JPH0338532A - Production of dimethylnaphthalene rich in 2,6-isomer - Google Patents
Production of dimethylnaphthalene rich in 2,6-isomerInfo
- Publication number
- JPH0338532A JPH0338532A JP17199189A JP17199189A JPH0338532A JP H0338532 A JPH0338532 A JP H0338532A JP 17199189 A JP17199189 A JP 17199189A JP 17199189 A JP17199189 A JP 17199189A JP H0338532 A JPH0338532 A JP H0338532A
- Authority
- JP
- Japan
- Prior art keywords
- dimethylnaphthalene
- fraction
- isomer
- dimethylnaphthalenes
- rich
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- QNLZIZAQLLYXTC-UHFFFAOYSA-N 1,2-dimethylnaphthalene Chemical compound C1=CC=CC2=C(C)C(C)=CC=C21 QNLZIZAQLLYXTC-UHFFFAOYSA-N 0.000 title claims abstract description 50
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 238000006057 reforming reaction Methods 0.000 claims abstract description 19
- 239000007788 liquid Substances 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 claims abstract description 10
- 238000000926 separation method Methods 0.000 claims abstract description 9
- 238000011084 recovery Methods 0.000 claims abstract description 5
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 claims 1
- 150000002790 naphthalenes Chemical class 0.000 claims 1
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 abstract description 12
- 239000003054 catalyst Substances 0.000 abstract description 9
- 239000000203 mixture Substances 0.000 abstract description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract description 6
- 239000001257 hydrogen Substances 0.000 abstract description 6
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 6
- 229910052697 platinum Inorganic materials 0.000 abstract description 6
- 239000002994 raw material Substances 0.000 abstract description 4
- 238000001833 catalytic reforming Methods 0.000 abstract description 3
- 150000001875 compounds Chemical class 0.000 abstract description 3
- 229920000728 polyester Polymers 0.000 abstract description 3
- 229910052702 rhenium Inorganic materials 0.000 abstract description 3
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 abstract description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052732 germanium Inorganic materials 0.000 abstract description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 abstract description 2
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052718 tin Inorganic materials 0.000 abstract description 2
- 238000006243 chemical reaction Methods 0.000 abstract 1
- 238000007429 general method Methods 0.000 abstract 1
- 239000003350 kerosene Substances 0.000 description 13
- 239000003921 oil Substances 0.000 description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- YGYNBBAUIYTWBF-UHFFFAOYSA-N 2,6-dimethylnaphthalene Chemical compound C1=C(C)C=CC2=CC(C)=CC=C21 YGYNBBAUIYTWBF-UHFFFAOYSA-N 0.000 description 6
- 239000000178 monomer Substances 0.000 description 6
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 5
- 150000003464 sulfur compounds Chemical class 0.000 description 5
- 229910021536 Zeolite Inorganic materials 0.000 description 4
- 238000004821 distillation Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 238000011282 treatment Methods 0.000 description 4
- 239000010457 zeolite Substances 0.000 description 4
- 238000002425 crystallisation Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 238000006477 desulfuration reaction Methods 0.000 description 2
- 230000023556 desulfurization Effects 0.000 description 2
