JPS6350748A - Enzyme electrode system - Google Patents

Enzyme electrode system

Info

Publication number
JPS6350748A
JPS6350748A JP61196193A JP19619386A JPS6350748A JP S6350748 A JPS6350748 A JP S6350748A JP 61196193 A JP61196193 A JP 61196193A JP 19619386 A JP19619386 A JP 19619386A JP S6350748 A JPS6350748 A JP S6350748A
Authority
JP
Japan
Prior art keywords
electrode
hydrogen peroxide
enzyme
electrolytic
immobilized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61196193A
Other languages
Japanese (ja)
Other versions
JPH0529062B2 (en
Inventor
Masahiro Izeki
正博 井関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP61196193A priority Critical patent/JPS6350748A/en
Publication of JPS6350748A publication Critical patent/JPS6350748A/en
Publication of JPH0529062B2 publication Critical patent/JPH0529062B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To enhance substrate response, by constituting an enzyme electrode system by providing a first acting electrode, a second acting electrode, an opposed electrode and a differential output detection system. CONSTITUTION:A first acting electrode is constituted by providing an immobilized polymer membrane of hydrogen peroxide generating enzyme composed of an electrolytic polymerization polymer membrane on the response part of a hydrogen peroxide electrode. The second acting electrode is constituted by providing a polymer membrane composed of the electrolytic polymerization polymer membrane having no enzyme immobilized thereon or having deactivated hydrogen peroxide generating enzyme immobilized thereon on the response part of the hydrogen peroxide electrode. Further, an opposed electrode constitutes an electrolytic system along with the first and second acting electrodes. In a differential output detection system, the output difference between the electrolytic current in the first acting electrode and that in the second acting electrode is detected and the electrolytic current substantially corresponding to a hydrogen peroxide part, that is, the concn. of a substrate intended to measure is obtained.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、酵素電極システムに関する。さらに詳しく
は、過酸化水素電極方式の酵素電極を用いてなり、試料
中の特定成分の濃度を迅速かつへ躊度で選択的に定量分
析できる酵素電櫓システムに関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application This invention relates to an enzyme electrode system. More specifically, the present invention relates to an enzyme electrolyte system that uses a hydrogen peroxide electrode type enzyme electrode and can selectively and quantitatively analyze the concentration of a specific component in a sample quickly and easily.

〈口)従来の技術 近年、酵素の有する基質特異性をうまく利用して、試料
中の特定成分の濃度を迅速かつ正確に定量する手段とし
て、酵素電極が注目を浴びている。
(Example) Prior Art In recent years, enzyme electrodes have attracted attention as a means of quickly and accurately quantifying the concentration of a specific component in a sample by making good use of the substrate specificity of enzymes.

この酵素電極の内、基質が酵素存在下で、溶存酸素を消
費し過酸化水素を生成するという反応においては、酸素
減少機を捕らえる酸素電極方式と、生成する過酸化水素
を捕らえる過酸化水素電極方式とがある。
Among these enzyme electrodes, in the reaction where the substrate consumes dissolved oxygen and produces hydrogen peroxide in the presence of the enzyme, there is an oxygen electrode method that captures the oxygen reduction mechanism, and a hydrogen peroxide electrode that captures the generated hydrogen peroxide. There is a method.

上記酸素電極方式は、酸素透過性膜を酸素電極表面に装
着しこの膜に酸素発生系を有する酵素を固定化した酵素
電極を用いるものであり、電極系と検液とを完全に分離
できる利点がある。そして、最近、酸素発生系を有する
酵素の固定化膜として電解重合法により形成される高分
子薄膜を用いる提案もなされている〔[電解合成酵素膜
の酸素透過性と分子識別機能」、電気化学協会第53回
大会講演要旨集C2o3(1986) )。
The oxygen electrode method described above uses an enzyme electrode in which an oxygen permeable membrane is attached to the surface of the oxygen electrode and an enzyme with an oxygen generating system is immobilized on this membrane, and has the advantage that the electrode system and the test solution can be completely separated. There is. Recently, a proposal has been made to use a polymer thin film formed by electrolytic polymerization as an enzyme immobilization membrane having an oxygen generating system [[Oxygen permeability and molecular identification function of electrolytic synthesis enzyme membrane], Electrochemistry Collection of Abstracts from the 53rd Conference of the Society C2o3 (1986)).

