JPH0338553A - Asymmetrically reactive inorganic oxide powder carrying amino acid - Google Patents

Asymmetrically reactive inorganic oxide powder carrying amino acid

Info

Publication number
JPH0338553A
JPH0338553A JP1171581A JP17158189A JPH0338553A JP H0338553 A JPH0338553 A JP H0338553A JP 1171581 A JP1171581 A JP 1171581A JP 17158189 A JP17158189 A JP 17158189A JP H0338553 A JPH0338553 A JP H0338553A
Authority
JP
Japan
Prior art keywords
amino acid
inorganic oxide
optically active
asymmetrically
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1171581A
Other languages
Japanese (ja)
Inventor
Takeshi Ninoi
二ノ井 武嗣
Masakuni Yoshihara
吉原 正邦
Seishiro Ito
征司郎 伊藤
Yoshitoshi Maejima
前嶋 俊壽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Organic Chemical Industry Co Ltd
Original Assignee
Osaka Organic Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Organic Chemical Industry Co Ltd filed Critical Osaka Organic Chemical Industry Co Ltd
Priority to JP1171581A priority Critical patent/JPH0338553A/en
Publication of JPH0338553A publication Critical patent/JPH0338553A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Peptides Or Proteins (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To obtain inexpensive asymmetrically reactive inorganic oxide powder, excellent in asymmetric discrimination ability and useful as an asymmetric reaction reagent by carrying an optically active amino acid on an inorganic oxide. CONSTITUTION:An optically active amino acid, such as glutamic acid, phenylalanine, glutathione, histidine, leucine or valine, is mixed and ground with an inorganic oxide, such as zinc oxide, aluminum oxide or silica gel, in, e.g. a ball mill, and the resultant mixture is then washed with water and dried to afford the objective substance. The optically active amino acid in an amount of 5-20 pts.wt. based on 100 pts.wt. inorganic oxide is carried thereon. The objective substance is capable of exhibiting excellent asymmetric discrimination ability for various compounds, such as N-benzyloxycarbonylphenylalanine p- nitrophenyl ester, N-benzyloxycarbonylvaline p-nitrophenyl ester or alpha-phenethyl alcohol.

