JPH0338413B2 - - Google Patents

Info

Publication number
JPH0338413B2
JPH0338413B2 JP57183895A JP18389582A JPH0338413B2 JP H0338413 B2 JPH0338413 B2 JP H0338413B2 JP 57183895 A JP57183895 A JP 57183895A JP 18389582 A JP18389582 A JP 18389582A JP H0338413 B2 JPH0338413 B2 JP H0338413B2
Authority
JP
Japan
Prior art keywords
cylinder
valve
engine
stopping
light load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57183895A
Other languages
Japanese (ja)
Other versions
JPS5974343A (en
Inventor
Mitsuo Hitomi
Akio Nagao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP57183895A priority Critical patent/JPS5974343A/en
Publication of JPS5974343A publication Critical patent/JPS5974343A/en
Publication of JPH0338413B2 publication Critical patent/JPH0338413B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/06Cutting-out cylinders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

【発明の詳細な説明】 本発明は3気筒エンジンの気筒数制御装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cylinder number control device for a three-cylinder engine.

従来、多気筒エンジンにおいて燃費の向上等の
ため、軽負荷時に一部の気筒への燃料の供給を遮
断して該気筒の稼働を休止させ、減筒運転を行う
ようにした気筒数制御エンジンが知られている。
一般にこのような気筒数制御エンジンは、4気筒
または6気筒等の偶数気筒エンジンを対象とし、
特開昭56−2430号公報にみられるように、減筒運
転時にも円滑な運転状態が保たれるように着火順
序が連続していない特定の一部(半数)の気筒の
減筒運転時の休止気筒とし、他の気筒を常時稼動
される稼動気筒としている。そして、減筒運転時
には上記の特定の休止気筒への燃料供給を遮断す
ることにより該気筒の稼動(爆発燃焼)を休止さ
せるようにしている。しかし、このように減筒運
転時に特定の気筒が休止し続ける構造では、この
減筒運転期間中に休止気筒内の温度が低下してし
まうため、その後全気筒運転状態に移行したとき
に該気筒での燃焼性が悪くなり、未燃ガス排出量
が増加したりトルク変動が不安定になつたりする
等の弊害を生じていた。
Conventionally, in order to improve fuel efficiency in multi-cylinder engines, engines with cylinder number control have cut off the fuel supply to some cylinders during light loads, halting the operation of those cylinders, and performing cylinder reduction operation. Are known.
Generally, such cylinder number control engines target even number cylinder engines such as 4 cylinders or 6 cylinders,
As seen in Japanese Unexamined Patent Publication No. 56-2430, in order to maintain smooth operating conditions even during cylinder reduction operation, a specific part (half) of the cylinders in which the ignition order is not consecutive are used during cylinder reduction operation. One cylinder is inactive, and the other cylinders are always in operation. During reduced-cylinder operation, the fuel supply to the specific cylinder inactive is cut off to stop the operation (explosive combustion) of the cylinder. However, in this structure where a specific cylinder continues to be deactivated during cylinder reduction operation, the temperature inside the deactivated cylinder decreases during the cylinder reduction operation period, so when the cylinder is switched to full cylinder operation, This has resulted in adverse effects such as poor combustibility, increased unburned gas emissions, and unstable torque fluctuations.

本発明はこれらの事情に鑑み、3気筒エンジン
を対象として、軽負荷時にエンジンの円滑な運転
状態を保ちつつ減筒運転を行ない、しかも、減筒
運転中の特定気筒の温度低下を防止して、その後
の全気筒運転への移行時における燃焼性を向上す
ることのできる気筒数制御装置を提供するもので
ある。
In view of these circumstances, the present invention targets a three-cylinder engine and performs reduced-cylinder operation while maintaining smooth engine operation under light load, and prevents a temperature drop in a specific cylinder during reduced-cylinder operation. The present invention provides a cylinder number control device that can improve combustibility during subsequent transition to all-cylinder operation.

