JPH0338532A - Production of dimethylnaphthalene rich in 2,6-isomer - Google Patents

Production of dimethylnaphthalene rich in 2,6-isomer

Info

Publication number
JPH0338532A
JPH0338532A JP17199189A JP17199189A JPH0338532A JP H0338532 A JPH0338532 A JP H0338532A JP 17199189 A JP17199189 A JP 17199189A JP 17199189 A JP17199189 A JP 17199189A JP H0338532 A JPH0338532 A JP H0338532A
Authority
JP
Japan
Prior art keywords
dimethylnaphthalene
fraction
isomer
dimethylnaphthalenes
rich
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17199189A
Other languages
Japanese (ja)
Inventor
Fumio Maruyama
文夫 丸山
Shiro Aizawa
相澤 史朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP17199189A priority Critical patent/JPH0338532A/en
Publication of JPH0338532A publication Critical patent/JPH0338532A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To inexpensively obtain the high-quality subject compound for polyester raw material, etc., by separating and recovering dimethylnaphthalene rich in 2,6-isomer from a fraction containing dimethylnaphthalenes and then subjecting the residue to reforming reaction. CONSTITUTION:Dimehtylnaphthalenes rich in 2,6-isomer are separated and recovered from a fraction containing dimethylnaphthalenes and residue after the separation and recovery is subjected to reforming reaction using a catalytic reforming method which is a general method for obtaining a gasoline of high octane value from a naphtha fraction to provide the objective compound. the reaction is carried out using a catalyst in which platinum or platinum and rhenium, germanium, tin, etc.,, are carried on an alumina support at 400-550 deg.C and 1-50kg/cm<2> in 0.1-3h<-1> liquid space velocity and 0.5-20 hydrogen/oil molar ratio. Furthermore, the above-mentioned fraction preferably contains mixture of each dimethylnaphthalene isomer and preferably contains >=70wt.% dimethylnaphthalenes.