一方、過酸化水素電極方式は、電極表面に過酸化水素が
到達する必要があるため、検液が透過しうる膜を用い、
これに過酸化水素発生系を有する酵素を固定化して過酸
化水素ミル1.:被着して描成されている。従って検液
が電極表面と接触することとなり、検液中に含まれる種
々の還元性物質により妨害電流が生ずる欠点がある。こ
の点に関し、最近、この妨害電流を除く手段として、2
本の作用電極(過酸化水素電極)を用い、一方に酵素を
光重合高分子膜で固定化し、他方には酵素を固定化して
いない又は失活した酵素を固定化してなる光重合高分子
膜を被覆して、これらの作用゛電極の差動出力を検出す
る方法が提案されている〔高津一部eta1、「差動出
力型グルコースセンサー」、電気学会研究会資料(19
85年))。
On the other hand, in the hydrogen peroxide electrode method, hydrogen peroxide needs to reach the electrode surface, so a membrane that allows the test solution to pass through is used.
Hydrogen peroxide mill 1. An enzyme having a hydrogen peroxide generating system is immobilized on this to create a hydrogen peroxide mill. : Depicted as being covered. Therefore, the test solution comes into contact with the electrode surface, and there is a drawback that interference current is generated due to various reducing substances contained in the test solution. Regarding this point, recently two methods have been developed as a means of removing this interference current.
A photopolymerized polymer membrane using a working electrode (hydrogen peroxide electrode) with an enzyme immobilized on one side and an enzyme with no enzyme immobilized or an inactivated enzyme immobilized on the other side. A method has been proposed for detecting the differential output of these working electrodes by coating them [Takatsu Ichi eta 1, "Differential output type glucose sensor", Institute of Electrical Engineers of Japan Research Group Materials (19
1985)).

(ハ)発明が解決しようとする問題点 しかしながら、前記電解重合による酵素固定化膜を用い
た酸素電極方式の酵素電極の基質応答性における直線性
の限界は100+++g /dl程度までと狭く、これ
を越える基質濃度の検体の31!I定に大きな誤差を生
じ、希釈操作を予め必要とするという問題点があった。
(c) Problems to be Solved by the Invention However, the linearity limit of the substrate responsiveness of the enzyme electrode of the oxygen electrode method using the enzyme-immobilized membrane produced by electrolytic polymerization is as narrow as about 100++g/dl; 31 of the samples with substrate concentrations exceeding! There were problems in that a large error occurred in the I constant and a dilution operation was required in advance.

一方、差動出力検出方式を用いた前記過酸化水素電極方
式のFf素電極システムにおいても、良好な応答性はせ
いぜい100111(1/dl程度までであり、上記と
同様な問題点があった。
On the other hand, even in the hydrogen peroxide electrode type Ff elementary electrode system using the differential output detection method, the good response was at most about 100111 (1/dl), and there were problems similar to those described above.

この発明は、かかる従来の問題点を解消すべくなされた
ものであり、ことに基質応答性が改善された酵素電極シ
ステムを提供しようとするものである。
The present invention has been made to solve these conventional problems, and particularly to provide an enzyme electrode system with improved substrate responsiveness.

(ニ)問題点を解決するだめの手段 本発明者は、鋭意研究を行なった結果、酸素電極方式の
酵素電極において酸素透過性の酵素工程化膜の媒体とし
て用いる電解重合高分子薄膜を、前記差動出力検出−過
酸化水素電極方式の酵素電極システムにおける過酸化水
素発生酵素の固定化膜の媒体として用いることにより、
基質応答性が著しく改善される事実を見出し、この発明
に到達した。
(d) Means to Solve the Problems As a result of intensive research, the present inventor has developed the electropolymerized thin film described above, which is used as a medium for an oxygen-permeable enzyme-processed membrane in an enzyme electrode of an oxygen electrode type. Differential output detection - By using it as a medium for the immobilization membrane of the hydrogen peroxide generating enzyme in the hydrogen peroxide electrode type enzyme electrode system,
The present invention was achieved by discovering the fact that substrate responsiveness is significantly improved.

かくしてこの発明によれば、(J過酸化水素電極の感応
部上に、電解重合高分子薄膜からなる過酸化水素発生酵
素の固定化高分子膜を備えてなる第1作用電極と、+b
+過酸化水素電極の感応部上に、電解重合高分子薄膜か
らなり酵素を固定化していない又は失活した過酸化水素
発生酵素を固定化した高分子膜を備えてなる第2作用電
極と、(c)上記第1作用電極及び第2作用電極と電解
系を溝成する対極と、+d+第1作用電極による電解電
流と、第2作用電極による電解電流との出力差を検出す
る差動出力検出系を具備してなる酵素電極システムが提
供される。
Thus, according to the present invention, (a first working electrode comprising a hydrogen peroxide generating enzyme immobilized polymer film made of an electropolymerized polymer thin film on the sensitive part of a hydrogen peroxide electrode;
+ a second working electrode comprising, on the sensitive part of the hydrogen peroxide electrode, a polymer membrane made of an electropolymerized polymer thin film on which no enzyme is immobilized or an inactivated hydrogen peroxide generating enzyme is immobilized; (c) a counter electrode that forms an electrolytic system with the first and second working electrodes; +d+ a differential output that detects the output difference between the electrolytic current caused by the first working electrode and the electrolytic current caused by the second working electrode; An enzyme electrode system comprising a detection system is provided.