Description

【発明の詳細な説明】 【産業上の利用分野] 本発明はアミノ酸担持不斉反応無機酸化物粉体に関する
。さらに詳しくは、安価でかつ不斉識別能にすぐれたア
ミノ酸担持不斉反応無機酸化物粉体に関する。 [従来の技術] 不斉合或は有機化学の分野でもっとも重要でかつ最近の
注目を集めている研究分野の1つであり、現在まで数多
くの研究結果が報告されている。 前記不斉合成において、とくに今後の主たる研究課題は
、大量の光学活性化合物を一挙に合成しうる不斉合成触
媒を開発することにあるが、今日までにかかる不斉合成
触媒としては、固定化酵素および固定化微生物などの固
定化生体触媒などが開発されている。 しかしながら、前記固定化酵素および固定化生体触媒は
、反応温度、反応時のpH、反応濃度などの反応条件の
設定を厳密にしなければならないという欠点がある。 一方、光学活性化合物を入手するもう1つO方法として
は光学分割法があり、現在かかる光学分割法に用いられ
る分割剤として光学活性原子団を側鎖または主鎖に有す
る各種高分子化合物などが合成されている。 しかしながら、前記各種高分子化合物は、その合成にお
いて高価な光学活性物質を使用したり、その高分子化合
物の形状を整えなければならないなどの欠点がある。 【発明が解決しようとする課題] そこで本発明者らは、前記従来技術に鑑みて、安価でか
つ不斉識別能にすぐれた不斉反応無機酸化物粉体をうる
べく鋭意研究を重ねた結果、かかる要件を満足する不斉
反応無機酸化物粉体を見出し、本発明を完成するにいた
った。 [課題を解決するための手段] 本発明は光学活性アミノ酸を無機酸化物に担持してなる
アミノ酸担持不斉反応無機酸化物粉体に関する。 【作用および実施例】 本発明のアミノ酸担持不斉反応無機酸化物粉体は、光学
活性アミノ酸を無機酸化物に担持したものである。 本発明に用いられる光学活性アミノ酸としては、たとえ
ばグルタミン酸、フェニルアラニン、グルタチオン、ヒ
スチジン、ロイシン、バリンなどがあげられ、これらの
アミノ酸は単独でまたは2F1以上を混合して用いられ
る。 本発明に用いられる無機酸化物としては、たとえば酸化
亜鉛、酸化アルミニウム、シリカゲルなどがあげられ、
これらの無機酸化物は単独でまたは2種以上を混合して
用いられる。 なお、これらの無機酸化物のなかでは、とくに酸化亜鉛
はアミノ酸の−N)12基と−coon基の距離と酸化
亜鉛の亜鉛原子と酸素原子の距離がよく一致するので好
適に使用しうるちのである。 前記無機酸化物は通常粉体として用いられ、かかる無機
酸化物の粒子の大きさは、100メツシユバス、好まし
くは200メツシユバスであるのが反応溶液中の分散性
およびその表面積の増大などの点で好ましい。 前記光学活性アミノ酸および無機酸化物を用いて本発明
の不斉反応無機酸化物粉体を調製する方法としては、た
とえば光学活性アミノ酸および無機酸化物をボールミル
中に入れ、混合摩砕処理を施し、ついで水を用いて洗浄
したのち、乾燥する方法などがあげられる。 なお、本発明においては、無機酸化物に担持される光学
活性アミノ酸量は、無機酸化物100部(重量部、以下
同様)に対して5〜20部、とくに10部であることが
望ましい。かかる光学活性アミノ酸量は5部未満である
ばあいには、アミノ酸担持量が少なくなりすぎてアミノ
酸担持による効果が充分に発揮せられなくなり、また2
0部をこえるばあいには、余分のアミノ酸が潤滑剤とな
りアミノ酸担持量が低下する傾向がある。 かくしてえられる本発明のアミノ酸担持不斉反応無機酸
化物粉体は、アキラルな無機酸化物表面にキラル場を提
供するものであり、安優でしかも不斉識別能にすぐれて
いるので、大量の光学活性化合物を一度に合成する不斉
反応試剤として好適に使用しうるちのである。 つぎに本発明のアミノ酸担持不斉反応無機酸化物粉体を
実施例に基づいてさらに詳細に説明するが、本発明はか
かる実施例のみに限定されるものではない。 製造例I D、L−フェニルアラニン0.05io1を2N−水酸
化ナトリウム水溶液00 mlに溶かし、これにエーテ
ル10m1を加え、水冷下で激しく撹拌しながらベンジ
ルオキシカルボニルクロライド0 、055 mlを滴
下した。約1時間激しく撹拌したのち、2N−水酸化ナ
トリウム水溶液で反応溶液のpHを9としてエーテルで
洗浄を行ない、ついで塩酸でpHを2としたのち、酢酸
エチルで抽出した。 えられた抽出液を無水硫酸ナトリウムで乾燥したのち、
減圧下で濃縮し、白色粉末をえた。 つぎにえられた白色粉末をベンゼンを用いて再結晶し、
N−ベンジルオキシカルボニル−D、L−フェニルアラ
ニンをえた。 えられたN−ベンジルオキシカルボニル−D、L−フェ
ニルアラニン0.015molとp−ニトロフエノール
0.018molを酢酸エチル50m1に溶解し、これ
に水冷下でN、N’−ジシクロへキシルカルボジイミド
0.016molの酢酸エチル溶液を滴下した。 −昼夜撹拌したのち、生成した沈澱物を濾過し、濾液を
減圧濃縮乾固し、これをエタノールで再結晶し、N−ベ
ンジルオキシカルボニル−〇。 L−フェニルアラニン−p−ニトロフェニルエステル(
以下、Z−Phe−ONpという)をえた(収率90%
)。 えられたZ−Phe−ONpの物性として融点、IRス
ペクトルおよびIH−NMRスペクトルを調べた。その
結果を以下に示す。 (融 点) 126.5〜128.0℃ (IRスペクトル) JASCO−IRA−202m (日本分光工業aS!
り オヨびPERKIN ELMARFT−IR170
6X型(パーキン−エルマー社製)を用いてNaClセ
ル液膜法およびKBr錠剤法にしたがって測定した。 IR(C1l−’ )  : 3340(−NIICO
−)、1750 (ンc−o)(IH−NMRスペクト
ル) 日本電子■製のJEOL−JNM−PMX608. (
80MHz)およびJEOL−GSX270  (27
0MIIz)を使用し、溶媒として重クロロホルム、内
部標準としてテトラメチルシランを用いて測定した。化
学シフトはδ値(ppm)を用いて示した。 lH−NMR(pps) : 3.22(d、 2H,
−CHz −)、4.80(b、LH,ンCIt −’
)5.10(S、2+1.−CH2−) 6.90〜8.30 (s、1411.芳香族)製造例
2 製造例1において、D、L−フェニルアラニンのかわり
にり、L−バリンを用いたほかは製造例1と同様の操作
を行ない、N−ベンジルオキシカルボニルバリン−p−
ニトロフェニルエステル(以下、Z−Val−ONpと
いう)をえた(収率80%)。 えられたZ−Val−ONpの物性を製造例1と同様に
して調べた。その結果を以下に示す。 (融 点) 6260〜82.5℃ (IRスペクトル) IR(cse−’ )  ; 3320(−NIICO
−)、1745 (;C−0)’H−NMR(ppm)
 : 1.20(d、OB、−Cl5 )2.43(a
、il!、ン CIt −)4 、83 (s+ 、I
 It 、′;C1−)5.25(S、2H,−CH2
−) 7.20〜8.53 (a、9H,芳香族)製造例3 製造例1において、D、L−フェニルアラニンのかわり
にり、L−ロイシンを用いたほかは製造例1と同様の操
作を行ない、N−ベンジルオキシカルボニルロイシン−
p−ニトロフェニルエステル(以下、Z−Leu−ON
pという)をえた(収率75%)。 えられたZ−Leu−ONpの物性を製造例1と同様に
して調べた。その結果を以下に示す。 (融 点) 71.5〜71.9℃ (IRスペクトル) IR(cga−’ )  : 3320(−N■CO−
〉、1745 (ンC−0)(1)1−NMRスペク IH−NMR(ppm): トル) 1.20(d、[iH,−C)13 ’)1.80(1
,12,−CH2−) 2.45(a、lIl、 ;ell−)4.73(■、
ru、;co−) 5 、27 (s 、 211 、−C)+2−)7.
27〜8.73 (i、911.芳香族)製造例4 kJ 4例1において、D、L−フェニルアラニンのか
わりにり、L−イソロイシンを用いたほかは製造例1と
同様の操作を行ない、N−ベンジルオキシカルボニルイ
ソロイシン−p−ニトロフェニルエステル(以下、Z−
11e−ONpという)をえた(収率85%)。 えられたZ−11e−ONpの物性を製造例1と同様に
して調べた。その結果を以下に示す。 (融 点) 74、G〜75.1’C (IRスペクトル〉 IR(cm−’ )  : 3310(−NIICO−
)、1750 (”;C−0>(IH−NMRスペクト
ル) ’H−NMR(ppm) : 1.09(t、311.
−CH5)1.25(d、3H,−CHx ) 1.37(1,211,−〇H2−) 4.24〜4.97 (−12■。 4.50(a、IH,’:、 C11−)5.10(S
、2H,−CH2−) 7607〜11.57 (鵬、911.芳香族);co
−xz) 実施例1〜6 第1表に示す光学活性アミノ酸20gおよび無機酸化物
として酸化亜鉛粉末200gをセラミック製ボールミル
(内容flc500 cas内径0.175m)に入れ
、毎分60回転で乾式混合摩砕処理を24時間行なった
。 摩砕処理終了後、摩砕物を取り出し、水で充分に洗浄(
2IXIQ回)したのち、60℃で24時間減圧乾燥を
行ない、光学活性アミノ酸担持酸化亜鉛をえた。えられ
たアミノ酸担持酸化亜鉛の収量はいずれも120〜15
0gであった。 つぎにえられたアミノ酸担持酸化亜鉛の元素分析を行な
った。 その結果を第1表に併記する。 [以下余白] 第1表に示された結果より、えられたアミノ酸担持酸化
亜鉛のチッ素(N)と炭素(C)の比(N/C)の値は
、いずれもそれぞれのアミノ酸のそれとほぼ同じである
ことから、アミノ酸担持酸化亜鉛は酸化亜鉛上にアミノ
酸が結合したものであることがわかる。 つぎに、アミノ酸担持酸化亜鉛としてL−111s−Z
nOを用いたときの赤外吸収スペクトルを測定した。そ
の結果を第1図に示す。 第1図に示した結果より、1G20Qll−1にはカル
ボン酸イオンによる吸収が、また32Hca+−131
50CIl−’  1020aa−1および1490c
m−1近傍にはアミノ基に起因する吸収がみられる。こ
れらの吸収のうち、3280cm−1および31500
m+−1の吸収はそれぞれ−NH,+の逆対称および対
称伸縮振動に基づくものであることより、アミノ基は−
NHs+の状態で存在しているものと考えられる。 前記と同様の現象は、0−アミノ安息香酸と酸化亜鉛の
摩砕物でも観M1され、すでに報告されている(材料技
術、4 (2)  (198B)伊藤征司部、p、94
−100)。 したがって、アミノ酸担持酸化亜鉛を用いたばあいも前
記と同様に、−co2−が摩砕処理によって生じた酸化
亜鉛の新生断面にある亜鉛原子に、また−N)13”が
酸素原子に結合しているものと考えられる。 実施例7〜10 実施例2〜5でえられた光学活性アミノ酸担持酸化亜鉛
と製造例1でえられたラセミ体の2−Pho−ONpを
第2表に示す組成となるように混合し、これを第2表に
示す量のベンゼン中に添加し、25℃で第2表に示す時
間撹拌振とうを行なった。さらに光学活性アミノ酸担持
酸化亜鉛を濾別し、濾液を減圧下で濃縮してエーテル5
0m1を加え、水冷下でメチルアミンガスを作用させて