すなわち、本発明は、クランクアームが互いに
120°間隔で配置されてなる3気筒エンジンにおい
て、エンジンの軽負荷運転域を検出する軽負荷検
出手段と、軽負荷時に各気筒におけるそれぞれの
爆発燃焼の作動を1回間隔で停止し、かつ、エン
ジンの爆発燃焼が一定クランク角おきに等間隔で
行なわれるようにする気筒停止手段とを備え、こ
の気筒停止手段は、各気筒の吸気バルブの作動回
数の半分ずつを担うようにした一対の動弁機構の
うちの一方の動弁機構を停止させることによつて
各気筒への吸気流入を1回おきに遮断する動弁機
構停止手段と、上記軽負荷検出手段からの信号に
応じてこの動弁機構停止手段を制御する制御手段
とで構成されているものである。
That is, in the present invention, the crank arms are connected to each other.
In a three-cylinder engine arranged at 120° intervals, a light load detection means for detecting a light load operating range of the engine, and stopping each explosion combustion operation in each cylinder once at a light load, and cylinder stopping means for ensuring that explosive combustion of the engine is carried out at regular intervals at constant crank angles; Valve mechanism stopping means shuts off the intake air into each cylinder every other time by stopping one of the valve mechanisms; and a control means for controlling the valve mechanism stop means.

以下、本発明の実施例を図面によつて説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

第1図は3気筒エンジンの概略を示し、同図に
おいて、1はエンジン本体、2は吸気マニホール
ド、3は排気マニホールド、4は気化器である。
上記エンジン本体1には3個の気筒11,12,
13が設けられ、これらに対応するクランク軸の
各クランクアーム(図示省略)は互いに120°間隔
で配置されている。これに応じて各気筒11,1
2,13での着火が一定クランク角度ずつずれて
行なわれる。すなわちクランク軸の2回転で1つ
のサイクルが行なわれる4サイクルエンジンの場
合、クランク角240°ずつずれて順次各気筒11,
12,13での着火が行なわれる。
FIG. 1 schematically shows a three-cylinder engine, in which 1 is the engine body, 2 is an intake manifold, 3 is an exhaust manifold, and 4 is a carburetor.
The engine body 1 has three cylinders 11, 12,
13, and the crank arms (not shown) of the corresponding crankshafts are arranged at 120° intervals from each other. Accordingly, each cylinder 11, 1
Ignition at points 2 and 13 is performed at intervals of a constant crank angle. In other words, in the case of a four-stroke engine in which one cycle is performed with two revolutions of the crankshaft, each cylinder 11,
Ignition at 12 and 13 takes place.

第2図は気筒数制御装置の具体的構造を示し、
同図において、20は軽負荷検出手段としての負
荷センサ、21は該負荷センサ20からの信号を
受ける制御回路であつて、負荷センサ20は例え
ば吸気通路内の負圧を検出する負圧センサにより
形成され、制御回路21は負荷センサ20からの
信号に応じて設定負荷以下の軽負荷時に減筒運転
用の作動信号を発生するようにしている。また、
この作動信号に応じて作動する動弁機構停止手段
60が設けられ、この動弁機構停止手段60と上
記制御回路(制御手段)21とにより、軽負荷時
に各気筒におけるそれぞれの爆発燃焼の作動を1
回間隔で停止し、かつ、エンジンの爆発燃焼が一
定クランク角おきに等間隔で行なわれるようにす
る気筒停止手段が構成されている。上記動弁機構
停止手段60は、各気筒11,12,13の吸気
バルブ15…の作動回数の半分ずつを担うように
した一対の動弁機構30,40のうちの一方の動
弁機構40を停止させるようにしたものである。
Figure 2 shows the specific structure of the cylinder number control device.
In the figure, 20 is a load sensor as light load detection means, 21 is a control circuit that receives a signal from the load sensor 20, and the load sensor 20 is, for example, a negative pressure sensor that detects negative pressure in the intake passage. The control circuit 21 generates an activation signal for cylinder reduction operation in response to a signal from the load sensor 20 when the load is light below the set load. Also,
A valve mechanism stopping means 60 is provided which operates in response to this activation signal, and this valve mechanism stopping means 60 and the control circuit (control means) 21 control the operation of explosion and combustion in each cylinder during light loads. 1
Cylinder stopping means is configured to stop the engine at regular intervals and to cause explosion combustion of the engine to occur at regular intervals at constant crank angles. The valve train stopping means 60 controls one of the valve train mechanisms 40 of the pair of valve train mechanisms 30 and 40, each of which is responsible for half the number of operations of the intake valves 15 of each cylinder 11, 12, 13. It was designed to stop it.