この発明における電解重合高分子薄膜は、過酸化水素電
極となりうる各種貴金属(白金、金等)やカーボン電極
を電解用電極として用い、これを重合用七ツマ−の電解
質溶液中に浸漬した状態で電解を行なって重合を進行さ
せることにより形成することができる。上記王台用モノ
マーとしては、水溶性でかつ水溶液中で重合しうるちの
であればよく、水酸基ヤアミノ基等の官能基を有する芳
香族系化合物が適しており例えば、アニリン、〇−フェ
ニレンジアミン、フェノール等が挙げられる。
The electropolymerized polymer thin film of this invention uses various noble metals (platinum, gold, etc.) and carbon electrodes that can be used as hydrogen peroxide electrodes as electrodes for electrolysis, and is immersed in an electrolyte solution of seven polymers for polymerization. It can be formed by performing electrolysis to advance polymerization. As the monomer for the crown, any monomer that is water-soluble and polymerizable in an aqueous solution is suitable, and aromatic compounds having functional groups such as hydroxyl and yamino groups are suitable, such as aniline, 〇-phenylenediamine, Examples include phenol.

ただし、ビロール、チオフェンのような非水溶性のモノ
マーであっても非水溶媒系電解買中で重合しうるちのも
適用可能である。なお、電解を円滑に進行させるために
適当な支持塩が添加するのが適しており、ことに非水溶
媒系で重合を行なう場合には必要である。また上記過酸
化水素電極は、棒状のものに限らず、例えば、絶縁基板
上に愚者された膜状のものであってもよい。電極の形状
の如何を問わず、均一な高分子薄膜を形成することがで
き、用途に応じた形の酵素電極を作製し用いることがで
きる点も、この発明の一つの利点である。
However, even water-insoluble monomers such as virol and thiophene, which can be polymerized in a non-aqueous electrolytic solution, are also applicable. In addition, it is suitable to add a suitable supporting salt to make the electrolysis proceed smoothly, and this is especially necessary when polymerization is carried out in a non-aqueous solvent system. Further, the hydrogen peroxide electrode is not limited to a rod-shaped electrode, but may be, for example, a film-shaped electrode placed on an insulating substrate. Another advantage of the present invention is that a uniform thin polymer film can be formed regardless of the shape of the electrode, and that an enzyme electrode of a shape depending on the application can be created and used.

この発明における第1作用電極シは、過酸化水素発生酵
素の酵素反応により生ずる過酸化水素量に対応する電解
電流を検出するための主電極である。
The first working electrode in this invention is a main electrode for detecting an electrolytic current corresponding to the amount of hydrogen peroxide generated by the enzymatic reaction of the hydrogen peroxide generating enzyme.

かかる第1作用電極は、前記した電解重合による手法に
より過酸化水素電極の感応部上に高分子薄膜を形成する
に際し、モノマーの電解質溶液中に、所定の過酸化水素
発生酵素を含有させておくことにより、簡便かつ効率的
に作製することができる。
In this first working electrode, a predetermined hydrogen peroxide generating enzyme is contained in the monomer electrolyte solution when forming a thin polymer film on the sensitive part of the hydrogen peroxide electrode by the above-mentioned electrolytic polymerization method. By doing so, it can be produced easily and efficiently.

この際の電解重合は、室温等の緩和な温度下で行なうの
が適しており、酵素の活性をできるだけ低下させないよ
うに、0℃付近で行なうのが好ましい。また電解条件は
、定電位法、電位走査法のいずれを用いてもよい。ただ
し、場合によっては、高分子薄膜を形成した後、この表
面に、例えばシッフ塩基法等の公知の固定化法で過酸化
水素発生酵素を固定化してもよい。ことに非水溶媒系電
解重合膜を用いる場合には、この方法が適している。
The electrolytic polymerization at this time is suitably carried out at a mild temperature such as room temperature, and is preferably carried out at around 0°C so as not to reduce the activity of the enzyme as much as possible. Further, as the electrolytic conditions, either a constant potential method or a potential scanning method may be used. However, in some cases, after the polymer thin film is formed, the hydrogen peroxide-generating enzyme may be immobilized on the surface thereof by a known immobilization method such as the Schiff base method. This method is particularly suitable when using a non-aqueous solvent-based electrolytically polymerized membrane.

上記固定化高分子膜の厚みは、約0.1〜0.5膚が璃
当である。厚みが薄すぎると厚み制御が困棄1でかつ感
度も低下し易く、また厚みが厚すぎると過酸化水素の電
極面への到達が阻害され易くまた、電解重合による製造
自体困難で好ましくない。
The thickness of the immobilized polymer membrane is approximately 0.1 to 0.5 mm thick. If the thickness is too thin, it is difficult to control the thickness and the sensitivity tends to decrease, and if the thickness is too thick, hydrogen peroxide is likely to be inhibited from reaching the electrode surface, and production by electrolytic polymerization itself is difficult, which is undesirable.