- 229910017464 nitrogen compound Inorganic materials 0.000 description 2
- 150000002830 nitrogen compounds Chemical class 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 238000002407 reforming Methods 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- LRQYSMQNJLZKPS-UHFFFAOYSA-N 2,7-dimethylnaphthalene Chemical compound C1=CC(C)=CC2=CC(C)=CC=C21 LRQYSMQNJLZKPS-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 239000011820 acidic refractory Substances 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- 238000003889 chemical engineering Methods 0.000 description 1
- 239000011280 coal tar Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000004231 fluid catalytic cracking Methods 0.000 description 1
- 238000007327 hydrogenolysis reaction Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 238000006317 isomerization reaction Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000006011 modification reaction Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- WPUMVKJOWWJPRK-UHFFFAOYSA-N naphthalene-2,7-dicarboxylic acid Chemical compound C1=CC(C(O)=O)=CC2=CC(C(=O)O)=CC=C21 WPUMVKJOWWJPRK-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- -1 polyethylene naphthalate Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
Description
[産業上の利用分野)
本発明は、ジメチルナフタレン類を含む留分から2,6
一体に富むジメチルナフタレンを製造する方法に関する
。
〔従来の技術〕
ジメチルナフタレン類のうち、2,6−1及び2.7−
ジメチルナフタレンは、酸化することにより2,6−1
及び2,7−ナフタレンジカルボン酸となり、ポリエチ
レンナフタレート等のポリエステルの原料とされる。こ
のポリエステルは、優れた特性を有する合成繊維、フィ
ルム等に成形することができるが、2,6−1及び2,
7−ジメチルナフタレンの安価な工業的な製造方法は未
だ確立されていない。
本発明者は、かかる現状に鑑み、鋭意研究を進めた結果
、灯油留分を改質反応させて得られた生成油中に、ジメ
チルナフタレン類がかなりの置きまれ、この中から、2
,6−ジメチルナフタレンを分離回収することにより、
窒素及び硫黄化合物をほとんど含まない高品質のジメチ
ルナフタレン類を回収できることを見い出し、ジメチル
ナフタレン類の製造方法として提案した(特願昭63−
236331号)。
〔発明が解決しようとする課題]
本発明者は、これについてさらに研究を進めた結果、ジ
メチルナフタレン類から2,6−ジメチルナフタレンを
回収し、この残油を再度改質反応に供したところ、驚く
べきことに、他の異性体のジメチルナフタレンが異性化
反応を起こし、2,6−ジメチルナフタレンが生成して
いることを見い出した。
本発明は、かかる知見に基づきなされたもので、本発明
の目的は、ジメチルナフタレン類を含む留分から2,6
−ジスチルナフタレンを効率良く製造する方法を提供す
ることにある。
〔課題を解決するための手段〕
本発明は、ジメチルナフタレン類を含む留分から2,6
一体に富むジスチルナフタレンを分離回収し、分離回収
後の残液を改質反応に供することから構成されるもので
ある。
本発明にいうジメチルナフタレン類を含む留分とは、ジ
メチルナフタレンの各種異性体の混合物を含む留分で、
255〜270℃の沸点範囲にあり、ジメチルナフタレ
ン類を70重量%以上含む留分が、好ましい。
この留分は、石炭タール、或は流動接触分解プロセスの
サイクル油を蒸留分離して得られた留分を用いることが
できる(特開昭60−69042号公報参照)aしかし
、これらの留分中には、2,6一体に富むジメチルナフ
タレンを吸着分離する際のゼオライトや改質反応の際の
触媒の寿命を著しく短くする窒素化合物や硫黄化合物が
高濃度で含まれている。従って、これらを用いる場合は
、これらの処理の前に、この窒素及び硫黄化合物の低減
処理を行う必要がある。
また、ナフサ留分を改質反応させたリホーメートの重質
留分にも、ジメチルナフタレン類が含まれており、この
リホーメートを蒸留分離して得た留分も用いることがで
きる。この留分は、窒素化合物や硫黄化合物の含有量が
少なく、好ましい。さらに、灯油留分を改質反応させた
改質油中にジメチルナフタレン類が多く含まれており、
これを用いると、上記ナフサから得られた留分より、効
率良く、ジメチルナフタレン類を回収することができ、
また、窒素化合物や硫黄化合物の含有量が少なく、特に
好ましい。[Industrial Application Field] The present invention is directed to extracting 2,6
The present invention relates to a method for producing monolithically enriched dimethylnaphthalene. [Prior art] Among dimethylnaphthalenes, 2,6-1 and 2,7-
Dimethylnaphthalene can be oxidized to 2,6-1
and 2,7-naphthalene dicarboxylic acid, which is used as a raw material for polyesters such as polyethylene naphthalate. This polyester can be formed into synthetic fibers, films, etc. with excellent properties, but 2,6-1 and 2,
An inexpensive industrial production method for 7-dimethylnaphthalene has not yet been established. In view of the current situation, the present inventor conducted intensive research and found that a considerable amount of dimethylnaphthalenes were present in the product oil obtained by reforming kerosene fractions.
