 2 have significantly different specific gravities, so normal mixing methods such as ball milling cannot
It is extremely difficult to uniformly disperse ZrO 2 powder in Si 3 N 4 powder, resulting in compositional heterogeneity and grain growth of ZrO 2 during sintering, as well as monoclinic formation during the cooling process. It became difficult to avoid the transition to the ZrO 2 system, and in the end, it was found that the improvement in the mechanical properties of the Si 3 N 4 sintered body was difficult to achieve satisfactorily. As a result of further experiments and research, the present inventor found that when adding ZrO 2 powder in which a certain amount of Y 2 O 3 is dissolved in advance to Si 3 N 4 powder by normal pulverization mixing, ( a) Some of the Y 2 O 3 dissolved in ZrO 2 is removed during the sintering process.
Diffuses into Si 3 N 4 or into Si 3 N 4 and a third component to form a new compound (e.g. Si 3 N 4 .Y 2 O 3 ),
As a result, sintering of Si 3 N 4 is promoted, and (b) ZrO 2 fine particles containing remaining Y 2 O 3 as a solid solution are homogeneously dispersed in the matrix in a tetragonal system. (c) As a comprehensive effect of these results, the stress-induced phase transformation strengthening effect is exhibited, and high toughness and high strength are obtained .
It has been found that a Si 3 N 4 sintered body containing tetragonal ZrO 2 in solid solution and having excellent mechanical properties at room temperature and high temperature can be obtained. The present invention was completed based on such new knowledge. The Si 3 N 4 powder used as the main component in the present invention is
It contains α phase in an amount of 50% by weight or more, more preferably 70% by weight or more, and has an average particle size of crystalline primary particles of 1.5 μm or less, more preferably 1.0 μm or less. However, the average particle of the crystalline primary particles is a calculated value obtained from the actually measured specific surface area of the powder, assuming that the shape of the particle is a true sphere. When the α-phase content is less than 50% by weight, the amount of transition from α-phase Si 3 N 4 to β-phase Si 3 N 4 during the firing process is small, and a structure in which columnar crystals are entangled does not form, resulting in mechanical failure. The physical characteristics are inferior. Moreover, if the average particle size of the Si 3 N 4 crystal primary particles exceeds 1.5 μm, the sinterability will be poor and the crystal grain size in the sintered body will be large and irregular, which is not preferable. Furthermore, Si 3 N 4 is
Even if oxide impurities such as Ca and Fe are contained up to about 1% by weight, the mechanical properties of the sintered body are not substantially impaired. The ZrO 2 powder used as the second component in the present invention is
It is a powder containing 3 to 15 mol% of Y 2 O 3 as a solid solution, and the average particle size of primary crystal particles is 0.5 μm or less, preferably
Use one with a diameter of 0.2 μm or less. If the solid solution amount of Y 2 O 3 in ZrO 2 is less than 3 mol %, the sintering progress rate of Si 3 N 4 will be very slow, and the ZrO 2 particles will be in a tetragonal form and difficult to contain, which is preferable. but on the other hand 1.5
If it exceeds the mol%, the number of equiaxed ZrO2 particles dispersed in Si3N4 will increase, and no improvement in mechanical properties such as fracture toughness of the Si3N4 sintered body will be observed . . The average particle size of the crystalline primary particles of ZrO 2 powder is 0.5μ
When it exceeds m, it becomes difficult to uniformly disperse Si 3 N 4 grain boundaries as fine particles. ZrO 2 with solid solution of Y 2 O 3 used in the present invention
The fine powder is created, for example, as follows. First, ZrO 2 /
After adding a yttrium chloride solution to a predetermined proportion of Y 2 O 3 , a precipitate of hydrated zirconia or zirconium hydroxide containing a predetermined amount of ZrO 2 is produced by hydrolysis or ammonia neutralization. After drying the product, it is fired at about 800 to 1250℃ to form a Y 2 O 3 solid solution with a crystal primary particle size of 1 μm or less.
Obtain ZrO2 . Next, this ZrO 2 is ball milled,
The desired Y 2 O 3 solid solution fine powder is obtained by pulverizing and dispersing it with a fine pulverizer such as an attrition mill. However, the method for producing the Y 2 O 3 solid solution may be any method and is not limited to the above method. Note that when Y 2 O 3 is not dissolved in ZrO 2 and both are added separately, the mechanical properties of the Si 3 N 4 sintered body are not significantly improved. Due to segregation due to differences in specific gravity and agglomeration, microscopic regions are divided into regions where a matrix is formed by Y 2 O 3 and Si 3 N 4 and regions where a matrix is formed by ZrO 2 and Si 3 N 4 . As the ZrO 2 particles become clearly distinct, the structure becomes heterogeneous, the grain growth of ZrO 2 particles, etc. occur, and the ZrO 2