この発明における第2作用電極は、検液中の種々の還元
性物質による電解電流への影響を検出するための補助電
極であり、酵素反応による過酸化水素の発生を防止すべ
く、上記酵素を固定化していないか、又は失活した上記
酵素を固定化してなる電極重合高分子薄膜を過酸化水素
電極の感応部上に形成してなる。ここで失活したVf累
の固定化は、前記第1作用電極と同様な方法で電極表面
上へ固定化高分子膜を形成した後、例えば酵素が失活す
るに足りうる温度(例えば100℃程度)′c加熱する
ことにより簡便に行なうことができる。
The second working electrode in this invention is an auxiliary electrode for detecting the influence of various reducing substances in the test solution on the electrolytic current, and the second working electrode is an auxiliary electrode for detecting the influence of various reducing substances in the test solution on the electrolytic current. An electrode-polymerized thin film in which the enzyme is immobilized, either unimmobilized or inactivated, is formed on the sensitive part of the hydrogen peroxide electrode. Here, the deactivated Vf accumulation is immobilized by forming an immobilized polymer film on the electrode surface in the same manner as the first working electrode, and then at a temperature sufficient to deactivate the enzyme (e.g., 100°C). degree)'c It can be easily carried out by heating.

この発明における過酸化水素発生酵素とは、過酸化水素
を発生する反応系を有するものであり、例えば、グルコ
ースを基質とするグルコースオキシダーゼ(GOD)が
代表的であり、これ以外の酵素/基質の組合せとしては
、ウリカーゼ/尿耐、乳酸オキシダーゼ/乳酸、シュウ
酸オキシダーゼ/シュウ酸、アミノ酸オキシダーゼ/ア
ミノ酸、モノアミンオキシダーゼ/モノアミン、ピルビ
ン酸オキシダーゼ/ピルビン酸、アルコールオキシダー
ゼ/アルコール、ガラクトースオキシダーゼ/ガラクト
ース等が挙げられる。これらの酵素は、検出を意図する
物質(基質)に対応して選択される。
The hydrogen peroxide generating enzyme in this invention has a reaction system that generates hydrogen peroxide, and for example, glucose oxidase (GOD), which uses glucose as a substrate, is a typical example, and other enzymes/substrates are also used. Combinations include uricase/urinary resistance, lactate oxidase/lactic acid, oxalate oxidase/oxalic acid, amino acid oxidase/amino acids, monoamine oxidase/monoamines, pyruvate oxidase/pyruvic acid, alcohol oxidase/alcohol, galactose oxidase/galactose, etc. It will be done. These enzymes are selected depending on the substance (substrate) intended to be detected.

なお、これらの酵素は二種以上用いられていてもよい。Note that two or more types of these enzymes may be used.

ことに上記過酸化水素発生酵素の基質を産生しうる他の
種の酵素を組合せることにより、検出可能な物質の種類
を増加させることができる。
In particular, by combining enzymes from other species that can produce substrates for the above-mentioned hydrogen peroxide-generating enzymes, the types of detectable substances can be increased.

この例としては、スクロースを検出物質とするインベル
ターゼ/ムタロターゼ/GODの組合せ、マルトースを
検出物質とするグルコアミラーゼ(又はマルターゼ)/
GODの組合せ、コレステロールエステルを検出物質と
するコレステロールエステラーゼ/コレステロールオキ
シダーゼの組合せ、ホスファチジルコリンを検出物質と
するホスホリパーゼ/コリンオキシダーゼの組合せ等が
挙げられ、少なくとも最終的に過酸化水素を発生しうる
組合せであればよい。
Examples of this include the combination of invertase/mutarotase/GOD using sucrose as the detection substance, and the combination of glucoamylase (or maltase) using maltose as the detection substance.
Examples include a combination of GOD, a combination of cholesterol esterase/cholesterol oxidase using cholesterol ester as a detection substance, a combination of phospholipase/choline oxidase using phosphatidylcholine as a detection substance, and at least any combination that can ultimately generate hydrogen peroxide. Bye.

この発明の酵素電極システムによる測定は、対極と各作
用電極との間の定電位電解における電解電流に基づいて
行なわれる。ここで電解電圧は、第1作用電極及び第2
作用電極の基体である員金屈電極やカーボン電極が、過
酸化水素電極とじて動くべく、過酸化水素が還元される
電位(通常、0.6V vs Ag/Ag01以上)と
なるよう設定される。従って通常、銀−塩化銀ffrf
やカロメル電極等の参照電極を用いて電解電位をモニタ
ーし電解電位をポテンショスタット等で一定に制御した
状態で行なうのが適している。ただし、対極自体を参照
°電極として作用させることもでき、この場合にはとく
に専用の参照電極を用いる必要はない。
Measurements using the enzyme electrode system of the present invention are performed based on electrolytic current in constant potential electrolysis between the counter electrode and each working electrode. Here, the electrolytic voltage is between the first working electrode and the second working electrode.
In order for the member bending electrode or carbon electrode, which is the base of the working electrode, to move together with the hydrogen peroxide electrode, it is set to a potential at which hydrogen peroxide is reduced (usually 0.6 V vs. Ag/Ag01 or higher). . Therefore, usually silver-silver chloride ffrf
It is suitable to monitor the electrolytic potential using a reference electrode such as a calomel electrode or the like, and to control the electrolytic potential at a constant level using a potentiostat or the like. However, the counter electrode itself can also act as a reference electrode, and in this case there is no need to use a special reference electrode.