By separating and recovering ,6-dimethylnaphthalene,
We discovered that high-quality dimethylnaphthalenes containing almost no nitrogen and sulfur compounds could be recovered, and proposed a method for producing dimethylnaphthalenes (patent application 1983-
No. 236331). [Problems to be Solved by the Invention] As a result of further research on this subject, the present inventor recovered 2,6-dimethylnaphthalene from dimethylnaphthalenes, and subjected this residual oil to a reforming reaction again. Surprisingly, it was discovered that another isomer of dimethylnaphthalene undergoes an isomerization reaction to produce 2,6-dimethylnaphthalene. The present invention was made based on this knowledge, and an object of the present invention is to extract 2,6
- To provide a method for efficiently producing distylnaphthalene. [Means for Solving the Problems] The present invention provides a method for extracting 2,6
This method consists of separating and recovering distylnaphthalene, which is enriched in monomers, and subjecting the residual liquid after separation and recovery to a reforming reaction. The fraction containing dimethylnaphthalenes referred to in the present invention is a fraction containing a mixture of various isomers of dimethylnaphthalene,
A fraction having a boiling point range of 255 to 270°C and containing 70% by weight or more of dimethylnaphthalenes is preferred. As this fraction, coal tar or a fraction obtained by distilling cycle oil of a fluid catalytic cracking process can be used (see Japanese Patent Application Laid-Open No. 60-69042). It contains a high concentration of nitrogen and sulfur compounds that significantly shorten the life of zeolite used to adsorb and separate dimethylnaphthalene rich in 2,6 monomers, and of catalysts used in reforming reactions. Therefore, when using these, it is necessary to perform a reduction treatment for nitrogen and sulfur compounds before these treatments. Furthermore, the heavy fraction of reformate obtained by subjecting the naphtha fraction to a reforming reaction also contains dimethylnaphthalenes, and the fraction obtained by distilling and separating this reformate can also be used. This fraction is preferable because it has a low content of nitrogen compounds and sulfur compounds. Furthermore, the reformed oil obtained by reforming kerosene fraction contains a large amount of dimethylnaphthalenes.
By using this, dimethylnaphthalenes can be efficiently recovered from the fraction obtained from the naphtha,
Moreover, the content of nitrogen compounds and sulfur compounds is small, which is particularly preferable.