It is presumed that this is due to the fact that it is centered in the monoclinic system. The mixing ratio of Si 3 N 4 powder and ZrO 2 powder varies depending on the particle size of the former, the amount of solid solution of Y 2 O 3 in the latter, firing conditions, etc. 30 parts by weight for a total of 100 parts by weight. If the proportion of ZrO 2 powder is less than 3 parts by weight of the whole raw material,
It is insufficient to promote the sintering of Si3N4 , while when the proportion of ZrO2 powder exceeds 30 parts by weight,
This is not preferable because the excellent properties of Si 3 N 4 itself cannot be maintained. In addition, in the method of the present invention, Si 3 N 4 powder and ZrO 2
Al 2 O 3 and/or per 100 parts by weight of mixed powder with powder
Or the total amount of MgO is 10 parts by weight or less, preferably 2 to 2 parts by weight.
By adding 8 parts by weight, an even denser sintered body can be obtained. The method of the present invention is generally carried out as follows.
After pulverizing and mixing powders of Si 3 N 4 and ZrO 2 or powders to which Al 2 O 3 and/or MgO have been added, they are molded into a predetermined shape and then molded in a nitrogen atmosphere under normal pressure or pressurization.
Sinter at 1650-1800℃. If necessary, it may be fired in a container filled with Si 3 N 4 powder. If the firing temperature is less than 1650°C, the densification sintering progress rate is extremely slow and it takes a long time to transition to β-type Si 3 N 4 , whereas if it exceeds 1800°C, Si 3 N 4 decomposes. This is undesirable because evaporation becomes active. Hereinafter, the features of the present invention will be explained in more detail with reference to Examples. Examples 1 to 4 ZrO 2 powder containing Y 2 O 3 as a solid solution was added to Si 3 N 4 powder,
With Al 2 O 3 ball mill and Al 2 O 3 media,
Wet-grind and mix for 48 hours using denatured alcohol as a solvent. Average particle size of crystalline primary particles of Si 3 N 4 , α phase content in Si 3 N 4 , usage amount of Si 3 N 4 ,
Average particle size of crystalline primary particles of ZrO 2 , Y 2 O 3 content,
Table 1 shows the amount of ZrO 2 used. The obtained mixed powder is press-molded with a metal mold at 200 Kg/cm 2 to obtain a preform, and then further pressurized with a hydrostatic press at 3000 Kg/cm 2 to obtain a molded product. The obtained compact is placed in a container filled with Si 3 N 4 powder and held at a predetermined firing temperature in a nitrogen atmosphere for a predetermined time to obtain a sintered compact. Table 2 shows the firing temperature and time, as well as the physical properties of the sintered body. The three-point bending strength and K 1c were measured as follows. 3-point bending strength: Width 3.5mm, height 2.5mm from sintered body
After cutting out a square column with a total length of 28mm, the surface was polished with a 600 mesh diamond grindstone.
Measure the bending strength by applying a load to the center in the length direction with a span of 20 mm. K 1c ... A Bitkers indentation is made in the center bottom of a square column obtained in the same manner as in the case of three-point bending strength, and this is measured as a sample. Examples 5 to 8 ZrO 2 powder containing Y 2 O 3 as a solid solution was added to Si 3 N 4 powder,
48 using denatured alcohol as a solvent using a plastic ball mill and Si 3 N 4 media.
Perform wet grinding and mixing for an hour. The composition of the mixed powder after pulverization is as shown in Table 1. Further, the physical properties of the sintered bodies obtained in the same manner as in Examples 1 to 4 are shown in Table 2. Example 9 ZrO 2 powder containing Y 2 O 3 as a solid solution was added to Si 3 N 4 powder,
Further, Al 2 O 3 powder (purity 99.99%) and MgO powder (purity 99.9%) were added, and pulverization, mixing, molding, and firing were performed in the same manner as in Examples 5 to 8. The composition of the mixed powder and the physical properties of the sintered body are shown in Tables 1 and 2, respectively. Comparative Example 1 The powder was pulverized, mixed, molded, and fired in substantially the same manner as in Examples 5 to 8, except that ZrO 3 powder containing an excess amount (25 mol %) of Y 2 O 3 was used. The results are shown in Tables 1 and 2. Comparative Example 2 The powder was pulverized, mixed, molded, and fired in substantially the same manner as in Examples 5 to 8, except that Y 2 O 3 and ZrO 2 were separately added to the raw material powder. The results are shown in Tables 1 and 2. Comparative Example 3 Powder was pulverized, mixed, molded, and fired in substantially the same manner as in Examples 5 to 8, except that ZrO 2 which did not contain Y 2 O 3 as a solid solution was used. The results are shown in Tables 1 and 2.