対極は、前記過酸化水素電極に適用しうる材Yゴと同じ
ものが使用できるが、第1.第2作用電極よりも面積の
広いものく通常100倍以上)を用いるのが極間抵抗を
減少させる点で好ましく、例えば、白金電極よりも表面
積が著しく大ぎな白金黒電極を用いるのが適している。
For the counter electrode, the same material as the material Y that can be used for the hydrogen peroxide electrode can be used. It is preferable to use a electrode with a surface area larger than that of the second working electrode (usually 100 times or more) in order to reduce interelectrode resistance. For example, it is suitable to use a platinum black electrode, which has a significantly larger surface area than a platinum electrode. There is.

また、第1作用電極による電解電流と、第2作用電極に
よる電解電流の出力差を検出する差動力出力検出系とし
ては、オペアンプ等を用いるのが適している。
Furthermore, it is suitable to use an operational amplifier or the like as a differential power output detection system that detects the difference in output between the electrolytic current produced by the first working electrode and the electrolytic current produced by the second working electrode.

(ホ)作 用 第1作用電極において、基質の存在下、固定化された酵
素により過酸化水素が発生し、これが電解重合高分子薄
膜を透過して過酸化水素電極表面で還元を受け、一定の
還元電流(電解電流)が流れる。一方、第2作用電極に
おいては、酵素による過酸化水素の発生は生じないが、
検体中に含まれる各種還元性物質が過酸化水素電極の表
面に達し、誤差分の電wl電流が流れる。そして差動出
力検出系において、第1作用電極における電解電流と第
2作用電極における電解電流との出力差が検出され、実
質的に発生過酸化水素弁、ひいては測定を意図する基5
1の濃度に対応する電解電流が得られることとなる。
(e) Action At the first working electrode, hydrogen peroxide is generated by the immobilized enzyme in the presence of a substrate, and this permeates through the electropolymerized polymer thin film and undergoes reduction on the surface of the hydrogen peroxide electrode. A reduction current (electrolytic current) flows. On the other hand, at the second working electrode, hydrogen peroxide is not generated by the enzyme;
Various reducing substances contained in the sample reach the surface of the hydrogen peroxide electrode, and a current corresponding to the error flows. Then, in a differential output detection system, the output difference between the electrolytic current at the first working electrode and the electrolytic current at the second working electrode is detected, which substantially affects the generated hydrogen peroxide valve and thus the group intended to be measured.
An electrolytic current corresponding to the concentration of 1 is obtained.

(へン実施例 第1図は、この発明の酵素電極システムにおける各電極
構成の一例を示すものであり、Aは模式図、Bは底面図
である。かかる各電極は以下のようにして構成した。
(Embodiment Figure 1 shows an example of the configuration of each electrode in the enzyme electrode system of the present invention, where A is a schematic diagram and B is a bottom view. Each of the electrodes is configured as follows. did.

まず、円筒状の絶縁基板1(塩化ビニル樹脂製)先端に
、過酸化水素電極となる直径0.5mmの白金線からな
る測定極2及び3並びに参照゛1七極5(Ag/AgC
l電極)を埋込んで各感応部が露出するよう装着し、さ
らに先端部外周に白金製の対極4を装着した電極系を構
成した。この電極系を、モノマーである0、1Mアニリ
ン、及び2ma、、、−’mlグル]−ルールシダーゼ
(GOD)を含む水溶液(PH7,0)に浸漬させ、ま
ず測定極2と対極4間での室温下約5分間の定電位電解
重合(1,2VVSΔg/△gcl)により、測定極2
の先端露出面にポリアニリン−〇〇D固定化(包括)高
分子簿膜を形成した。次にこの先端を100℃の水溶液
に5分間浸漬し、高分子1gI中のGODを失活させる
ことにより、第2作用電極を作製した。次いで測定極3
と対極4間での電解重合により上記と同様にして測定極
3の先端露出面にポリアニリン−〇〇D固定化(包括)
高分子FnWAを形成して第1作用電極を設定した。図
中、6aは失活したGODを固定化した高分子薄膜、6
b1.tGODを固定化した高分子′aIIlを各々示
し、厚みは各々約0.3−であった。
First, at the tip of a cylindrical insulating substrate 1 (made of vinyl chloride resin), measurement electrodes 2 and 3 made of platinum wires with a diameter of 0.5 mm and reference 1 heptode 5 (Ag/AgC
An electrode system was constructed in which a counter electrode 4 made of platinum was attached to the outer periphery of the tip, and a counter electrode 4 made of platinum was attached to the outer periphery of the tip. This electrode system was immersed in an aqueous solution (PH 7, 0) containing the monomers 0, 1 M aniline, and 2 ma, -' ml glu]-rulesidase (GOD). Measuring electrode 2
A polyaniline-〇〇D immobilized (encompassing) polymer film was formed on the exposed surface of the tip. Next, this tip was immersed in an aqueous solution at 100°C for 5 minutes to deactivate GOD in 1 gI of the polymer, thereby producing a second working electrode. Next, measurement electrode 3
Polyaniline-〇〇D is immobilized (inclusive) on the exposed tip end surface of the measurement electrode 3 in the same manner as above by electrolytic polymerization between the electrode 4 and the counter electrode 4.
A first working electrode was set up by forming polymeric FnWA. In the figure, 6a is a polymer thin film immobilized with deactivated GOD;
b1. Each of them showed a polymer 'aIIl with tGOD immobilized thereon, and each had a thickness of about 0.3-.