次に、本発明の好ましい実施態様の一つである、灯油留
分を出発原料として、これを改質反応を行い、この改質
油から2,6一体に富むジメチルナフタレンを製造する
方法について、より具体的に述べる。
この場合の灯油留分としては、蒸留分離操作により15
0〜300℃の温度範囲で留出する留分を用いることが
でき、原油を常圧蒸留して得られた直留の灯油留分の他
、石油の各留分、残渣等の熱分解、接触台・解、水素化
分解、アルキレーション、その他の精製処理等により得
られた前記沸°点範囲の留分等も用いることができるこ
とはいうまでもない。この灯油留分は、好ましくは、硫
黄分及び窒素分が、50ppm以下としたものが良く、
これは、一般に採用されている水添脱硫処理方法で、通
常の脱硫条件、例えば、アルミナあるいはシリカ−アル
ミナ等の担体に、コバルト、ニッケル、モリブデン、タ
ングステン等の1種以上を担持した触媒を用い、250
〜430℃の温度、lO〜200kg/aIIの圧力、
液空間速度(LH8V)0.1〜15 h −’水素循
環量50〜140ONポ/−の条件下で脱硫した脱硫部
を用いることが好ましい。尚、この灯油留分は、上記の
他、上記灯油留分からノルマルパラフィンを回収したラ
フィネートを用いても良く、この場合は、改質反応条件
をマイルドにしても、ジメチルナフタレン類の生成量を
多くすることができる。このノルマルパラフィンの除去
は、ゼオライトを用いた吸着分離方法や尿素アダクトに
よる分離方法を用いて行なうことができる。このラフィ
ネートは、ノルマルパラフィンを50〜95%程度の回
収率で回収除去したもので充分である。
さらに、この灯油留分の改質反応は、一般にナフサ留分
等から高オクタン価ガソリンを製造する方法として広く
用いられている接触改質法を採用することができる。こ
の場合、例えば、アルミナを担体として白金、または白
金に加えてレニウム、ゲルマニウム、すす、イリジウム
、ルテニウム等を担持した触媒を用い、400〜550
℃の温度、1〜50kg/cotの圧力、液空間速度(
LH8V)0.1〜3h−1、水素/油モル比0.5〜
20の条件下に行うことができる。
また、他の改質反応の方法としては、ゼオライト若しく
は結晶性アルミノシリケート、シリカ、アルミナ、ジル
コニア、チタニア、クロミア。
固体リン酸、またはインジウム、ランタン、マンガン、
セリウム若しくはスズ等の酸化物、或いは、これらの2
種以上の混合物を含む酸性耐火物、またはこれらに、白
金、パラジウム、レニウム等の金属類を含有させるかあ
るいは担持させた触媒等を用いて、250〜700℃の
温度、1〜100kg/−の圧力、0.1〜20h−’
(7)LH3V、水素/油モ/L/比0.5〜20の条
件下に行なわせることもできる。この改質反応はりアク
タ一部が固定床の反応装置を用いてもよいが、触媒連続
再生法を付加した移動床からなる反応装置を用いること
が、効率上好ましい。
このようにして得られる灯油留分の改質油から蒸留、溶
剤抽出、通常の晶析法或は圧力晶析法〔化学工学、51
. (6)、428〜433 (1987))等により
ジメチルナフタレン類を高濃度に含む留分を回収する。
回収は、蒸留による方法が経済的で好ましく、255〜
270℃の留分を採取することにより、ジメチルナフタ
レン類を高濃度含有した留分を得ることができる。
このジメチルナフタレン類を含む留分からゼオライト等
による吸着分離法、晶析法、錯化合物形成による分離法
等の公知の手段を用いることにより、2,6一体に富む
ジメチルナフタレンを分離回収する。
次に、この回収残液を、改質反応に供する。
この場合の改質反応は、前述した触媒及び条件がそのま
ま適用できる。特には、この残液を、先の改質反応の原
料として供給されている灯油留分に混合して、改質反応
に供するようにすることが、装置の運転操作上簡便で好
ましい。
次に、本発明の効果を明確にするために、実験例を示す
。
(実験例)
灯油留分を水添脱硫した第1表として示した性状を有す
る脱硫灯油留分を原料とし、アルミナ担体に白金を0.
2重量%担持した接触改質触媒を用いて、圧力を25k
g/cd、温度を490℃、LH3Vを0,8h’、水
素/油ヲモ/L、比t’6ノ条件下で、改質反応させた
。この改質油を常圧蒸留し、255〜265℃の留分を
採取した結果、第2表に示す組成のジメチルナフタレン
混合物が得られた。これを、1℃の温度に冷却して、2
,6一体に富むジメチルナフタレンを晶析分離させた。
この分離後の晶析物及び残液の組成をそれぞれ第3表に
示した。
次のこの残液を、上記と同じ触媒を用いて、圧力を25
kg/吊、LH3Vをo、sh−’、水素/油をモル比
で6の条件下、第4表に示した温度で改質反応した結果
、第4表に示す組成のジメチルナフタレン混合物が得ら
れた。
これらの結果から明らかなように、2,6一体に富むジ
メチルナフタレンを回収した残油を改質反応させること
により、2,6一体に富むジメチルナフタレンを得るこ
とができる。
〔発明の効果〕
本発明は、2,6一体に富むジメチルナフタレンを分離
回収後の残液を改質反応に供するようにしたため、極め
て効率良く2,6−ジメチルナフタレンを製造できると
いう格別の効果を有する。Next, regarding one of the preferred embodiments of the present invention, a method for producing 2,6-enriched dimethylnaphthalene from this reformed oil by using a kerosene fraction as a starting material and carrying out a reforming reaction. Let me be more specific. In this case, the kerosene fraction is 15% by distillation separation operation.