【表】【table】

【表】【table】

【表】 第2表に示す結果から明らかな如く、実施例1
〜9で得られた焼結体の機械的性質は、優れてい
る。 これに対し、比較例1の焼結体は、15モル%を
上回るY2O3を固溶するZrO2を使用するので、緻
密ではあるが、ZrO2粒子は等軸晶系が増加して、
焼結体の破壊靭性の改善が十分でないものと考え
られる。 合計量9.9重量部のZrO2とY2O3とを別々に添加
する比較例2で得られた焼結体では、Y2O3を固
溶するZrO29.9重量部を使用する実施例7の焼結
体に比して、嵩比重及び曲げ強度が著るしく劣る
ことは明らかである。これは、比較例2の焼結体
では、Si3N4粒界に存在するZrO2粒子の大部分
が、成長した単斜晶系結晶となつている為と考え
られる。 更に、Y2O3固溶しないZrO2粉体を使用する比
較例3の焼結体では、焼結体が緻密化されておら
ず、又Si3N4粒界に存在するZrO2粒子が大部分単
斜晶系結晶となつている為、曲げ強度も極めて低
い。
[Table] As is clear from the results shown in Table 2, Example 1
The mechanical properties of the sintered bodies obtained in Examples 1 to 9 are excellent. On the other hand, the sintered body of Comparative Example 1 uses ZrO 2 in which more than 15 mol% of Y 2 O 3 is dissolved, so although it is dense, the ZrO 2 particles have an increased equiaxed crystal system. ,
It is considered that the improvement in fracture toughness of the sintered body is not sufficient. In the sintered body obtained in Comparative Example 2, in which a total amount of 9.9 parts by weight of ZrO 2 and Y 2 O 3 were added separately, in Example 7, in which 9.9 parts by weight of ZrO 2 in which Y 2 O 3 was dissolved as a solid solution was used. It is clear that the bulk specific gravity and bending strength are significantly inferior to that of the sintered body. This is considered to be because, in the sintered body of Comparative Example 2, most of the ZrO 2 particles present at the Si 3 N 4 grain boundaries are grown monoclinic crystals. Furthermore, in the sintered body of Comparative Example 3, which uses ZrO 2 powder that does not dissolve Y 2 O 3 , the sintered body is not densified, and the ZrO 2 particles present at the Si 3 N 4 grain boundaries are Since most of it is a monoclinic crystal, its bending strength is extremely low.

Claims (1)