この電極構成体を用いたこの発明の酵素電極システム(
グルコース濃度検出装置)の溝成図を第3図に示し、か
つ回路図を第4図に示した。
The enzyme electrode system of this invention using this electrode structure (
A circuit diagram of the glucose concentration detection device (glucose concentration detection device) is shown in FIG. 3, and a circuit diagram is shown in FIG.

上記酵素電極システムを用いて、グルコース濃度に対す
る応答電流の変化を測定した結果を第5図に示した。な
お、検液は、PH7,0,37℃かつ無撹拌の条件下で
行ない、電解電位は+〇、7V VSAg/AgC1に
設定して行なった。
FIG. 5 shows the results of measuring changes in response current to glucose concentration using the enzyme electrode system described above. The test solution was prepared at pH 7, 0, 37° C. and without stirring, and the electrolytic potential was set at +0, 7V VSAg/AgC1.

このように、グルコース濃度的500ma/ diまで
直線性が良好な検量線が得られ、せいぜい1001g/
dl程度が直線性の限界であった従来の酵素°電極法に
比して応答性が著しく改善されていることが判明した。
In this way, a calibration curve with good linearity was obtained up to 500 ma/di in terms of glucose concentration, and at most 1001 g/di.
It was found that the response was significantly improved compared to the conventional enzyme electrode method, in which the linearity limit was approximately dl.

また、同様な酵素電極システムを繰返し作製して応答性
を調べたところ、再現性も良好であり、電解重合法によ
り酵素固定化が再現性良く行なえることも判明した。
Furthermore, when a similar enzyme electrode system was repeatedly produced and the responsiveness was examined, it was found that the reproducibility was good, and it was also found that enzyme immobilization can be performed with good reproducibility by the electrolytic polymerization method.

また、妨害物質としてアスコルビン酸を含有する検液並
びに尿酸を含有する検液を用いて測定を行なったところ
、これらの酸化電流が第2作用電極及び相殺回路により
相殺され、実質的にグルコースのみに応答することも判
明した。
Furthermore, when measurements were performed using a test solution containing ascorbic acid and a test solution containing uric acid as interfering substances, these oxidation currents were canceled out by the second working electrode and the cancellation circuit, and the oxidation current was substantially reduced to only glucose. It was also found that it responded.

また、もう一つの実施例として、第1図における参照電
極を、対極が兼ね、一つの白金電極とした場合の模式図
を、第2図に示す。この電極系の場合も、同様な測定が
可能であるが、対極である白金電極を白金黒電極にした
方が、より安定な測定が可能であった。
Further, as another example, FIG. 2 shows a schematic diagram in which one platinum electrode is used as the reference electrode in FIG. 1 and also serves as the counter electrode. Similar measurements were possible with this electrode system, but more stable measurements were possible when the counter electrode, the platinum electrode, was replaced with a platinum black electrode.

(ト)発明の効果 この発明の酵素電極システムによれば、以下のごとき効
果を得ることができる。
(G) Effects of the Invention According to the enzyme electrode system of the present invention, the following effects can be obtained.

■ 従来の酸素電極方式や過酸化水素電極方式に比して
、基質応答性を著しく向上することができる。
■ Substrate responsiveness can be significantly improved compared to conventional oxygen electrode methods and hydrogen peroxide electrode methods.

■ 過酸化水素電極方式であるため、酵素電極方式のよ
うに、検液を最初にa素で飽和させる等の煩雑さがない
- Since it uses a hydrogen peroxide electrode method, there is no need to first saturate the test solution with a element, which is required in the enzyme electrode method.