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野) 本発明は、ジメチルナフタレン類を含む留分から2,6
一体に富むジメチルナフタレンを製造する方法に関する
。 〔従来の技術〕 ジメチルナフタレン類のうち、2,6−1及び2.7−
ジメチルナフタレンは、酸化することにより2,6−1
及び2,7−ナフタレンジカルボン酸となり、ポリエチ
レンナフタレート等のポリエステルの原料とされる。こ
のポリエステルは、優れた特性を有する合成繊維、フィ
ルム等に成形することができるが、2,6−1及び2,
7−ジメチルナフタレンの安価な工業的な製造方法は未
だ確立されていない。 本発明者は、かかる現状に鑑み、鋭意研究を進めた結果
、灯油留分を改質反応させて得られた生成油中に、ジメ
チルナフタレン類がかなりの置きまれ、この中から、2
,6−ジメチルナフタレンを分離回収することにより、
窒素及び硫黄化合物をほとんど含まない高品質のジメチ
ルナフタレン類を回収できることを見い出し、ジメチル
ナフタレン類の製造方法として提案した(特願昭63−
236331号)。 〔発明が解決しようとする課題] 本発明者は、これについてさらに研究を進めた結果、ジ
メチルナフタレン類から2,6−ジメチルナフタレンを
回収し、この残油を再度改質反応に供したところ、驚く
べきことに、他の異性体のジメチルナフタレンが異性化
反応を起こし、2,6−ジメチルナフタレンが生成して
いることを見い出した。 本発明は、かかる知見に基づきなされたもので、本発明
の目的は、ジメチルナフタレン類を含む留分から2,6
−ジスチルナフタレンを効率良く製造する方法を提供す
ることにある。 〔課題を解決するための手段〕 本発明は、ジメチルナフタレン類を含む留分から2,6
一体に富むジスチルナフタレンを分離回収し、分離回収
後の残液を改質反応に供することから構成されるもので
ある。 本発明にいうジメチルナフタレン類を含む留分とは、ジ
メチルナフタレンの各種異性体の混合物を含む留分で、
255〜270℃の沸点範囲にあり、ジメチルナフタレ
ン類を70重量%以上含む留分が、好ましい。 この留分は、石炭タール、或は流動接触分解プロセスの
サイクル油を蒸留分離して得られた留分を用いることが
できる(特開昭60−69042号公報参照)aしかし
、これらの留分中には、2,6一体に富むジメチルナフ
タレンを吸着分離する際のゼオライトや改質反応の際の
触媒の寿命を著しく短くする窒素化合物や硫黄化合物が
高濃度で含まれている。従って、これらを用いる場合は
、これらの処理の前に、この窒素及び硫黄化合物の低減
処理を行う必要がある。 また、ナフサ留分を改質反応させたリホーメートの重質
留分にも、ジメチルナフタレン類が含まれており、この
リホーメートを蒸留分離して得た留分も用いることがで
きる。この留分は、窒素化合物や硫黄化合物の含有量が
少なく、好ましい。さらに、灯油留分を改質反応させた
改質油中にジメチルナフタレン類が多く含まれており、
これを用いると、上記ナフサから得られた留分より、効
率良く、ジメチルナフタレン類を回収することができ、
また、窒素化合物や硫黄化合物の含有量が少なく、特に
好ましい。
[Industrial Application Field] The present invention is directed to extracting 2,6
The present invention relates to a method for producing monolithically enriched dimethylnaphthalene. [Prior art] Among dimethylnaphthalenes, 2,6-1 and 2,7-
Dimethylnaphthalene can be oxidized to 2,6-1
and 2,7-naphthalene dicarboxylic acid, which is used as a raw material for polyesters such as polyethylene naphthalate. This polyester can be formed into synthetic fibers, films, etc. with excellent properties, but 2,6-1 and 2,
An inexpensive industrial production method for 7-dimethylnaphthalene has not yet been established. In view of the current situation, the present inventor conducted intensive research and found that a considerable amount of dimethylnaphthalenes were present in the product oil obtained by reforming kerosene fractions.
By separating and recovering ,6-dimethylnaphthalene,
We discovered that high-quality dimethylnaphthalenes containing almost no nitrogen and sulfur compounds could be recovered, and proposed a method for producing dimethylnaphthalenes (patent application 1983-
No. 236331). [Problems to be Solved by the Invention] As a result of further research on this subject, the present inventor recovered 2,6-dimethylnaphthalene from dimethylnaphthalenes, and subjected this residual oil to a reforming reaction again. Surprisingly, it was discovered that another isomer of dimethylnaphthalene undergoes an isomerization reaction to produce 2,6-dimethylnaphthalene. The present invention was made based on this knowledge, and an object of the present invention is to extract 2,6
- To provide a method for efficiently producing distylnaphthalene. [Means for Solving the Problems] The present invention provides a method for extracting 2,6
This method consists of separating and recovering distylnaphthalene, which is enriched in monomers, and subjecting the residual liquid after separation and recovery to a reforming reaction. The fraction containing dimethylnaphthalenes referred to in the present invention is a fraction containing a mixture of various isomers of dimethylnaphthalene,
A fraction having a boiling point range of 255 to 270°C and containing 70% by weight or more of dimethylnaphthalenes is preferred. As this fraction, coal tar or a fraction obtained by distilling cycle oil of a fluid catalytic cracking process can be used (see Japanese Patent Application Laid-Open No. 60-69042). It contains a high concentration of nitrogen and sulfur compounds that significantly shorten the life of zeolite used to adsorb and separate dimethylnaphthalene rich in 2,6 monomers, and of catalysts used in reforming reactions. Therefore, when using these, it is necessary to perform a reduction treatment for nitrogen and sulfur compounds before these treatments. Furthermore, the heavy fraction of reformate obtained by subjecting the naphtha fraction to a reforming reaction also contains dimethylnaphthalenes, and the fraction obtained by distilling and separating this reformate can also be used. This fraction is preferable because it has a low content of nitrogen compounds and sulfur compounds. Furthermore, the reformed oil obtained by reforming kerosene fraction contains a large amount of dimethylnaphthalenes.
By using this, dimethylnaphthalenes can be efficiently recovered from the fraction obtained from the naphtha,
Moreover, the content of nitrogen compounds and sulfur compounds is small, which is particularly preferable.