上記一対の動弁機構30,40は第2図と第3
図、第4図に示すようになつている。すなわち、
両動弁機構30,40は別個にカムシヤフト3
1,41を備えている。各カムシヤフト31,4
1は、それぞれの端部に設けたプーリ51,52
とクランク軸に設けたプーリ53とに掛け渡した
タイミングベルト54およびアイドラー55,5
6からなる伝動機構50を介し、クランク軸に対
して1/4の回転比で連続連結されている。この
両カムシヤフト31,41にそれぞれ、各気筒1
1,12,13の吸気バルブ15…を作動するた
めの吸気バルブ用カム32…,42…が配設さ
れ、これに対応して各気筒の各吸気バルブごとに
一対ずつロツカアーム33…,43…が配備され
ている。この一対のロツカアーム33,43は、
先端がともに吸気バルブ15の上部に配設される
タペツト16に接し、中間部には各カムシヤフト
31,41のカム32,42が接しており、かつ
第2図において左側のロツカアーム33の基部は
シリンダヘツド17に固定的に設けられた支持部
34に支持され、右側のロツカアーム43の基部
は後述する支持力解除可能な支持部65に支持さ
れている。そして、動弁機構停止手段60が働か
ない限りは、1つの吸気バルブ15に対してカム
32,42がそれぞれカムシヤフト31,41の
1回転(エンジン作動サイクルの2回分)ごとに
一度ずつ、かつ、互いにカムシヤフト半回転だけ
ずれて、ロツカアーム33,43を押動すること
により吸気バルブ15を開作動するようにしてい
る。
The above-mentioned pair of valve mechanisms 30 and 40 are shown in FIGS. 2 and 3.
The structure is as shown in Fig. 4. That is,
Both valve mechanisms 30 and 40 are connected to the camshaft 3 separately.
1,41. Each camshaft 31, 4
1 is a pulley 51, 52 provided at each end.
and a timing belt 54 and idlers 55, 5, which are stretched over a pulley 53 provided on the crankshaft.
It is continuously connected to the crankshaft at a rotation ratio of 1/4 via a transmission mechanism 50 consisting of 6 parts. Each cylinder 1 is connected to both camshafts 31 and 41, respectively.
Intake valve cams 32..., 42... for operating the intake valves 15... 1, 12, 13 are provided, and a pair of rocker arms 33..., 43... is in place. This pair of Rotsuka arms 33, 43 are
Both tips are in contact with the tappet 16 disposed on the upper part of the intake valve 15, and the middle part is in contact with the cams 32 and 42 of each camshaft 31 and 41, and the base of the rocker arm 33 on the left side in FIG. It is supported by a support part 34 fixedly provided on the head 17, and the base of the right rocker arm 43 is supported by a support part 65 whose supporting force can be released, which will be described later. As long as the valve mechanism stopping means 60 does not operate, the cams 32 and 42 are activated once for each rotation of the camshafts 31 and 41 (two engine operating cycles) for one intake valve 15, and The intake valve 15 is opened by pushing the rocker arms 33 and 43, which are shifted from each other by half a rotation of the camshaft.