【特許請求の範囲】 1 α相を50重量%以上含み且つ結晶一次粒子の
平均粒径1.5μm以下の窒化珪素粉体70〜97重量部
及び酸化イツトリウムを3〜15モル%固溶し且つ
結晶一次粒子と平均粒径0.5μm以下の酸化ジルコ
ニウム粉体3〜30重量部からなる混合粉体100重
量部を成形し、窒素雰囲気中1650〜1800℃で焼成
することにより、主なZrO2晶としてY2O3を固溶
した正方晶ZrO2を形成させることを特徴とする
窒化珪素焼結体の製造方法。 2 α相を50重量%以上含み且つ結晶一次粒子の
平均粒径1.5μm以下の窒化珪素粉体70〜97重量部
及び酸化イツトリウムを3〜15モル%固溶し且つ
結晶一次粒子の平均粒径0.5μm以下の酸化ジルコ
ニウム粉体3〜30重量部からなる混合粉体100重
量部に参加アルミニウム及び/又は酸化マグネシ
ウム10重量部以下を加えて成形し、窒素雰囲気中
1650〜1800℃で焼成することにより、主なZrO2
晶としてY2O3を固溶した正方晶ZrO2を形成させ
ることを特徴とする窒化珪素焼結体の製造方法。
[Scope of Claims] 1. 70 to 97 parts by weight of silicon nitride powder containing 50% by weight or more of α phase and having an average particle size of crystalline primary particles of 1.5 μm or less and 3 to 15 mol% of yttrium oxide, and crystals. By molding 100 parts by weight of a mixed powder consisting of primary particles and 3 to 30 parts by weight of zirconium oxide powder with an average particle size of 0.5 μm or less and firing it at 1650 to 1800°C in a nitrogen atmosphere, the main ZrO 2 crystals are formed. A method for producing a silicon nitride sintered body, which comprises forming a tetragonal ZrO 2 containing Y 2 O 3 as a solid solution. 2 70 to 97 parts by weight of silicon nitride powder containing 50% by weight or more of α phase and having an average particle size of crystalline primary particles of 1.5 μm or less and 3 to 15 mol% of yttrium oxide as a solid solution and having an average particle size of crystalline primary particles 100 parts by weight of a mixed powder consisting of 3 to 30 parts by weight of zirconium oxide powder of 0.5 μm or less is added with 10 parts by weight or less of aluminum and/or magnesium oxide, and molded in a nitrogen atmosphere.
Main ZrO2 by firing at 1650-1800℃
1. A method for producing a silicon nitride sintered body, the method comprising forming a tetragonal ZrO 2 crystal containing Y 2 O 3 as a solid solution.
JP56118958A 1981-07-28 1981-07-28 Manufacture of silicon nitride sintered body Granted JPS5820783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56118958A JPS5820783A (en) 1981-07-28 1981-07-28 Manufacture of silicon nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56118958A JPS5820783A (en) 1981-07-28 1981-07-28 Manufacture of silicon nitride sintered body

Publications (2)

Publication Number Publication Date
JPS5820783A JPS5820783A (en) 1983-02-07
JPH0339029B2 true JPH0339029B2 (en) 1991-06-12

Family

ID=14749481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56118958A Granted JPS5820783A (en) 1981-07-28 1981-07-28 Manufacture of silicon nitride sintered body

Country Status (1)

Country Link
JP (1) JPS5820783A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59190272A (en) * 1983-04-12 1984-10-29 住友電気工業株式会社 Manufacture of silicon nitride sintered body
JPS605075A (en) * 1983-06-21 1985-01-11 株式会社クボタ Manufacture of silicon nitride sintered body

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5461215A (en) * 1977-10-05 1979-05-17 Feldmuehle Ag Sintering material
JPS55109275A (en) * 1979-02-12 1980-08-22 Ngk Spark Plug Co Manufacture of high strength silicon nitride sintered body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5461215A (en) * 1977-10-05 1979-05-17 Feldmuehle Ag Sintering material
JPS55109275A (en) * 1979-02-12 1980-08-22 Ngk Spark Plug Co Manufacture of high strength silicon nitride sintered body

Also Published As

Publication number Publication date
JPS5820783A (en) 1983-02-07

Similar Documents

Publication Publication Date Title
US4977114A (en) Zirconia ceramics and method for producing same
US20070179041A1 (en) Zirconia Ceramic
JPS6140621B2 (en)
JPS6125677B2 (en)
US4565792A (en) Partially stabilized zirconia bodies
JPH0475188B2 (en)
US4834928A (en) Doped silicon nitride article
US4975397A (en) Sintered molding, a method for producing it and its use
US7833922B2 (en) Method of forming aluminum oxynitride material and bodies formed by such methods
US5082809A (en) High-strength alumina sintered body and process for preparation thereof
JP3736649B2 (en) Zirconia sintered body, method for producing the same, and pulverized component material
JPH0339029B2 (en)
JPH027910B2 (en)
JP3076682B2 (en) Alumina-based sintered body and method for producing the same
EP0365553A1 (en) Method for producing ceramic composite materials containing silicon oxynitride and zirconium oxide.
JP2671929B2 (en) Zirconia-based ceramic material and its manufacturing method
JPS63103864A (en) Sintered formed body comprising partially stabilized zirconium oxide and manufacture
JPH04209761A (en) Zirconia porcelain and its production
JPS62275067A (en) Manufacture of silicon nitride sintered body
JP3979680B2 (en) Silicon nitride powder for silicon nitride sintered body, silicon nitride sintered body and method for producing the same
JPH0696471B2 (en) Method for manufacturing zirconia ceramics
JPH0687650A (en) Alumina-based sintered compact and its production
JPS63252967A (en) Manufacture of silicon nitride base sintered body
JPH06239662A (en) High strength zirconia sintered product and its production and part material for grinding and ceramic dice
JPS62283865A (en) Zro2 base ceramic sintered body