【実施例】【Example】

次に、本発明の好ましい実施態様の一つである、灯油留
分を出発原料として、これを改質反応を行い、この改質
油から2,6一体に富むジメチルナフタレンを製造する
方法について、より具体的に述べる。 この場合の灯油留分としては、蒸留分離操作により15
0〜300℃の温度範囲で留出する留分を用いることが
でき、原油を常圧蒸留して得られた直留の灯油留分の他
、石油の各留分、残渣等の熱分解、接触台・解、水素化
分解、アルキレーション、その他の精製処理等により得
られた前記沸°点範囲の留分等も用いることができるこ
とはいうまでもない。この灯油留分は、好ましくは、硫
黄分及び窒素分が、50ppm以下としたものが良く、
これは、一般に採用されている水添脱硫処理方法で、通
常の脱硫条件、例えば、アルミナあるいはシリカ−アル
ミナ等の担体に、コバルト、ニッケル、モリブデン、タ
ングステン等の1種以上を担持した触媒を用い、250
〜430℃の温度、lO〜200kg/aIIの圧力、
液空間速度(LH8V)0.1〜15 h −’水素循
環量50〜140ONポ/−の条件下で脱硫した脱硫部
を用いることが好ましい。尚、この灯油留分は、上記の
他、上記灯油留分からノルマルパラフィンを回収したラ
フィネートを用いても良く、この場合は、改質反応条件
をマイルドにしても、ジメチルナフタレン類の生成量を
多くすることができる。このノルマルパラフィンの除去
は、ゼオライトを用いた吸着分離方法や尿素アダクトに
よる分離方法を用いて行なうことができる。このラフィ
ネートは、ノルマルパラフィンを50〜95%程度の回
収率で回収除去したもので充分である。 さらに、この灯油留分の改質反応は、一般にナフサ留分
等から高オクタン価ガソリンを製造する方法として広く
用いられている接触改質法を採用することができる。こ
の場合、例えば、アルミナを担体として白金、または白
金に加えてレニウム、ゲルマニウム、すす、イリジウム
、ルテニウム等を担持した触媒を用い、400〜550
℃の温度、1〜50kg/cotの圧力、液空間速度(
LH8V)0.1〜3h−1、水素/油モル比0.5〜
20の条件下に行うことができる。 また、他の改質反応の方法としては、ゼオライト若しく
は結晶性アルミノシリケート、シリカ、アルミナ、ジル
コニア、チタニア、クロミア。 固体リン酸、またはインジウム、ランタン、マンガン、
セリウム若しくはスズ等の酸化物、或いは、これらの2
種以上の混合物を含む酸性耐火物、またはこれらに、白
金、パラジウム、レニウム等の金属類を含有させるかあ
るいは担持させた触媒等を用いて、250〜700℃の
温度、1〜100kg/−の圧力、0.1〜20h−’
(7)LH3V、水素/油モ/L/比0.5〜20の条
件下に行なわせることもできる。この改質反応はりアク
タ一部が固定床の反応装置を用いてもよいが、触媒連続
再生法を付加した移動床からなる反応装置を用いること
が、効率上好ましい。 このようにして得られる灯油留分の改質油から蒸留、溶
剤抽出、通常の晶析法或は圧力晶析法〔化学工学、51
. (6)、428〜433 (1987))等により
ジメチルナフタレン類を高濃度に含む留分を回収する。 回収は、蒸留による方法が経済的で好ましく、255〜
270℃の留分を採取することにより、ジメチルナフタ
レン類を高濃度含有した留分を得ることができる。 このジメチルナフタレン類を含む留分からゼオライト等
による吸着分離法、晶析法、錯化合物形成による分離法
等の公知の手段を用いることにより、2,6一体に富む
ジメチルナフタレンを分離回収する。 次に、この回収残液を、改質反応に供する。 この場合の改質反応は、前述した触媒及び条件がそのま
ま適用できる。特には、この残液を、先の改質反応の原
料として供給されている灯油留分に混合して、改質反応
に供するようにすることが、装置の運転操作上簡便で好
ましい。 次に、本発明の効果を明確にするために、実験例を示す
。 (実験例) 灯油留分を水添脱硫した第1表として示した性状を有す
る脱硫灯油留分を原料とし、アルミナ担体に白金を0.
2重量%担持した接触改質触媒を用いて、圧力を25k
g/cd、温度を490℃、LH3Vを0,8h’、水
素/油ヲモ/L、比t’6ノ条件下で、改質反応させた
。この改質油を常圧蒸留し、255〜265℃の留分を
採取した結果、第2表に示す組成のジメチルナフタレン
混合物が得られた。これを、1℃の温度に冷却して、2
,6一体に富むジメチルナフタレンを晶析分離させた。 この分離後の晶析物及び残液の組成をそれぞれ第3表に
示した。 次のこの残液を、上記と同じ触媒を用いて、圧力を25
kg/吊、LH3Vをo、sh−’、水素/油をモル比
で6の条件下、第4表に示した温度で改質反応した結果
、第4表に示す組成のジメチルナフタレン混合物が得ら
れた。 これらの結果から明らかなように、2,6一体に富むジ
メチルナフタレンを回収した残油を改質反応させること
により、2,6一体に富むジメチルナフタレンを得るこ
とができる。 〔発明の効果〕 本発明は、2,6一体に富むジメチルナフタレンを分離
回収後の残液を改質反応に供するようにしたため、極め
て効率良く2,6−ジメチルナフタレンを製造できると
いう格別の効果を有する。
Next, regarding one of the preferred embodiments of the present invention, a method for producing 2,6-enriched dimethylnaphthalene from this reformed oil by using a kerosene fraction as a starting material and carrying out a reforming reaction. Let me be more specific. In this case, the kerosene fraction is 15% by distillation separation operation.
Fractions distilled in a temperature range of 0 to 300°C can be used, and in addition to straight-run kerosene fractions obtained by atmospheric distillation of crude oil, various petroleum fractions, thermal decomposition of residues, etc. It goes without saying that fractions having the above-mentioned boiling point range obtained by contact table decomposition, hydrogenolysis, alkylation, other purification treatments, etc. can also be used. This kerosene fraction preferably has a sulfur content and a nitrogen content of 50 ppm or less,
This is a commonly used hydrodesulfurization treatment method that uses a catalyst supporting one or more of cobalt, nickel, molybdenum, tungsten, etc. on a support such as alumina or silica-alumina under normal desulfurization conditions. , 250
Temperature of ~430°C, pressure of lO ~200 kg/aII,
It is preferable to use a desulfurization section that is desulfurized under the conditions of a liquid hourly space velocity (LH8V) of 0.1 to 15 h and a hydrogen circulation rate of 50 to 140 ON/-. In addition to the above, the kerosene fraction may also be a raffinate obtained by recovering normal paraffins from the kerosene fraction. In this case, even if the reforming reaction conditions are mild, the amount of dimethylnaphthalenes produced is large. can do. This normal paraffin can be removed using an adsorption separation method using zeolite or a separation method using a urea adduct. It is sufficient that this raffinate is one in which normal paraffin is collected and removed at a recovery rate of about 50 to 95%. Further, for the reforming reaction of this kerosene fraction, a catalytic reforming method which is generally widely used as a method for producing high octane gasoline from naphtha fraction etc. can be adopted. In this case, for example, platinum is supported on alumina, or a catalyst in which rhenium, germanium, soot, iridium, ruthenium, etc. is supported in addition to platinum is used.