また、片側のカムシヤフト31には、ロツカア
ーム36…を介して排気バルブ18…を作動する
排気バルブ用カム35…が配設され、該カム35
は、2方向に突出部を有してカムシヤフト31の
1回転ごとに2度ずつ排気バルブ18を開作動す
るようにしている。
Furthermore, exhaust valve cams 35 for operating the exhaust valves 18 through rocker arms 36 are disposed on the camshaft 31 on one side, and the cams 35
has protrusions in two directions so that the exhaust valve 18 is opened twice for each rotation of the camshaft 31.

前記動弁機構停止手段60は、下部油室61を
形成する固定内筒62と、該内筒62に外嵌され
て該内筒62の上方に上部油室63を形成するプ
ランジヤ64と、該プランジヤ64の上端に突設
されたロツカアーム支持部65とを有し、これが
シリンダヘツド17に取付けられている。上記両
油室61,63は内筒62の上端に設けられた連
通孔66を介して連通し、該連通孔66に、下部
油室61から上部油室63への油の流通のみ許容
するチエツクバルブ67が設けられている。ま
た、下部油室61は油供給通路68を介してオイ
ルポンプ69に接続され、該通路68中に開閉弁
70が設けられている。一方、上部油室63は、
未端がシリンダベツド内に開放された油排出通路
71に接続され、該通路71中に開閉弁72およ
びチエツクバルブ73,74が配設されている。
そして、減筒運転を行なうべき軽負荷時には、前
記制御回路21からの作動信号によつて油供給通
路68中の開閉弁70が閉じられるとともに油排
出通路71中の開閉弁72が開かれ、それ以外の
ときは油供給通路68中の開閉弁70が開かれて
油排出通路71中の開閉弁72が閉じられるよう
にしている。また、75は上部油室63に縮装さ
れたスプリングであつてプランジヤ64を上方に
付勢して弾性的にロツカアーム43をカム42に
押付けることにより、ロツカアーム43先端とタ
ペツト16との接触状態を保つためのものであ
る。但し、このスプリング75の弾発力は、動弁
機構40を実質的に働かせるに必要な支持力より
も小さく設定されている。
The valve mechanism stopping means 60 includes a fixed inner cylinder 62 that forms a lower oil chamber 61, a plunger 64 that is fitted onto the inner cylinder 62 and forms an upper oil chamber 63 above the inner cylinder 62, and a fixed inner cylinder 62 that forms a lower oil chamber 61. The plunger 64 has a rocker arm support portion 65 projecting from the upper end thereof, which is attached to the cylinder head 17. Both oil chambers 61 and 63 communicate with each other through a communication hole 66 provided at the upper end of the inner cylinder 62, and there is a check mark in the communication hole 66 that only allows oil to flow from the lower oil chamber 61 to the upper oil chamber 63. A valve 67 is provided. Further, the lower oil chamber 61 is connected to an oil pump 69 via an oil supply passage 68, and an on-off valve 70 is provided in the passage 68. On the other hand, the upper oil chamber 63 is
The other end is connected to an oil discharge passage 71 opened into the cylinder bed, and an on-off valve 72 and check valves 73, 74 are disposed in the passage 71.
When the load is light when cylinder reduction operation is to be performed, the on-off valve 70 in the oil supply passage 68 is closed and the on-off valve 72 in the oil discharge passage 71 is opened in response to an operation signal from the control circuit 21. At other times, the on-off valve 70 in the oil supply passage 68 is opened and the on-off valve 72 in the oil discharge passage 71 is closed. Reference numeral 75 denotes a spring compressed in the upper oil chamber 63, which urges the plunger 64 upward and elastically presses the rocker arm 43 against the cam 42, thereby bringing the tip of the rocker arm 43 into contact with the tappet 16. It is intended to maintain the However, the elastic force of the spring 75 is set smaller than the supporting force required to make the valve operating mechanism 40 substantially work.