■ 電解電流の差動出力を検出しているため、妨害物質
の影響を受けず、測定の正確度が高い。
■ Because it detects the differential output of electrolytic current, it is not affected by interfering substances and has high measurement accuracy.

■ 酵素の固定化膜が、電解重合により行なわれている
ため、極めて薄くかつ■現性の良く作製することができ
、膜厚調整も容易であり、しかも電極の大きさや形状等
に左右されず任意の電極に酵素固定化することができ、
酵素電極やそのシステムの設計の自由度、ことに微小化
における自由度が著しく向上する。
■ Because the enzyme immobilization membrane is produced by electrolytic polymerization, it can be produced extremely thin and with good developability, and the membrane thickness can be easily adjusted, and it is not affected by the size or shape of the electrode. Enzyme can be immobilized on any electrode,
The degree of freedom in designing enzyme electrodes and their systems, especially in miniaturization, will be significantly improved.

■ 電解重合膜による固定化のため、高分子膜厚が伯の
重合膜に比して薄膜化されており、測定感度も優れてい
る。
■ Because it is immobilized using an electrolytic polymer membrane, the polymer membrane thickness is thinner than that of Haku's polymer membrane, and the measurement sensitivity is also excellent.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の酵素電極システムにおける各電橋
構成の一例を示すもので第1図△は断面模式図、第1図
Bはその底面図である。第2図は、同じく他の例を示す
ものであり、第2図Aは断面模式図、第2図Bはその底
面図である。第3図はこの発明の酵素電極システムを例
示する構成説明図であり、第4図はその対応回路図であ
る。第5図はこの発明の酵素電極システムによる基質濃
度と応答電流との関係を例示するグラフ図である。 1・・・・・・絶縁基板、  2,3・・・・・・測定
極、4・・・・・・対極、     5・・・・・・参
照電極、5a、5b・・・・・・高分子薄膜。
FIG. 1 shows an example of the configuration of each electric bridge in the enzyme electrode system of the present invention, where Δ in FIG. 1 is a schematic cross-sectional view and FIG. 1B is a bottom view thereof. FIG. 2 similarly shows another example, in which FIG. 2A is a schematic cross-sectional view and FIG. 2B is a bottom view thereof. FIG. 3 is a configuration explanatory diagram illustrating the enzyme electrode system of the present invention, and FIG. 4 is a corresponding circuit diagram. FIG. 5 is a graph diagram illustrating the relationship between substrate concentration and response current according to the enzyme electrode system of the present invention. 1... Insulated substrate, 2, 3... Measurement electrode, 4... Counter electrode, 5... Reference electrode, 5a, 5b... Polymer thin film.

Claims (1)

【特許請求の範囲】 1、(a)過酸化水素電極の感応部上に、電解重合高分
子薄膜からなる過酸化水素発生酵素の固定化高分子膜を
備えてなる第1作用電極と、 (b)過酸化水素電極の感応部上に、電解重合高分子薄
膜からなり酵素を固定化していない又は失活した過酸化
水素発生酵素を固定化した高分子膜を備えてなる第2作
用電極と、 (c)上記第1作用電極及び第2作用電極と電解系を構
成する対極と、 (d)第1作用電極による電解電流と、第2作用電極に
よる電解電流との出力差を検出する差動出力検出系、 を具備してなる酵素電極システム。
[Scope of Claims] 1. (a) A first working electrode comprising a hydrogen peroxide generating enzyme immobilized polymer film made of an electropolymerized polymer thin film on the sensitive part of the hydrogen peroxide electrode; b) a second working electrode comprising, on the sensitive part of the hydrogen peroxide electrode, a polymer membrane made of an electropolymerized polymer thin film on which no enzyme is immobilized or on which an inactivated hydrogen peroxide generating enzyme is immobilized; (c) a counter electrode that constitutes an electrolytic system with the first working electrode and the second working electrode; (d) a difference for detecting the output difference between the electrolytic current by the first working electrode and the electrolytic current by the second working electrode; An enzyme electrode system comprising a dynamic force detection system.
JP61196193A 1986-08-20 1986-08-20 Enzyme electrode system Granted JPS6350748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61196193A JPS6350748A (en) 1986-08-20 1986-08-20 Enzyme electrode system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61196193A JPS6350748A (en) 1986-08-20 1986-08-20 Enzyme electrode system

Publications (2)

Publication Number Publication Date
JPS6350748A true JPS6350748A (en) 1988-03-03
JPH0529062B2 JPH0529062B2 (en) 1993-04-28

Family

ID=16353740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61196193A Granted JPS6350748A (en) 1986-08-20 1986-08-20 Enzyme electrode system

Country Status (1)