temperature of °C, pressure of 1 to 50 kg/cot, liquid hourly space velocity (
LH8V) 0.1~3h-1, hydrogen/oil molar ratio 0.5~
It can be carried out under 20 conditions. In addition, other modification reaction methods include zeolite or crystalline aluminosilicate, silica, alumina, zirconia, titania, and chromia. solid phosphoric acid, or indium, lanthanum, manganese,
Oxides such as cerium or tin, or two of these
Using an acidic refractory containing a mixture of more than one species, or a catalyst containing or supporting metals such as platinum, palladium, rhenium, etc., at a temperature of 250 to 700°C, 1 to 100 kg/- Pressure, 0.1~20h-'
(7) It can also be carried out under the conditions of LH3V and hydrogen/oil/L/ratio of 0.5 to 20. Although a reactor in which part of the reforming reaction actor is a fixed bed may be used, it is preferable in terms of efficiency to use a reactor comprising a moving bed to which a continuous catalyst regeneration method is added. Distillation, solvent extraction, ordinary crystallization method or pressure crystallization method from the reformed oil of the kerosene fraction obtained in this way [Chemical Engineering, 51
.. (6), 428-433 (1987)), etc., a fraction containing a high concentration of dimethylnaphthalenes is recovered. Recovery is preferably performed by distillation as it is economical.
By collecting the fraction at 270°C, a fraction containing a high concentration of dimethylnaphthalenes can be obtained. From this fraction containing dimethylnaphthalenes, dimethylnaphthalene rich in 2,6 monomers is separated and recovered using known means such as adsorption separation using zeolite, crystallization, and separation by complex compound formation. Next, this recovered residual liquid is subjected to a reforming reaction. For the reforming reaction in this case, the catalyst and conditions described above can be applied as they are. In particular, it is preferable to mix this residual liquid with the kerosene fraction supplied as a raw material for the previous reforming reaction and use it for the reforming reaction, since this is convenient in terms of operation of the apparatus. Next, an experimental example will be shown in order to clarify the effects of the present invention. (Experiment example) A desulfurized kerosene fraction having the properties shown in Table 1 obtained by hydrodesulfurizing a kerosene fraction was used as a raw material, and 0.0% platinum was added to an alumina carrier.
Using a catalytic reforming catalyst supported at 2% by weight, the pressure was increased to 25k.
The reforming reaction was carried out under the following conditions: g/cd, temperature of 490° C., LH3V of 0.8 h', hydrogen/oil volume/L, and ratio of t'6. This reformed oil was distilled under atmospheric pressure and a fraction of 255 to 265°C was collected, resulting in a dimethylnaphthalene mixture having the composition shown in Table 2. This was cooled to a temperature of 1℃, and
, 6-enriched dimethylnaphthalene was crystallized and separated. The compositions of the crystallized product and the residual liquid after this separation are shown in Table 3. Next, this residual liquid was heated to 25% using the same catalyst as above.
As a result of the reforming reaction at the temperature shown in Table 4 under the conditions of kg/hang, LH3V of o, sh-', hydrogen/oil molar ratio of 6, a dimethylnaphthalene mixture having the composition shown in Table 4 was obtained. It was done. As is clear from these results, dimethylnaphthalene rich in 2,6 monomers can be obtained by subjecting the residual oil from recovered dimethylnaphthalene rich in 2,6 monomers to a reforming reaction. [Effects of the Invention] The present invention provides a special effect in that 2,6-dimethylnaphthalene can be produced extremely efficiently because the residual liquid after separating and collecting dimethylnaphthalene rich in 2,6 monomers is subjected to a reforming reaction. has.

Claims (1)

【特許請求の範囲】[Claims] ジメチル、ナフタレン類を含む留分から2,6−体に富
むジメチルナフタレンを分離回収し、分離回収後の残液
を改質反応に供することを特徴とする2,6−体に富む
ジメチルナフタレンの製造方法。
Production of dimethylnaphthalene rich in 2,6-isomer, which is characterized by separating and recovering dimethylnaphthalene rich in 2,6-isomer from a fraction containing dimethyl and naphthalenes, and subjecting the residual liquid after separation and recovery to a reforming reaction. Method.
JP17199189A 1989-07-05 1989-07-05 Production of dimethylnaphthalene rich in 2,6-isomer Pending JPH0338532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17199189A JPH0338532A (en) 1989-07-05 1989-07-05 Production of dimethylnaphthalene rich in 2,6-isomer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17199189A JPH0338532A (en) 1989-07-05 1989-07-05 Production of dimethylnaphthalene rich in 2,6-isomer

Publications (1)

Publication Number Publication Date
JPH0338532A true JPH0338532A (en) 1991-02-19

Family

ID=15933502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17199189A Pending JPH0338532A (en) 1989-07-05 1989-07-05 Production of dimethylnaphthalene rich in 2,6-isomer

Country Status (1)

Country Link
JP (1) JPH0338532A (en)

Similar Documents

Publication Publication Date Title
US4129496A (en) Hydrocarbon reforming process
JP2544922B2 (en) Combined method of hydroreforming and hydroisomerization
EP0590883B1 (en) Benzene removal from hydrocarbon streams
KR960004868B1 (en) Process for production of dimethylnaphthalenes
JPH11139998A (en) Production of dialkylnaphthalene
JPS6247852B2 (en)
JPH0338532A (en) Production of dimethylnaphthalene rich in 2,6-isomer
JP2520723B2 (en) Method for producing methylnaphthalene
JP2520725B2 (en) Method for producing dimethylnaphthalene
JP2520722B2 (en) Method for producing methylnaphthalene
US2981675A (en) Subsequent treatment of a naphtha reformate to obtain a high octane gasoline
JPH0416450B2 (en)
JPH0639432B2 (en) Method for producing dimethylnaphthalene
JP3402488B2 (en) Process for producing a fraction rich in methylnaphthalene and dimethylnaphthalenes
JP2520724B2 (en) Method for producing dimethylnaphthalene
JPH03178936A (en) Production of 2-methylnaphthalene
JPH02247293A (en) Production of high boiling point, high aromatic solvent
US3398083A (en) Aromatics production process
JP2649412B2 (en) Method for producing 2,6-dimethylnaphthalene
JPH08143484A (en) Production of paraxylene and production unit therefor
JPS62250094A (en) Method for separating and purifying aromatic component
JPH0276831A (en) Separation of 2,6-dimethylnaphthalene
JPH083098B2 (en) Method for producing aromatic hydrocarbon
EP0276524A1 (en) Xylene production employing isomerization and transalkylation
JPH02247289A (en) Production of high-boiling solvent with high aromatic content