この構造によると、前記の一対の動弁機構3
0,40のうち、一方(第2図の右側)の動弁機
構40は全気筒運転を行なうべきときにのみ実質
的に作動され、他方(第2図の左側)の動弁機構
30は常にカムシヤフト31の回転に応じて作動
される。すなわち、中負荷ないし高負荷等の全気
筒運転を行なう運転域では、前記動弁機構停止手
段60における開閉弁70が開いて開閉弁72が
閉じることにより、オイルポンプ69から供給さ
れる油が前記下部油室61からチエツクバルブ6
7を通つて上部油室63に流入し、該油室63内
に封じ込まれる。この状態では、前記プランジヤ
64の上端の支持部65が油圧により上昇位置に
保持され、これを支点としてロツカアーム43が
カム42の回転に伴い上下に揺動して定期的に吸
気バルブ15を開作動する。つまり、上記一方の
動弁機構40が実質的に働き、これと他方の動弁
機構30の作動とにより、各サイルクごとの吸入
行程で吸気バルブ15が開かれて混合気が燃焼室
に供給され、全気筒運転が行なわれる。
According to this structure, the pair of valve mechanisms 3
0, 40, one valve mechanism 40 (on the right side in Figure 2) is substantially operated only when all cylinders should be operated, and the other valve mechanism 30 (on the left side in Figure 2) is always activated. It is operated in accordance with the rotation of the camshaft 31. That is, in an operating range in which all cylinders are operated such as medium load or high load, the on-off valve 70 and the on-off valve 72 in the valve train stop means 60 open and close, so that the oil supplied from the oil pump 69 is Check valve 6 from lower oil chamber 61
7 into the upper oil chamber 63 and is sealed within the oil chamber 63. In this state, the support part 65 at the upper end of the plunger 64 is held in the raised position by hydraulic pressure, and the rocker arm 43 swings up and down with the rotation of the cam 42 using this as a fulcrum to periodically open the intake valve 15. do. In other words, one of the valve train mechanisms 40 is substantially operated, and by this and the operation of the other valve train mechanism 30, the intake valve 15 is opened in the intake stroke for each cycle, and the air-fuel mixture is supplied to the combustion chamber. , all-cylinder operation is performed.

また、軽負荷運転域では、前記動弁機構停止手
段60における開閉弁70が閉じて開閉弁72が
開かれることにより、前記上部油室63内の油が
排出されて油圧によるプランジヤ保持力が除去さ
れる。この状態では、カム42によりロツカアー
ム43が押されたとき前記支持部65が下降し、
支点として機能しなくなる。従つて、実質的に上
記一方の動弁機構40の作動が停止され、この動
弁機構40によつて吸気バルブ15が開かれず、
他方の動弁機構30の作動によつてのみ吸気バル
ブ15が開かれる。
In addition, in a light load operating range, the on-off valve 70 in the valve mechanism stopping means 60 is closed and the on-off valve 72 is opened, so that the oil in the upper oil chamber 63 is discharged and the plunger holding force due to hydraulic pressure is removed. be done. In this state, when the rocker arm 43 is pushed by the cam 42, the support portion 65 descends;
It no longer functions as a fulcrum. Therefore, the operation of the one valve train mechanism 40 is substantially stopped, and the intake valve 15 is not opened by this valve train mechanism 40.
The intake valve 15 is opened only by the operation of the other valve operating mechanism 30.