Fractions distilled in a temperature range of 0 to 300°C can be used, and in addition to straight-run kerosene fractions obtained by atmospheric distillation of crude oil, various petroleum fractions, thermal decomposition of residues, etc. It goes without saying that fractions having the above-mentioned boiling point range obtained by contact table decomposition, hydrogenolysis, alkylation, other purification treatments, etc. can also be used. This kerosene fraction preferably has a sulfur content and a nitrogen content of 50 ppm or less,
This is a commonly used hydrodesulfurization treatment method that uses a catalyst supporting one or more of cobalt, nickel, molybdenum, tungsten, etc. on a support such as alumina or silica-alumina under normal desulfurization conditions. , 250
Temperature of ~430°C, pressure of lO ~200 kg/aII,
It is preferable to use a desulfurization section that is desulfurized under the conditions of a liquid hourly space velocity (LH8V) of 0.1 to 15 h and a hydrogen circulation rate of 50 to 140 ON/-. In addition to the above, the kerosene fraction may also be a raffinate obtained by recovering normal paraffins from the kerosene fraction. In this case, even if the reforming reaction conditions are mild, the amount of dimethylnaphthalenes produced is large. can do. This normal paraffin can be removed using an adsorption separation method using zeolite or a separation method using a urea adduct. It is sufficient that this raffinate is one in which normal paraffin is collected and removed at a recovery rate of about 50 to 95%. Further, for the reforming reaction of this kerosene fraction, a catalytic reforming method which is generally widely used as a method for producing high octane gasoline from naphtha fraction etc. can be adopted. In this case, for example, platinum is supported on alumina, or a catalyst in which rhenium, germanium, soot, iridium, ruthenium, etc. is supported in addition to platinum is used.
temperature of °C, pressure of 1 to 50 kg/cot, liquid hourly space velocity (
LH8V) 0.1~3h-1, hydrogen/oil molar ratio 0.5~
It can be carried out under 20 conditions. In addition, other modification reaction methods include zeolite or crystalline aluminosilicate, silica, alumina, zirconia, titania, and chromia. solid phosphoric acid, or indium, lanthanum, manganese,
Oxides such as cerium or tin, or two of these
Using an acidic refractory containing a mixture of more than one species, or a catalyst containing or supporting metals such as platinum, palladium, rhenium, etc., at a temperature of 250 to 700°C, 1 to 100 kg/- Pressure, 0.1~20h-'
(7) It can also be carried out under the conditions of LH3V and hydrogen/oil/L/ratio of 0.5 to 20. Although a reactor in which part of the reforming reaction actor is a fixed bed may be used, it is preferable in terms of efficiency to use a reactor comprising a moving bed to which a continuous catalyst regeneration method is added. Distillation, solvent extraction, ordinary crystallization method or pressure crystallization method from the reformed oil of the kerosene fraction obtained in this way [Chemical Engineering, 51
.. (6), 428-433 (1987)), etc., a fraction containing a high concentration of dimethylnaphthalenes is recovered. Recovery is preferably performed by distillation as it is economical.
By collecting the fraction at 270°C, a fraction containing a high concentration of dimethylnaphthalenes can be obtained. From this fraction containing dimethylnaphthalenes, dimethylnaphthalene rich in 2,6 monomers is separated and recovered using known means such as adsorption separation using zeolite, crystallization, and separation by complex compound formation. Next, this recovered residual liquid is subjected to a reforming reaction. For the reforming reaction in this case, the catalyst and conditions described above can be applied as they are. In particular, it is preferable to mix this residual liquid with the kerosene fraction supplied as a raw material for the previous reforming reaction and use it for the reforming reaction, since this is convenient in terms of operation of the apparatus. Next, an experimental example will be shown in order to clarify the effects of the present invention. (Experiment example) A desulfurized kerosene fraction having the properties shown in Table 1 obtained by hydrodesulfurizing a kerosene fraction was used as a raw material, and 0.0% platinum was added to an alumina carrier.
Using a catalytic reforming catalyst supported at 2% by weight, the pressure was increased to 25k.
The reforming reaction was carried out under the following conditions: g/cd, temperature of 490° C., LH3V of 0.8 h', hydrogen/oil volume/L, and ratio of t'6. This reformed oil was distilled under atmospheric pressure and a fraction of 255 to 265°C was collected, resulting in a dimethylnaphthalene mixture having the composition shown in Table 2. This was cooled to a temperature of 1℃, and
, 6-enriched dimethylnaphthalene was crystallized and separated. The compositions of the crystallized product and the residual liquid after this separation are shown in Table 3. Next, this residual liquid was heated to 25% using the same catalyst as above.
As a result of the reforming reaction at the temperature shown in Table 4 under the conditions of kg/hang, LH3V of o, sh-', hydrogen/oil molar ratio of 6, a dimethylnaphthalene mixture having the composition shown in Table 4 was obtained. It was done. As is clear from these results, dimethylnaphthalene rich in 2,6 monomers can be obtained by subjecting the residual oil from recovered dimethylnaphthalene rich in 2,6 monomers to a reforming reaction. [Effects of the Invention] The present invention provides a special effect in that 2,6-dimethylnaphthalene can be produced extremely efficiently because the residual liquid after separating and collecting dimethylnaphthalene rich in 2,6 monomers is subjected to a reforming reaction. has.
Claims (1)
むジメチルナフタレンを分離回収し、分離回収後の残液
を改質反応に供することを特徴とする2,6−体に富む
ジメチルナフタレンの製造方法。Production of dimethylnaphthalene rich in 2,6-isomer, which is characterized by separating and recovering dimethylnaphthalene rich in 2,6-isomer from a fraction containing dimethyl and naphthalenes, and subjecting the residual liquid after separation and recovery to a reforming reaction. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17199189A JPH0338532A (en) | 1989-07-05 | 1989-07-05 | Production of dimethylnaphthalene rich in 2,6-isomer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17199189A JPH0338532A (en) | 1989-07-05 | 1989-07-05 | Production of dimethylnaphthalene rich in 2,6-isomer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0338532A true JPH0338532A (en) | 1991-02-19 |
Family
ID=15933502
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17199189A Pending JPH0338532A (en) | 1989-07-05 | 1989-07-05 | Production of dimethylnaphthalene rich in 2,6-isomer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0338532A (en) |
-
1989
- 1989-07-05 JP JP17199189A patent/JPH0338532A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4129496A (en) | Hydrocarbon reforming process | |
JP2544922B2 (en) | Combined method of hydroreforming and hydroisomerization | |
EP0590883B1 (en) | Benzene removal from hydrocarbon streams | |
KR960004868B1 (en) | Process for production of dimethylnaphthalenes | |
JPH11139998A (en) | Production of dialkylnaphthalene | |
JPS6247852B2 (en) | ||
JPH0338532A (en) | Production of dimethylnaphthalene rich in 2,6-isomer | |
JP2520723B2 (en) | Method for producing methylnaphthalene | |
JP2520725B2 (en) | Method for producing dimethylnaphthalene | |
JP2520722B2 (en) | Method for producing methylnaphthalene | |
US2981675A (en) | Subsequent treatment of a naphtha reformate to obtain a high octane gasoline | |
JPH0416450B2 (en) | ||
JPH0639432B2 (en) | Method for producing dimethylnaphthalene | |
JP3402488B2 (en) | Process for producing a fraction rich in methylnaphthalene and dimethylnaphthalenes | |
JP2520724B2 (en) | Method for producing dimethylnaphthalene | |
JPH03178936A (en) | Production of 2-methylnaphthalene | |
JPH02247293A (en) | Production of high boiling point, high aromatic solvent | |
US3398083A (en) | Aromatics production process | |
JP2649412B2 (en) | Method for producing 2,6-dimethylnaphthalene | |
JPH08143484A (en) | Production of paraxylene and production unit therefor | |
JPS62250094A (en) | Method for separating and purifying aromatic component | |
JPH0276831A (en) | Separation of 2,6-dimethylnaphthalene | |
JPH083098B2 (en) | Method for producing aromatic hydrocarbon | |
EP0276524A1 (en) | Xylene production employing isomerization and transalkylation | |
JPH02247289A (en) | Production of high-boiling solvent with high aromatic content |