N−ベンジルオキシカルボニルフェニルアラニンメチル
アミド(以下、Z−Phe−NHCII 3という)を
えた。 つぎにえられたZ−Phe−NHCHsを威圧下で濃縮
し、残渣をシリカゲルカラムクロマトグラム(フコ−ゲ
ルC−200(和光純J[製)、n−ヘキサン;酢酸エ
チル−2=1(容量比))にかけて精製した。 えられた白色結晶を減圧乾燥し、以下の方法にしたがっ
て比旋光度および光学純度を調べた。 その結果を第2表に併記する。 (比旋光度) 日本分光■製のJASCO−DIP−140デジタルポ
ーラリメータ−を用いて測定した。 (光学純度) 比旋光度の測定値に基づいて式: より算出した。 [以下余白〕 第2表に示した結果より、本発明のいずれのアミノ酸担
持無機酸化物を用いてもZ−Phe−ONpのラセミ体
の一方のみが選択的に吸着され、光学活性なアミドが回
収されることがわかる。 実施例xi−tg アミノ酸担持無機酸化物として実施例1〜6でえられた
L−Hls−ZnO、C3H−ZnO% L−Leu−
ZnO1L−val−ZnOまたはL−Glu−Zn0
5 gを第3表に示す量の製造例1〜4でえられたZ−
Phe−ONp 、 Z−Val−ONp 、 Z−L
eu−ONpまたはZ−11e−ONpの基質と混合し
、これをメタノール50m1中に添加し、25℃で第3
表に示す時間撹拌振とうを行なった。 さらに光学活性アミノ酸担持酸化亜鉛を濾別し、濾液を
減圧下で濃縮してエーテル50m1を加え、水冷下でメ
チルアミンガスを作用させて基質のメタノリシスを行な
い、2−アミノ酸−OCH,をえ、実施例1〜3と同様
の操作を行なって2−アミノ酸−NHC)+3をえた。 つぎにえられた2−アミノ酸−N HCH3を減圧下で
濃縮し、残渣をシリカゲルカラムクロマトグラム(フコ
−ゲルC−200、n−へ牛サン:酢酸エチルー2:1
(容量比))にかけて精製した。 えられた白色結晶を減圧乾燥し、比旋光度、光学純度、
立体配置およびラセミ体基質問の反応速度比(以下、K
L/KDという)を調べた。 なお、比旋光度および光学純度は実施例7〜lOと同様
に、また立体配置および)[L /KDは以下の方法に
したがって調べた。その結果を第3表に併記する。 (立体配置1) 比旋光度の測定結果より、標品との比較により決定した
。 (KL /KD ) 比旋光度の測定結果より、式: (式中、L は1体基質の初濃度、Lは反応路7時の1
体基質の濃度、DoはD体基質の初濃度、Dは反応終了
時のD体基質の濃度、Cはラセミ体基質の消費m、e、
e、はエナンチオマー過剰率ハ00 (光学純度/ 100)を示す) にしたかっ て求めた。 [以下余白] 第3表に示した結果より、いずれの実施例においても光
学活性なアミドが生成し、本発明のアミノ酸担持不斉反
応無機酸化物粉体には不斉識別能があることがわかる。 実施例19〜23 アミノ酸担持無機酸化物として実施例11〜18で用い
たのと同じアミノ酸担持酸化亜鉛を5g用い、これとラ
セミ体のα −フェネチルアルコール300厘gを混合
し、これを室温下でメタノール50 ml中で24時間
撹拌したのち、アミノ酸担持酸化亜鉛を濾過により除去
し、濾液を減圧下で濃縮して減圧蒸留を行なって精製し
、α −フェネチルアルコールを回収した。このときの
αフェネチルアルコールの回収率を第4表に示す。 つぎにえられたα −フェネチルアルコールの比旋光度
を測定して粉体の分割能を評価した。 その結果を第4表に示す。 第4表に示した結果より、本発明のアミノ酸担持不斉反
応無機酸化物粉体を用いたばあいには、ラセミ体のα 
−フェネチルアルコールより光学活性α −フェネチル
アルコールが回収されたことから、本発明のアミノ酸担
持不斉反応無機酸化物粉体にはアルコールの光学分割能
を有することがわかる。 実施例24〜29 実施例1〜6で用いたのと同じアミノ酸担持無機酸化物
を5g用い、これとジアルコールとしてラセミ体の1.
1゛−ビー2−ナフトールaoo agとを混合し、こ
れを室温下でメタノール50m1中で24時間撹拌した
のち、アミノ#担持無機酸化物を濾過により除去して濾
液より1.1゛−ビー2−ナフトールを回収した。 つぎにえられた1、1’−ビー2−ナフトールの比旋光
度を測定し、その分割能を評優した。その結果を第5表
に示す。 第5表に示した結果より、実施例24〜29のいずれに
おいても光学活性1.1’−ビー2−ナフトールが回収
され、本発明のアミノ酸担持不斉反応無機酸化物粉体に
はジアルコールの光学分割能があることがわかる。 [発明の効果] 本発明のアミノ酸担持不斉反応無機酸化物粉体は、たと
えばラセミ体のN−ベンジルオキシカルボニルフェニル
アラニン−p−ニトロフェニルエステル、N−ベンジル
オキシカルボニルバリン−p−ニトロフェニルエステル
、N−ベンジルオキシカルボニルロイシン−p−ニトロ
フェニルエステル、N−ベンジルオキシカルボニルイソ
ロイシン−p−ニトロフェニルエステルなどをはじめ、
α−フェネチルアルコール、L、1°−ビー2−ナフト
ールなどの種々の化合物に対してすぐれた不斉識別能を
呈するものであり、安価な原料からなるものであるので
、不斉反応試剤として工業的に好適に使用しうるもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an amino acid-supported asymmetrically reactive inorganic oxide powder. More specifically, the present invention relates to an amino acid-supported asymmetrically reactive inorganic oxide powder that is inexpensive and has excellent asymmetric discrimination ability. [Prior Art] This is one of the most important research fields in the field of asymmetric synthesis or organic chemistry and has recently attracted attention, and numerous research results have been reported to date. In the above-mentioned asymmetric synthesis, the main research topic in the future is to develop an asymmetric synthesis catalyst that can synthesize a large amount of optically active compounds at once. Immobilized biocatalysts such as enzymes and immobilized microorganisms have been developed. However, the immobilized enzyme and the immobilized biocatalyst have a drawback in that reaction conditions such as reaction temperature, pH during reaction, and reaction concentration must be set strictly. On the other hand, another method for obtaining optically active compounds is the optical resolution method, and various polymeric compounds having optically active atomic groups in their side chains or main chains are currently used as resolving agents in such optical resolution methods. It is synthesized. However, the various polymer compounds described above have drawbacks such as the use of expensive optically active substances in their synthesis and the necessity of adjusting the shape of the polymer compound. [Problems to be Solved by the Invention] In view of the above-mentioned prior art, the present inventors have conducted extensive research to create an asymmetrically reactive inorganic oxide powder that is inexpensive and has excellent asymmetric discrimination ability. They discovered an asymmetrically reactive inorganic oxide powder that satisfies these requirements and completed the present invention. [Means for Solving the Problems] The present invention relates to an amino acid-supported asymmetrically reactive inorganic oxide powder in which an optically active amino acid is supported on an inorganic oxide. [Operations and Examples] The amino acid-supported asymmetrically reactive inorganic oxide powder of the present invention is one in which an optically active amino acid is supported on an inorganic oxide. Examples of the optically active amino acids used in the present invention include glutamic acid, phenylalanine, glutathione, histidine, leucine, and valine, and these amino acids may be used alone or in a mixture of 2F1 or more. Examples of inorganic oxides used in the present invention include zinc oxide, aluminum oxide, silica gel, etc.