Country Link
JP (1) JPS6350748A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6428555A (en) * 1987-07-24 1989-01-31 Terumo Corp Enzyme sensor
JPS6432160A (en) * 1987-07-29 1989-02-02 Terumo Corp Enzyme sensor and production thereof
US5683562A (en) * 1994-09-14 1997-11-04 Avl Medical Instruments Ag Planar sensor for determining a chemical parameter of a sample
JP2008256725A (en) * 2001-05-31 2008-10-23 Instrumentation Lab Co Analytical instruments and biosensors, and methods for increasing their accuracy and effective life
JP2011242385A (en) * 2010-04-22 2011-12-01 Arkray Inc Biosensor
JP2012237655A (en) * 2011-05-12 2012-12-06 Hioki Ee Corp Minor component detection device and minor component detection method
WO2014002999A1 (en) 2012-06-25 2014-01-03 合同会社バイオエンジニアリング研究所 Enzyme electrode
WO2021227542A1 (en) * 2020-05-12 2021-11-18 山东省科学院生物研究所 Immobilized enzyme electrode, and immobilized enzyme sensor and enzyme membrane anti-interference detection method therefor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6428555A (en) * 1987-07-24 1989-01-31 Terumo Corp Enzyme sensor
JPS6432160A (en) * 1987-07-29 1989-02-02 Terumo Corp Enzyme sensor and production thereof
JPH0583149B2 (en) * 1987-07-29 1993-11-24 Terumo Corp
US5683562A (en) * 1994-09-14 1997-11-04 Avl Medical Instruments Ag Planar sensor for determining a chemical parameter of a sample
JP2008256725A (en) * 2001-05-31 2008-10-23 Instrumentation Lab Co Analytical instruments and biosensors, and methods for increasing their accuracy and effective life
JP2011242385A (en) * 2010-04-22 2011-12-01 Arkray Inc Biosensor
JP2012237655A (en) * 2011-05-12 2012-12-06 Hioki Ee Corp Minor component detection device and minor component detection method
WO2014002999A1 (en) 2012-06-25 2014-01-03 合同会社バイオエンジニアリング研究所 Enzyme electrode
WO2021227542A1 (en) * 2020-05-12 2021-11-18 山东省科学院生物研究所 Immobilized enzyme electrode, and immobilized enzyme sensor and enzyme membrane anti-interference detection method therefor

Also Published As

Publication number Publication date
JPH0529062B2 (en) 1993-04-28

Similar Documents

Publication Publication Date Title
Scheller et al. Second generation biosensors
Urban et al. Miniaturized thin-film biosensors using covalently immobilized glucose oxidase
Shinohara et al. Enzyme microsensor for glucose with an electrochemically synthesized enzyme-polyaniline film
Emr et al. Use of polymer films in amperometric biosensors
Ghica et al. Development of novel glucose and pyruvate biosensors at poly (neutral red) modified carbon film electrodes. Application to natural samples
Thevenot et al. Enzyme collagen membrane for electrochemical determination of glucose
Wang Selectivity coefficients for amperometric sensors
Xu et al. Amperometric glucose sensor based on glucose oxidase immobilized in electrochemically generated poly (ethacridine)
Gobi et al. Layer-by-layer construction of an active multilayer enzyme electrode applicable for direct amperometric determination of cholesterol
EP1399733A1 (en) Electrochemical detection of analytes
Dempsey et al. Electropolymerised o-phenylenediamine film as means of immobilising lactate oxidase for a L-lactate biosensor
Mignani et al. Electrodeposited glucose oxidase/anionic clay for glucose biosensors design
Mulchandani et al. Ferrocene-Conjugatedm-Phenylenediamine Conducting Polymer-Incorporated Peroxidase Biosensors
Sprules et al. Development of a disposable amperometric sensor for reduced nicotinamide adenine dinucleotide based on a chemically modified screen-printed carbon electrode
Wang et al. Chitosan/Prussian blue-based biosensors
US20050164328A1 (en) Substrate determining method
Iwuoha et al. Amperometric l‐lactate biosensors: 1. Lactic acid sensing electrode containing lactate oxidase in a composite poly‐l‐lysine matrix
Xu et al. Glucose biosensors prepared by electropolymerization of p-chlorophenylamine with and without Nafion
US20100261072A1 (en) Enzyme electrode
Jiang et al. Amperometric ethanol biosensor based on integration of alcohol dehydrogenase with Meldola's blue/ordered mesoporous carbon electrode
JPS6350748A (en) Enzyme electrode system
Cooper et al. Biomolecular sensors for neurotransmitter determination: electrochemical immobilization of glutamate oxidase at microelectrodes in a poly (o-phenylenediamine) film
Arai et al. Pyruvate sensor based on pyruvate oxidase immobilized in a poly (mercapto-p-benzoquinone) film
Yabuki et al. Glucose‐Sensing Electrode Based on Glucose Oxidase‐Attached Polyion Complex Membrane Containing Peroxidaseand Ferrocene
Uchiyama et al. Immobilization of uricase to gas diffusion carbon felt by electropolymerization of aniline and its application as an enzyme reactor for uric acid sensor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees