JPH0338540B2 - - Google Patents

Info

Publication number
JPH0338540B2
JPH0338540B2 JP57012412A JP1241282A JPH0338540B2 JP H0338540 B2 JPH0338540 B2 JP H0338540B2 JP 57012412 A JP57012412 A JP 57012412A JP 1241282 A JP1241282 A JP 1241282A JP H0338540 B2 JPH0338540 B2 JP H0338540B2
Authority
JP
Japan
Prior art keywords
hydrogen peroxide
membrane
electrode
permeability
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57012412A
Other languages
Japanese (ja)
Other versions
JPS58129245A (en
Inventor
Toshio Tsuchida
Kentaro Yoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP57012412A priority Critical patent/JPS58129245A/en
Publication of JPS58129245A publication Critical patent/JPS58129245A/en
Publication of JPH0338540B2 publication Critical patent/JPH0338540B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/40Semi-permeable membranes or partitions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は過酸化水素選択透過膜に関するもので
ある。 過酸化水素感応型ポーラログラフ電極と酵素反
応の結果、過酸化水素を生成する酸化還元酵素を
組合せて構成される酵素電極は各種物質の測定に
利用されている。例えばグルコース、ガラクトー
ス、シユクロース、尿酸、コレステロール、リン
脂質、各種アミノ酸、アルコール等の測定に用い
られ、食品工業、醗酵工業、臨床検査分野等で広
く利用されている。 一般にポーラログラフ電極とは白金アノードと
銀カソードから構成され、両電極に一定の電圧を
印加すると、種々の化学物質に対し、電極面にお
いて酸化還元反応を生じさせ、酸化還元物質の濃
度に比例したポーラログラフ電流を流し、この電
流を測定するものである。例えば両極間に0.56〜
0.73ボルトの電圧を印加すると、過酸化水素に感
応するポーラログラフ電極が得られる。しかし、
この印加電圧では過酸化水素以外の尿酸、アスコ
ルビン酸、還元型グルタチオン、ジチオスライト
ール等の物質に対しても過酸化水素と同様、ポー
ラログラフ電流を検出することが出来る。したが
つて、目的とする微量成分を測定しようとする場
合、ポーラログラフ的に活性な物質による測定妨
害を最小限にして測定精度を向上させるために、
過酸化水素は透過させるが、他の妨害物質は透過
させない選択透過性機能を有する膜でポーラログ
ラフ電極を被覆する必要がある。 一方、高価で不安定な酵素を繰返して使用する
ことにより経済性を向上させるために固定化酵素
膜が上記過酸化水素感応型ポーラログラフ電極と
組合せて酵素電極として用いられている。このと
き固定化酵素膜の担体としては過酸化水素に対す
る選択透過性機能とともに、製膜工程、酵素固定
化工程に耐える十分な機械的強度を兼備している
ことが重要である。 従来用いられてきたセロフアン(特開昭52−
110697号、特開昭53−140092号)、セルロースア
セテート膜(特開昭52−55691号)、多孔性有機高
分子膜(特開昭52−17889号)等は(イ)過酸化水素
選択透過性がないために、他のポーラログラフ的
な活性物質の妨害を除去することができない、(ロ)
高価である(ハ)多孔性で厚すぎるために電極への装
着時に破損したり、皺になつたりする、(ニ)強度が
低く取扱いにくい、(ホ)製膜工程が複雑である等の
欠点がある。 本発明の目的は過酸化水素感応型ポーラログラ
フ式酵素電極用過酸化水素選択透過膜として高い
過酸化水素透過性と過酸化水素選択透過性を有
し、取扱い易く、しかも十分な機械的強度を有
し、また固定化酵素用担体として適している膜を
提供することである。 本発明者等はこれらの目的の下に、種々鋭意検
討したところ、セルロースエステル系ポリマーと
ビニル系ポリマーとをブレンドとすることを見出
し、本発見に到達した。すなわち本発明はビニル
系ポリマーの混合割合がセルロースエステル系ポ
リマーに対して0.1〜10重量%である。セルロー
スエステル系ポリマーとビニル系ポリマーの混合
物からなる過酸化水素選択透過膜である。 本発明の過酸化水素選択透過膜はセルロースエ
ステル系ポリマーにビニル系ポリマーをブレンド
することにより、過酸化水素選択透過性を損なう
ことなく、製膜工程、酵素固定化工程、電極への
装着等の取扱いに十分耐える機械的強度を得るこ
とができる。さらに本発明の過酸化水素選択透過
膜は緻密層と多孔質からなる非対称構造とするこ
とができ、高い過酸化水素選択透過性機能を保持
できる。 本発明に用いるセルロースエステル系ポリマー
とは、セルロースモノアセテート、セルロースジ
アセテート、セルローストリアセテート、セルロ
ースプロピオネート、セルロースブチレート、セ
ルロースシアノエチレート、セルロースメタクリ
レート、セルロースアクリレート、ニトロセルロ
ース等の、有機酸または無機酸とセルロースとの
反応生成物である。セルロースエステル系ポリマ
ーは2種以上の混合ポリマーでも、また上記エス
テルの酸部分を2種以上同一分子中に含む混合エ
ステルポリマー等であつてもよい。 本発明に用いるビニル系ポリマーとしてはポリ
酢酸ビニル、エチレン酢酸ビニル共重合体、ポリ
ビニルシクロヘキサン、ポリスチレン、ポリメチ
ルスチレン、ポリフロロスチレン、ポリビニルメ
チルエーテル、ポリビニル−n−プロピルエーテ
ル、ポリメチルメタクリレート、ポリメチルアク
リレート、ポリ−n−プロピルメタクリレート、
ポリ−n−オクチルメタクリレートなどがある。
特にポリ酢酸ビニルまたは酢酸ビニルと他のビニ
ル系モノマーとの共重合体が好ましい。ビニル系
ポリマーの分子量は特に制限がない。 ビニル系ポリマーの混合割合はセルロースエス
テル系ポリマーに対して0.1〜10重量%、好まし
くは0.1〜5重量%である。10重量%を越えると、
過酸化水素透過性が低くなり、機械的強度もそれ
程顕著に改良されない。また0.1重量%未満であ
るとセルロースエステル系ポリマーからなる膜の
機械的強度を改良することができない。 本発明の過酸化水素選択透過膜を製造する方法
の一例としては、アセトン、酢酸メチル、メチル
エチルケトン、塩化メチレン、1,4−ジオキサ
ン、イソホロン、シクロヘキサノン、クロロホル
ム、塩化メチレン/メタノール(80/20)等、あ
るいはこれらの混合溶媒に、前記セルロースエス
テル系ポリマーとビニル系ポリマーとの混合物を
溶解してドープをつくる。次に水平に保持した平
滑で清浄なガラス板、ステンレススチール板等の
上に、コーターを用いて一定の厚さにドープを流
延する。一定時間風乾して表面の溶媒を蒸発さ
せ、緻密層を形成させた後、大過剰の水、n−ヘ
キサン等のブレンドされたポリマーに共通の非溶
媒に静かに浸漬する。数時間後、取り出して風乾
すれば緻密層と多孔質層からなる非対称構造膜が
得られる。 本発明の過酸化水素選択透過膜は高い過酸化水
素透過性と過酸化水素選択透過性を有し、しか
も、この過酸化水素透過性機能を損わずに機能的
強度が大きく改良されているために、取扱い易
く、単独でも過酸化水素感応型ポーラログラフ電
極に装着して用いることができる。また膜の構造
を緻密層と多孔質層とからなる非対称構造とする
ことにより、酵素電極用固定化酵素膜担体とし
て、大きい表面積をもつ多孔質側に効率よく酵素
を固定化することができる。 本発明の過酸化水素選択透過膜を使用した酵素
電極は微量物質を精度よく測定するためのセンサ
ーとして臨床分析、食品工業、醗酵工業等に利用
される。 以下、本発明を実施例により説明する。本発明
はこれらの実施例によつて限定されるものではな
い。 各測定項目は次の方法に従つた。 (イ) 過酸化水素透過性 ポーラログラフ電極(YSIオキシデース・プ
ローブ、2510、イエロー・スプリングス・イン
ストルメント・カンパニー)を供試したい膜で
被覆する。この電極をPH5.1の0.05Mアセテー
ト緩衝液10ml中に浸漬する。37℃で5分間、予
備加温した後、0.1mlの標準過酸化水素溶液
(0.01%)を撹拌しながら添加した。1分後、
電極で検出される定常電流を測定した。過酸化
水素透過性は膜厚1μm当り、電極に検出され
る電流値で示した。他の電極感応物質の膜透過
性もこの測定法に準じた。 (ロ) 膜の引張強度 テンシロン0型引張試験機を用いて、20℃、
RH65%、雰囲気中で測定した。ゲージ長さは
4cm、引張速度は2cm/分で測定した。 実施例 1 アセトン60部とシクロヘキサン40部からなる混
合溶媒に、セルロースアセテートまたはセルロー
スアセテートとポリ酢酸ビニルの混合ポリマー
(ポリ酢酸ビニルの混合割合が(0、1、2、5、
10、15、20重量%である)を溶解し、ポリマーの
4%ドープを調製した。 水平に保持したガラス板上にナイフコーターを
用いて厚さ100μmに流延した。数分間、空気中
に放置した後、n−ヘキサン中に浸漬して溶媒を
抽出した。風乾後、ガラス板から剥離して厚さ
7μmの白色半透膜を得た。この膜は緻密層と多
孔質層からなる非対称構造を有している。 得られた非対称構造膜の過酸化水素透過性と引
張強度を第1図に示す。図中、○印は過酸化水素
透過性を示し、〓印は引張強度を示す。第1図か
ら明らかなようにセルロースアセテートにポリ酢
酸ビニルをブレンドした膜はセルロースアセテー
ト単独の膜に比較して、過酸化水素透過性を低下
させずに、著しく引張強度が大きくなつている。 実施例 2 実施例1で得られた過酸化水素透過膜(ポリ酢
酸ビニルの混合割合が2重量%である)のポーラ
ログラフ電極感応物質(0.1g/)の透過性を
測定した。比較のため多孔性コラーゲン膜の透過
性も測定した。その結果を第1表に示す。
The present invention relates to a hydrogen peroxide selectively permeable membrane. Enzyme electrodes, which are constructed by combining a hydrogen peroxide-sensitive polarographic electrode and an oxidoreductase that produces hydrogen peroxide as a result of an enzymatic reaction, are used to measure various substances. For example, it is used to measure glucose, galactose, sucrose, uric acid, cholesterol, phospholipids, various amino acids, alcohol, etc., and is widely used in the food industry, fermentation industry, clinical testing fields, etc. In general, a polarographic electrode is composed of a platinum anode and a silver cathode, and when a certain voltage is applied to both electrodes, a redox reaction occurs on the electrode surface for various chemical substances, and a polarographic electrode is generated that is proportional to the concentration of the redox substance. A current is passed through it and this current is measured. For example, between the two extremes 0.56~
Applying a voltage of 0.73 volts results in a polarographic electrode sensitive to hydrogen peroxide. but,
With this applied voltage, polarographic currents can be detected for substances other than hydrogen peroxide, such as uric acid, ascorbic acid, reduced glutathione, and dithiothreitol, in the same way as for hydrogen peroxide. Therefore, when trying to measure a target trace component, in order to minimize measurement interference caused by polarographically active substances and improve measurement accuracy,
It is necessary to cover the polarographic electrode with a membrane having a permselective function that allows hydrogen peroxide to pass through but not other interfering substances. On the other hand, in order to improve economic efficiency by repeatedly using an expensive and unstable enzyme, an immobilized enzyme membrane is used as an enzyme electrode in combination with the hydrogen peroxide-sensitive polarographic electrode. At this time, it is important that the carrier for the immobilized enzyme membrane has not only a permselective function for hydrogen peroxide but also sufficient mechanical strength to withstand the membrane forming process and the enzyme immobilization process. Conventionally used cellophane (Unexamined Japanese Patent Publication No. 1983
110697, JP-A-53-140092), cellulose acetate membrane (JP-A-52-55691), porous organic polymer membrane (JP-A-52-17889), etc. are (a) hydrogen peroxide selective permeation. (b) cannot eliminate the interference of other polarographically active substances due to the lack of
Disadvantages include: (c) It is porous and too thick and may break or wrinkle when attached to an electrode; (d) It has low strength and is difficult to handle; (e) The film forming process is complicated. There is. The purpose of the present invention is to provide a hydrogen peroxide selectively permeable membrane for a hydrogen peroxide-sensitive polarographic enzyme electrode, which has high hydrogen peroxide permeability and hydrogen peroxide selective permeability, is easy to handle, and has sufficient mechanical strength. Another object of the present invention is to provide a membrane suitable as a carrier for immobilized enzymes. With these objectives in mind, the inventors of the present invention have conducted various intensive studies and have discovered that a cellulose ester polymer and a vinyl polymer can be blended, resulting in the present discovery. That is, in the present invention, the mixing ratio of the vinyl polymer is 0.1 to 10% by weight based on the cellulose ester polymer. This is a hydrogen peroxide selectively permeable membrane made of a mixture of cellulose ester polymer and vinyl polymer. The hydrogen peroxide selectively permeable membrane of the present invention is made by blending a vinyl polymer with a cellulose ester polymer, so that it can be easily used in the membrane forming process, enzyme immobilization process, attachment to electrodes, etc. without impairing the hydrogen peroxide selective permeability. Mechanical strength sufficient to withstand handling can be obtained. Furthermore, the hydrogen peroxide selectively permeable membrane of the present invention can have an asymmetric structure consisting of a dense layer and a porous layer, and can maintain a high hydrogen peroxide selectively permeable function. The cellulose ester polymer used in the present invention is an organic acid or It is a reaction product between an inorganic acid and cellulose. The cellulose ester polymer may be a mixed polymer of two or more types, or a mixed ester polymer containing two or more types of acid moieties of the above esters in the same molecule. Vinyl polymers used in the present invention include polyvinyl acetate, ethylene vinyl acetate copolymer, polyvinylcyclohexane, polystyrene, polymethylstyrene, polyfluorostyrene, polyvinyl methyl ether, polyvinyl-n-propyl ether, polymethyl methacrylate, and polymethyl acrylate, poly-n-propyl methacrylate,
Examples include poly-n-octyl methacrylate.
Particularly preferred are polyvinyl acetate or copolymers of vinyl acetate and other vinyl monomers. The molecular weight of the vinyl polymer is not particularly limited. The mixing ratio of the vinyl polymer is 0.1 to 10% by weight, preferably 0.1 to 5% by weight, based on the cellulose ester polymer. If it exceeds 10% by weight,
Hydrogen peroxide permeability is lower and mechanical strength is not significantly improved. Moreover, if it is less than 0.1% by weight, the mechanical strength of the membrane made of cellulose ester polymer cannot be improved. Examples of the method for manufacturing the hydrogen peroxide selectively permeable membrane of the present invention include acetone, methyl acetate, methyl ethyl ketone, methylene chloride, 1,4-dioxane, isophorone, cyclohexanone, chloroform, methylene chloride/methanol (80/20), etc. Alternatively, a dope is prepared by dissolving the mixture of the cellulose ester polymer and the vinyl polymer in a mixed solvent thereof. Next, a coater is used to cast the dope to a certain thickness onto a smooth, clean glass plate, stainless steel plate, etc. held horizontally. After air drying for a certain period of time to evaporate the solvent on the surface and form a dense layer, it is gently immersed in a large excess of water, n-hexane, or other non-solvent common to blended polymers. After several hours, the membrane is taken out and air-dried to obtain an asymmetrically structured membrane consisting of a dense layer and a porous layer. The hydrogen peroxide selectively permeable membrane of the present invention has high hydrogen peroxide permeability and hydrogen peroxide selective permeability, and has greatly improved functional strength without impairing this hydrogen peroxide permeability function. Therefore, it is easy to handle and can be used alone or attached to a hydrogen peroxide-sensitive polarographic electrode. Furthermore, by making the membrane structure asymmetrical consisting of a dense layer and a porous layer, enzymes can be efficiently immobilized on the porous side having a large surface area as an immobilized enzyme membrane carrier for an enzyme electrode. The enzyme electrode using the hydrogen peroxide selectively permeable membrane of the present invention is used as a sensor for accurately measuring trace substances in clinical analysis, food industry, fermentation industry, etc. The present invention will be explained below using examples. The present invention is not limited to these examples. Each measurement item was measured according to the following method. (a) Hydrogen peroxide permeability Cover a polarographic electrode (YSI Oxidase Probe, 2510, Yellow Springs Instrument Company) with the membrane you want to test. The electrode is immersed in 10 ml of 0.05 M acetate buffer at pH 5.1. After prewarming at 37° C. for 5 minutes, 0.1 ml of standard hydrogen peroxide solution (0.01%) was added with stirring. 1 minute later,
The steady-state current detected by the electrodes was measured. Hydrogen peroxide permeability was expressed as the current value detected by the electrode per 1 μm of film thickness. The membrane permeability of other electrode sensitive substances was also measured according to this method. (b) Tensile strength of the membrane Using a tensilon type 0 tensile tester, test at 20°C.
Measured in an atmosphere at RH65%. The measurement was performed using a gauge length of 4 cm and a tensile speed of 2 cm/min. Example 1 Cellulose acetate or a mixed polymer of cellulose acetate and polyvinyl acetate (the mixing ratio of polyvinyl acetate was (0, 1, 2, 5,
10, 15, and 20% by weight) were dissolved to prepare 4% dopes of the polymer. It was cast onto a glass plate held horizontally to a thickness of 100 μm using a knife coater. After leaving it in the air for several minutes, it was immersed in n-hexane to extract the solvent. After air drying, peel it off from the glass plate and check the thickness.
A 7 μm white semipermeable membrane was obtained. This membrane has an asymmetric structure consisting of a dense layer and a porous layer. Figure 1 shows the hydrogen peroxide permeability and tensile strength of the obtained asymmetric membrane. In the figure, the ○ mark indicates hydrogen peroxide permeability, and the 〓 mark indicates tensile strength. As is clear from FIG. 1, the membrane made of a blend of cellulose acetate and polyvinyl acetate has a significantly higher tensile strength than a membrane made of cellulose acetate alone, without reducing hydrogen peroxide permeability. Example 2 The permeability of the hydrogen peroxide permeable membrane obtained in Example 1 (the mixing ratio of polyvinyl acetate was 2% by weight) to a polarographic electrode sensitive material (0.1 g/) was measured. For comparison, the permeability of the porous collagen membrane was also measured. The results are shown in Table 1.

【表】 第1表から明らかなように、本発明の膜は過酸
化水素を選択的に透過させるが、多孔性コラーゲ
ン膜は過酸化水素、尿酸、アスコルビン酸、還元
型グルタチオンも透過させる。 実施例 3 実施例1で得られた過酸化水素透過膜の多孔質
側にグルタルアルデヒド架橋法もしくはキトサン
包括法によつて、グルコースオキシダーゼ、ウリ
カーゼを各々固定化させた。過酸化水素感応型ポ
ーラログラフ電極と上記固定化酵素膜を組合せて
酵素電極を作成した。 該酵素電極を用いて血清あるいは全血中のグル
コース、尿酸の濃度を測定した。血中に存在する
アスコルビン酸、還元型グルタチオン、その他の
電極感応物質の妨害を受けることなく、精度よく
グルコース、尿酸を測定することができた。
[Table] As is clear from Table 1, the membrane of the present invention selectively permeates hydrogen peroxide, but the porous collagen membrane also permeates hydrogen peroxide, uric acid, ascorbic acid, and reduced glutathione. Example 3 Glucose oxidase and uricase were each immobilized on the porous side of the hydrogen peroxide permeable membrane obtained in Example 1 by a glutaraldehyde crosslinking method or a chitosan entrapment method. An enzyme electrode was created by combining a hydrogen peroxide-sensitive polarographic electrode and the above immobilized enzyme membrane. The concentration of glucose and uric acid in serum or whole blood was measured using the enzyme electrode. Glucose and uric acid could be measured accurately without interference from ascorbic acid, reduced glutathione, and other electrode-sensitive substances present in the blood.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の過酸化水素透過膜の過酸化水
素透過性と引張強度を示す。
FIG. 1 shows the hydrogen peroxide permeability and tensile strength of the hydrogen peroxide permeable membrane of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 ビニル系ポリマーの混合割合がセルロースエ
ステル系ポリマーに対して0.1〜10重量%である
セルロースエステル系ポリマーとビニル系ポリマ
ーの混合物からなる過酸化水素選択透過膜。
1. A hydrogen peroxide selectively permeable membrane comprising a mixture of a cellulose ester polymer and a vinyl polymer in which the vinyl polymer is mixed in a proportion of 0.1 to 10% by weight based on the cellulose ester polymer.
JP57012412A 1982-01-27 1982-01-27 Selective membrane permeable to hydrogen peroxide Granted JPS58129245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57012412A JPS58129245A (en) 1982-01-27 1982-01-27 Selective membrane permeable to hydrogen peroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57012412A JPS58129245A (en) 1982-01-27 1982-01-27 Selective membrane permeable to hydrogen peroxide

Publications (2)

Publication Number Publication Date
JPS58129245A JPS58129245A (en) 1983-08-02
JPH0338540B2 true JPH0338540B2 (en) 1991-06-11

Family

ID=11804543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57012412A Granted JPS58129245A (en) 1982-01-27 1982-01-27 Selective membrane permeable to hydrogen peroxide

Country Status (1)

Country Link
JP (1) JPS58129245A (en)

Also Published As

Publication number Publication date
JPS58129245A (en) 1983-08-02

Similar Documents

Publication Publication Date Title
Mizutani et al. Amperometric L-lactate-sensing electrode based on a polyion complex layer containing lactate oxidase. Application to serum and milk samples
Emr et al. Use of polymer films in amperometric biosensors
US4240889A (en) Enzyme electrode provided with immobilized enzyme membrane
AU780195B2 (en) Paste, which can undergo screen printing, for producing a porous polymer membrane for a biosensor
US6214185B1 (en) Sensor with PVC cover membrane
US5766839A (en) Processes for preparing barrier layer films for use in enzyme electrodes and films made thereby
Mizutani et al. Glucose oxidase/polyion complex-bilayer membrane for elimination of electroactive interferents in amperometric glucose sensor
Dempsey et al. Electropolymerised o-phenylenediamine film as means of immobilising lactate oxidase for a L-lactate biosensor
HU177369B (en) Industrial molecule-selective sensing device and method for producing same
Koyama et al. Improved enzyme sensor for glucose with an ultrafiltration membrane and immobilized glucose oxidase
US5520788A (en) Support layer for enzyme electrode laminated membranes
EP0859954B1 (en) Biosensors comprising a membrane
JPH0328752A (en) Enzyme immobilized electrode and its production
Leca et al. Reusable ethanol sensor based on a NAD+-dependent dehydrogenase without coenzyme addition
JPH0338540B2 (en)
Mizutani et al. Use of Polydimethylsiloxane for Constructing Amperometric Glucose‐Sensing Enzyme Electrode with Low Interference Level
WO1992004438A1 (en) Electrochemical biosensor
JPS6350748A (en) Enzyme electrode system
MIZUTANI et al. Amperometric glucose sensor based on a polydimethyl siloxane/enzyme-bilayer membrane
JPH08502348A (en) Sensor device
JPS6264941A (en) Enzyme immobilized membrane for biosensor
YABUKI et al. Preparation of a glucose-sensing electrode based on glucose oxidase-attached polyion complex membrane containing microperoxidase and ferrocene
JPH085601A (en) Enzyme sensor and its production
Rumsey Investigation into the Development of Enzymatic and Non Enzymatic Membrane Modified Planar Electrodes for the Analysis of Beer and Wine
JPS59228160A (en) Amylase analyzing method