These inorganic oxides may be used alone or in combination of two or more. Among these inorganic oxides, zinc oxide is particularly suitable for use because the distance between the -N)12 group and the -coon group of the amino acid closely matches the distance between the zinc atom and the oxygen atom of zinc oxide. It is. The inorganic oxide is usually used as a powder, and the particle size of the inorganic oxide is preferably 100 mesh, preferably 200 mesh, in terms of dispersibility in the reaction solution and increase in surface area. . As a method for preparing the asymmetrically reacted inorganic oxide powder of the present invention using the optically active amino acid and inorganic oxide, for example, the optically active amino acid and the inorganic oxide are placed in a ball mill, mixed and milled, Examples include a method of washing with water and then drying. In the present invention, the amount of optically active amino acid supported on the inorganic oxide is preferably 5 to 20 parts, particularly 10 parts, based on 100 parts (by weight, hereinafter the same) of the inorganic oxide. If the amount of such optically active amino acids is less than 5 parts, the amount of amino acids carried becomes too small and the effect of carrying the amino acids cannot be fully exerted, and
If it exceeds 0 parts, the excess amino acid acts as a lubricant and the amount of amino acid carried tends to decrease. The amino acid-supported asymmetrically reactive inorganic oxide powder of the present invention thus obtained provides a chiral field on the surface of an achiral inorganic oxide, and is safe and has excellent chiral discrimination ability, so it can be used in large quantities. It can be suitably used as an asymmetric reaction reagent for synthesizing optically active compounds at once. Next, the amino acid-supported asymmetrically reactive inorganic oxide powder of the present invention will be explained in more detail based on Examples, but the present invention is not limited to these Examples. Production Example I 0.05 io1 of D,L-phenylalanine was dissolved in 00 ml of 2N aqueous sodium hydroxide solution, 10 ml of ether was added thereto, and 0.055 ml of benzyloxycarbonyl chloride was added dropwise with vigorous stirring under water cooling. After stirring vigorously for about 1 hour, the pH of the reaction solution was adjusted to 9 with a 2N aqueous sodium hydroxide solution, washed with ether, then adjusted to pH 2 with hydrochloric acid, and extracted with ethyl acetate. After drying the obtained extract with anhydrous sodium sulfate,
Concentration under reduced pressure gave a white powder. Next, the white powder obtained was recrystallized using benzene,
N-benzyloxycarbonyl-D,L-phenylalanine was obtained. 0.015 mol of the obtained N-benzyloxycarbonyl-D,L-phenylalanine and 0.018 mol of p-nitrophenol were dissolved in 50 ml of ethyl acetate, and 0.016 mol of N,N'-dicyclohexylcarbodiimide was added to this under cooling with water. An ethyl acetate solution of was added dropwise. - After stirring day and night, the formed precipitate was filtered, the filtrate was concentrated to dryness under reduced pressure, and this was recrystallized from ethanol to give N-benzyloxycarbonyl-〇. L-phenylalanine-p-nitrophenyl ester (
Hereinafter referred to as Z-Phe-ONp) was obtained (yield 90%).
). The melting point, IR spectrum, and IH-NMR spectrum were investigated as physical properties of the obtained Z-Phe-ONp. The results are shown below. (Melting point) 126.5-128.0°C (IR spectrum) JASCO-IRA-202m (JASCO Corporation aS!
RI Oyobi PERKIN ELMARFT-IR170
It was measured using a Model 6X (manufactured by Perkin-Elmer) according to the NaCl cell liquid film method and the KBr tablet method. IR(C1l-'): 3340(-NIICO
-), 1750 (c-o) (IH-NMR spectrum) JEOL-JNM-PMX608 manufactured by JEOL. (
80MHz) and JEOL-GSX270 (27
0 MIIz), deuterated chloroform as a solvent, and tetramethylsilane as an internal standard. Chemical shifts are expressed using δ values (ppm). lH-NMR (pps): 3.22 (d, 2H,
-CHz -), 4.80 (b, LH, NCIt -'
) 5.10 (S, 2+1.-CH2-) 6.90-8.30 (s, 1411. aromatic) Production Example 2 In Production Example 1, L-valine was used instead of D, L-phenylalanine. The same operation as in Production Example 1 was carried out except that N-benzyloxycarbonylvaline-p-
Nitrophenyl ester (hereinafter referred to as Z-Val-ONp) was obtained (yield 80%). The physical properties of the obtained Z-Val-ONp were investigated in the same manner as in Production Example 1. The results are shown below. (Melting point) 6260-82.5°C (IR spectrum) IR(cse-'); 3320(-NIICO
-), 1745 (;C-0)'H-NMR (ppm)
: 1.20 (d, OB, -Cl5) 2.43 (a
,il! , N CIt −)4 ,83 (s+ , I
It,';C1-)5.25(S,2H,-CH2
-) 7.20 to 8.53 (a, 9H, aromatic) Production Example 3 Same operation as Production Example 1 except that L-leucine was used instead of D,L-phenylalanine in Production Example 1. to give N-benzyloxycarbonylleucine-
p-nitrophenyl ester (hereinafter referred to as Z-Leu-ON
p) was obtained (yield 75%). The physical properties of the obtained Z-Leu-ONp were investigated in the same manner as in Production Example 1. The results are shown below. (Melting point) 71.5-71.9°C (IR spectrum) IR (cga-'): 3320 (-NCO-
>, 1745 (nC-0) (1) 1-NMR spectrum IH-NMR (ppm): Tor) 1.20 (d, [iH, -C)13') 1.80 (1
, 12, -CH2-) 2.45 (a, lIl, ;ell-) 4.73 (■,
ru, ;co-) 5, 27 (s, 211, -C)+2-)7.
27-8.73 (i, 911. Aromatic) Production Example 4 kJ 4 Perform the same operation as Production Example 1 except that L-isoleucine was used instead of D,L-phenylalanine in Example 1, N-benzyloxycarbonylisoleucine-p-nitrophenyl ester (hereinafter referred to as Z-
11e-ONp) was obtained (yield 85%). The physical properties of the obtained Z-11e-ONp were investigated in the same manner as in Production Example 1. The results are shown below. (Melting point) 74, G ~ 75.1'C (IR spectrum> IR (cm-'): 3310 (-NIICO-
), 1750 ('';C-0>(IH-NMR spectrum) 'H-NMR (ppm): 1.09 (t, 311.
-CH5) 1.25 (d, 3H, -CHx) 1.37 (1,211, -〇H2-) 4.24~4.97 (-12■. 4.50 (a, IH,':, C11-)5.10(S
, 2H, -CH2-) 7607-11.57 (Peng, 911. aromatic); co
-xz) Examples 1 to 6 20 g of the optically active amino acids shown in Table 1 and 200 g of zinc oxide powder as an inorganic oxide were placed in a ceramic ball mill (content: flc500 cas, inner diameter 0.175 m), and dry mixed and milled at 60 revolutions per minute. The crushing process was carried out for 24 hours. After the grinding process is complete, take out the ground material and wash thoroughly with water (
After drying under reduced pressure at 60° C. for 24 hours, optically active amino acid-supported zinc oxide was obtained. The yield of the amino acid-supported zinc oxide obtained was 120-15.
It was 0g. Next, the obtained amino acid-supported zinc oxide was subjected to elemental analysis. The results are also listed in Table 1. [Left below] From the results shown in Table 1, the ratio of nitrogen (N) to carbon (C) (N/C) of the obtained amino acid-supported zinc oxide is similar to that of each amino acid. Since they are almost the same, it can be seen that the amino acid-supported zinc oxide is one in which an amino acid is bonded to zinc oxide. Next, as amino acid-supported zinc oxide, L-111s-Z
Infrared absorption spectra were measured using nO. The results are shown in FIG. From the results shown in Figure 1, 1G20Qll-1 has absorption by carboxylic acid ions, and 32Hca+-131
50CIl-' 1020aa-1 and 1490c
Absorption due to amino groups is observed near m-1. Of these absorptions, 3280 cm-1 and 31500
Since the absorption of m+-1 is based on the antisymmetric and symmetric stretching vibrations of -NH and +, respectively, the amino group is -
It is thought that it exists in the NHs+ state. The same phenomenon as above was also observed in the ground product of 0-aminobenzoic acid and zinc oxide, and has already been reported (Material Technology, 4 (2) (198B) Seiji Ito, p. 94
-100). Therefore, in the case of using amino acid-supported zinc oxide, -co2- is bonded to the zinc atom in the new cross section of zinc oxide produced by the grinding process, and -N)13'' is bonded to the oxygen atom, as described above. Examples 7 to 10 The compositions of the optically active amino acid-supported zinc oxide obtained in Examples 2 to 5 and the racemic 2-Pho-ONp obtained in Production Example 1 are shown in Table 2. This was mixed so that the amount of benzene shown in Table 2 was mixed, and the mixture was stirred and shaken at 25°C for the time shown in Table 2.Furthermore, the optically active amino acid-supported zinc oxide was separated by filtration. The filtrate was concentrated under reduced pressure to give ether 5
0 ml was added thereto, and methylamine gas was applied under water cooling to obtain N-benzyloxycarbonylphenylalanine methylamide (hereinafter referred to as Z-Phe-NHCII 3). Next, the obtained Z-Phe-NHCHs was concentrated under pressure, and the residue was analyzed on a silica gel column chromatogram (Fuko-gel C-200 (manufactured by Wako Jun J), n-hexane; ethyl acetate-2 = 1 (volume It was purified by subjecting it to (ratio)). The obtained white crystals were dried under reduced pressure, and their specific rotation and optical purity were examined according to the following method. The results are also listed in Table 2. (Specific optical rotation) Measured using a JASCO-DIP-140 digital polarimeter manufactured by JASCO Corporation. (Optical purity) Calculated from the formula: based on the measured value of specific optical rotation. [Margin below] From the results shown in Table 2, no matter which amino acid-supported inorganic oxide of the present invention is used, only one of the racemic forms of Z-Phe-ONp is selectively adsorbed, and the optically active amide is I know it will be collected. Example xi-tg L-Hls-ZnO obtained in Examples 1 to 6 as an amino acid-supported inorganic oxide, C3H-ZnO% L-Leu-
ZnO1L-val-ZnO or L-Glu-Zn0
5 g of Z- obtained in Production Examples 1 to 4 in the amounts shown in Table 3.
Phe-ONp, Z-Val-ONp, Z-L
Mix with eu-ONp or Z-11e-ONp substrate, add this to 50 ml of methanol, and incubate at 25°C for a third time.
Stirring and shaking were performed for the time shown in the table. Furthermore, the optically active amino acid-supported zinc oxide was filtered off, the filtrate was concentrated under reduced pressure, 50 ml of ether was added, and methylamine gas was applied under water cooling to perform methanolysis of the substrate, yielding 2-amino acid-OCH, The same operations as in Examples 1 to 3 were performed to obtain 2-amino acid-NHC)+3. Next, the obtained 2-amino acid-N HCH3 was concentrated under reduced pressure, and the residue was subjected to silica gel column chromatography (Fuko-gel C-200, n-beef san: ethyl acetate 2:1
(volume ratio)). The obtained white crystals were dried under reduced pressure, and the specific rotation, optical purity,
Reaction rate ratio of configuration and racemic group interrogation (hereinafter referred to as K
(referred to as L/KD). The specific optical rotation and optical purity were determined in the same manner as in Examples 7 to 1O, and the steric configuration and )[L/KD were determined according to the following methods. The results are also listed in Table 3. (Configuration 1) Determined from the measurement results of specific optical rotation by comparison with a standard product. (KL /KD) From the measurement results of specific rotation, the formula:
Do is the initial concentration of the D-substrate, D is the concentration of the D-substrate at the end of the reaction, C is the consumption of the racemic substrate m, e,
e is the enantiomeric excess (indicates optical purity/100). [Left below] From the results shown in Table 3, optically active amides were produced in all Examples, indicating that the amino acid-supported asymmetrically reactive inorganic oxide powder of the present invention has asymmetric discrimination ability. Recognize. Examples 19-23 Using 5 g of the same amino acid-supported zinc oxide used in Examples 11-18 as the amino acid-supported inorganic oxide, this was mixed with 300 g of racemic α-phenethyl alcohol, and this was mixed at room temperature. After stirring in 50 ml of methanol for 24 hours, the amino acid-supported zinc oxide was removed by filtration, and the filtrate was concentrated under reduced pressure and purified by vacuum distillation to recover α-phenethyl alcohol. Table 4 shows the recovery rate of α-phenethyl alcohol at this time. Next, the specific rotation of the obtained α-phenethyl alcohol was measured to evaluate the ability to divide the powder. The results are shown in Table 4. From the results shown in Table 4, when using the amino acid-supported asymmetrically reactive inorganic oxide powder of the present invention, the racemic α
Since optically active α-phenethyl alcohol was recovered from -phenethyl alcohol, it can be seen that the amino acid-supported asymmetrically reactive inorganic oxide powder of the present invention has the ability to optically resolve alcohol. Examples 24 to 29 5 g of the same amino acid-supported inorganic oxide as used in Examples 1 to 6 was used, and racemic 1.
After stirring the mixture in 50 ml of methanol at room temperature for 24 hours, the amino #-supported inorganic oxide was removed by filtration, and the 1.1-bi-2-naphthol aoo ag was mixed with 1.1-bi-2-naphthol aoo ag. - Naphthol was recovered. Next, the specific rotation of the obtained 1,1'-bi-2-naphthol was measured, and its resolution ability was evaluated. The results are shown in Table 5. From the results shown in Table 5, optically active 1.1'-bi-2-naphthol was recovered in all of Examples 24 to 29, and the amino acid-supported asymmetrically reactive inorganic oxide powder of the present invention contained dialcohol. It can be seen that there is an optical resolution of . [Effects of the Invention] The amino acid-supported asymmetrically reactive inorganic oxide powder of the present invention includes, for example, racemic N-benzyloxycarbonylphenylalanine-p-nitrophenyl ester, N-benzyloxycarbonylvaline-p-nitrophenyl ester, Including N-benzyloxycarbonylleucine-p-nitrophenyl ester, N-benzyloxycarbonylisoleucine-p-nitrophenyl ester, etc.
It exhibits excellent asymmetric discrimination ability for various compounds such as α-phenethyl alcohol, L, 1°-bi-2-naphthol, and is made from inexpensive raw materials, so it is used industrially as an asymmetric reaction reagent. It can be suitably used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はL−Hls−ZnO赤外吸収スペクトルの測定
結果を示すグラフである。
FIG. 1 is a graph showing the measurement results of L-Hls-ZnO infrared absorption spectrum.

Claims (1)

【特許請求の範囲】 1 光学活性アミノ酸を無機酸化物に担持してなるアミ
ノ酸担持不斉反応無機酸化物粉体。 2 光学活性アミノ酸がグルタミン酸、フェニルアラニ
ン、グルタチオン、ヒスチジン、ロイシンおよびバリン
の少なくとも1種である請求項1記載のアミノ酸担持不
斉反応無機酸化物粉体。 3 無機酸化物が酸化亜鉛である請求項1記載のアミノ
酸担持不斉反応無機酸化物粉体。
[Scope of Claims] 1. An amino acid-supported asymmetrically reactive inorganic oxide powder comprising an optically active amino acid supported on an inorganic oxide. 2. The amino acid-supported asymmetrically reactive inorganic oxide powder according to claim 1, wherein the optically active amino acid is at least one of glutamic acid, phenylalanine, glutathione, histidine, leucine, and valine. 3. The amino acid-supported asymmetrically reacted inorganic oxide powder according to claim 1, wherein the inorganic oxide is zinc oxide.
JP1171581A 1989-07-03 1989-07-03 Asymmetrically reactive inorganic oxide powder carrying amino acid Pending JPH0338553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1171581A JPH0338553A (en) 1989-07-03 1989-07-03 Asymmetrically reactive inorganic oxide powder carrying amino acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1171581A JPH0338553A (en) 1989-07-03 1989-07-03 Asymmetrically reactive inorganic oxide powder carrying amino acid

Publications (1)

Publication Number Publication Date
JPH0338553A true JPH0338553A (en) 1991-02-19

Family

ID=15925808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1171581A Pending JPH0338553A (en) 1989-07-03 1989-07-03 Asymmetrically reactive inorganic oxide powder carrying amino acid

Country Status (1)

Country Link
JP (1) JPH0338553A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006118186A1 (en) * 2005-04-27 2006-11-09 Kabushiki Kaisha Equos Research Electrode for fuel cell and membrane electrode assembly
WO2007060886A1 (en) * 2005-11-24 2007-05-31 National University Corporation Hokkaido University Therapeutic agent for neurodegenerative disease
JP2009035195A (en) * 2007-08-03 2009-02-19 Toyota Motor Corp Vehicle approach informing device
CN116161694A (en) * 2022-12-09 2023-05-26 江南大学 Chiral zinc oxide and synthesis method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006118186A1 (en) * 2005-04-27 2006-11-09 Kabushiki Kaisha Equos Research Electrode for fuel cell and membrane electrode assembly
JPWO2006118186A1 (en) * 2005-04-27 2008-12-18 株式会社エクォス・リサーチ Fuel cell electrode and membrane electrode assembly
WO2007060886A1 (en) * 2005-11-24 2007-05-31 National University Corporation Hokkaido University Therapeutic agent for neurodegenerative disease
US8318798B2 (en) 2005-11-24 2012-11-27 National University Corporation Hokkaldo University Therapeutic agent for neurodegenerative disease
JP5145563B2 (en) * 2005-11-24 2013-02-20 国立大学法人北海道大学 Drugs for neurodegenerative diseases
JP2009035195A (en) * 2007-08-03 2009-02-19 Toyota Motor Corp Vehicle approach informing device
CN116161694A (en) * 2022-12-09 2023-05-26 江南大学 Chiral zinc oxide and synthesis method thereof
CN116161694B (en) * 2022-12-09 2023-12-22 江南大学 Chiral zinc oxide and synthesis method thereof

Similar Documents

Publication Publication Date Title
JPS581105B2 (en) Optically active amino acid-mandelic acid complex and method for producing the same
CA1117136A (en) Peptides and acid addition salts thereof
JPH0338553A (en) Asymmetrically reactive inorganic oxide powder carrying amino acid
BE863245A (en) NEW ADDITIONAL COMPOUNDS OF A DIPEPTIDE DERIVATIVE AND AN AMINO-ACID DERIVATIVE, AND THEIR PREPARATION AND DECOMPOSITION PROCESS
JP2526811B2 (en) Phenethylamine derivative and method for producing the same
FR2461716A1 (en) NOVEL ANTIBIOTIC COMPOUNDS FROM THE PHLEOMYCIN-BLEOMYCIN GROUP, PROCESS FOR OBTAINING THEM AND THEIR THERAPEUTIC USE
CN108300744B (en) Synthesis method, kit and application of D-heterocyclic amino acid
JP3888402B2 (en) Process for producing optically active N-carbobenzoxy-tert-leucine
JP2846770B2 (en) Optical resolution method for obtaining optically active trans-2-aminocyclohexanol derivative
WO2002020461A1 (en) 3-amino-1-indanole, method of synthesizing the same and method of optical resolution
JPH0751090A (en) Production of optically active 3-aminobutanoic acid and its ester intermediate
JPH078853B2 (en) Method for producing dopamine derivative
JPH0649005A (en) Simple method for producing vinylglycine (2-amino-3- butenoic acid) and simple method for dividing derivative
JPS60258151A (en) Manufacture of n-benzyloxycarbonylamino acid containing additional functional group
JPS58876B2 (en) FR-1923 Bushitsuno Seizouhouhou
JP3030896B2 (en) WB968 substance group and production method thereof
BE550604A (en)
JPH02262536A (en) Optically active compound and its production
JP3997141B2 (en) Tyropeptin A analog
JPH03254695A (en) Production of optically active aminopropanediol derivative and its antipode ester
CN115872951A (en) Synthesis method of tianeptine sodium intermediate methoxy substituent
JPS62167754A (en) Production of cyanomethylthioacetic acids
JPH01186850A (en) 2-methylphenylalanines
JPS6261587A (en) Production of optically active (r)-hydroxymandelic acid ester intermediate
JPS6248656A (en) N-fumaryl-l-phenylalanine methyl ester and production thereof