こうして、軽負荷時には、各気筒11,12,
13においてそれぞれ、1サイクルおきに吸気
(燃料供給)の遮断によつて爆発燃焼の作動が停
止され、すなわち1サイクルごとに稼動、休止が
交互に行なわれる。また、各気筒11,12,1
3を着火順に第1、第2、第3気筒と呼ぶと、エ
ンジン全体としても、第1気筒稼動、第2気筒休
止、第3気筒稼動、第1気筒休止、第2気筒稼
動、第3気筒休止というような順序で稼動、休止
が繰返され、爆発燃焼が等間隔で行なわれなが
ら、減筒運転される。従つて、減筒運転中でも不
均等なトルク変動が避けられるとともに、各気筒
に温度差が生じることも避けられる。
In this way, during light loads, each cylinder 11, 12,
13, the operation of explosive combustion is stopped by cutting off the intake air (fuel supply) every other cycle, that is, operation and rest are alternately performed every cycle. In addition, each cylinder 11, 12, 1
3 are called the 1st, 2nd, and 3rd cylinders in the order of ignition, the engine as a whole will have 1st cylinder operating, 2nd cylinder deactivated, 3rd cylinder activated, 1st cylinder deactivated, 2nd cylinder activated, and 3rd cylinder. The engine is operated and stopped repeatedly in the order of stops, and cylinder reduction operation is performed while explosive combustion occurs at equal intervals. Therefore, uneven torque fluctuations can be avoided even during cylinder reduction operation, and temperature differences between the cylinders can also be avoided.

なお、減筒運転の手法としては、休止させるべ
き気筒に対して燃料の供給のみ停止(インジエク
タの燃料噴射を停止)するものがあるが、本発明
のように弁停止によつて燃焼室への吸気流入を遮
断する方が、ポンピングロス低減等の面で有利と
なる。そして、3気筒エンジンにおいて各気筒の
吸気バルブに対して一対の動弁機構30,40が
設けられ、その一方の動弁機構40が停止される
ようにすることにより、上記の各気筒の交互の弁
停止が、比較的簡単な構造で達成される。
Note that as a method for reducing cylinder operation, there is a method in which only the supply of fuel is stopped (stopping fuel injection from the injector) to the cylinder to be deactivated, but as in the present invention, it is possible to stop the fuel supply to the combustion chamber by stopping the valve. Blocking the inflow of intake air is more advantageous in terms of reducing pumping loss, etc. In a three-cylinder engine, a pair of valve mechanisms 30 and 40 are provided for the intake valves of each cylinder, and by stopping one of the valve mechanisms 40, the above-mentioned alternate operation of each cylinder is performed. Valve stop is achieved with a relatively simple construction.

以上のように、本発明の装置は、軽負荷時に、
3気筒エンジンにおける各気筒の爆発燃焼の作動
を1回間隔で停止し、かつ、エンジンの爆発燃焼
が一定クランク角おきに等間隔で行なわれるよう
にしているため、軽負荷時の減筒運転が円滑に行
なわれるとともに、減筒運転中にも特定の気筒が
停止し続けることがなくて気筒の温度低下が防止
され、その後の全気筒運転への移行時にも燃焼性
を良好にすることができる。その上とくに、各気
筒の吸気バルブの作動回数の半分ずつを担うよう
にした一対の動弁機構のうちの一方の動弁機構を
停止させることによつて各気筒への吸気流入を1
回おきに遮断する動弁機構停止手段と制御手段と
で気筒停止手段を構成しているため、ポンピング
ロス低減等に有利な弁停止で、かつ、上記のよう
に交互に停止させる減筒運転を、比較的簡単な構
造で達成することができるものである。
As described above, the device of the present invention can
In a three-cylinder engine, the operation of explosive combustion in each cylinder is stopped once at intervals, and the engine's explosive combustion is carried out at regular intervals at constant crank angles, making it possible to reduce the number of cylinders during light load operation. In addition to being carried out smoothly, a specific cylinder does not continue to stop even during reduced-cylinder operation, which prevents a drop in cylinder temperature, and improves combustion performance even when transitioning to full-cylinder operation. . In addition, in particular, by stopping one of the pair of valve mechanisms, each of which is responsible for half the number of times the intake valves in each cylinder operate, the inflow of intake air into each cylinder can be reduced by one.
Since the cylinder stopping means is composed of the valve train stopping means that shuts off every other cycle and the control means, the cylinder stopping means is advantageous for reducing pumping loss, etc., and the cylinder reduction operation in which the valves are stopped alternately as described above is possible. , which can be achieved with a relatively simple structure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は3気筒エンジンの概略図、第2図は本
発明装置の実施例を示す断面図、第3図は動弁機
構の概略斜視図、第4図はクランク軸と動弁機構
との間の伝動部分の概略図である。 1……エンジン本体、11,12,13……気
筒、20……負荷センサ、30,40……動弁機
構、60……動弁機構停止手段(気筒停止手段)。
Fig. 1 is a schematic diagram of a three-cylinder engine, Fig. 2 is a sectional view showing an embodiment of the device of the present invention, Fig. 3 is a schematic perspective view of the valve mechanism, and Fig. 4 is a diagram showing the relationship between the crankshaft and the valve mechanism. FIG. 1... Engine body, 11, 12, 13... Cylinder, 20... Load sensor, 30, 40... Valve mechanism, 60... Valve mechanism stopping means (cylinder stopping means).

Claims (1)

【特許請求の範囲】[Claims] 1 クランクアームが互いに120°間隔で配置され
てなる3気筒エンジンにおいて、エンジンの軽負
荷運転域を検出する軽負荷検出手段と、軽負荷時
に各気筒におけるそれぞれの爆発燃焼の作動を1
回間隔で停止し、かつ、エンジンの爆発燃焼が一
定クランク角おきに等間隔で行なわれるようにす
る気筒停止手段とを備え、この気筒停止手段は、
各気筒の吸気バルブの作動回数の半分ずつを担う
ようにした一対の動弁機構のうちの一方の動弁機
構を停止させることによつて各気筒への吸気流入
を1回おきに遮断する動弁機構停止手段と、上記
軽負荷検出手段からの信号に応じてこの動弁機構
停止手段を制御する制御手段とで構成されている
ことを特徴とする3気筒エンジンの気筒数制御装
置。
1. In a three-cylinder engine in which the crank arms are arranged at 120° intervals from each other, a light load detection means for detecting the light load operating range of the engine, and a light load detection means for detecting the operation of explosion combustion in each cylinder at light load.
cylinder stopping means for stopping the engine at regular intervals, and for causing explosion combustion of the engine to occur at regular intervals at constant crank angles, the cylinder stopping means:
An operation that shuts off the inflow of intake air to each cylinder every other time by stopping one of a pair of valve operating mechanisms that is responsible for half the number of times the intake valves of each cylinder operate. A cylinder number control device for a three-cylinder engine, comprising a valve mechanism stopping means and a control means for controlling the valve mechanism stopping means in response to a signal from the light load detecting means.
JP57183895A 1982-10-19 1982-10-19 Cylinder-number controlling apparatus for 3-cylinder engine Granted JPS5974343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57183895A JPS5974343A (en) 1982-10-19 1982-10-19 Cylinder-number controlling apparatus for 3-cylinder engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57183895A JPS5974343A (en) 1982-10-19 1982-10-19 Cylinder-number controlling apparatus for 3-cylinder engine

Publications (2)

Publication Number Publication Date
JPS5974343A JPS5974343A (en) 1984-04-26
JPH0338413B2 true JPH0338413B2 (en) 1991-06-10

Family

ID=16143688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57183895A Granted JPS5974343A (en) 1982-10-19 1982-10-19 Cylinder-number controlling apparatus for 3-cylinder engine

Country Status (1)

Country Link
JP (1) JPS5974343A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3358887B2 (en) * 1994-09-20 2002-12-24 本田技研工業株式会社 Cylinder number control internal combustion engine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57110732A (en) * 1980-12-26 1982-07-09 Nippon Soken Inc Method of controlling output of internal combustion engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57110732A (en) * 1980-12-26 1982-07-09 Nippon Soken Inc Method of controlling output of internal combustion engine

Also Published As

Publication number Publication date
JPS5974343A (en) 1984-04-26

Similar Documents

Publication Publication Date Title
JP3358887B2 (en) Cylinder number control internal combustion engine
JP4075846B2 (en) Variable valve operating system for multi-cylinder internal combustion engine
JP2006274951A (en) Four cycle spark ignition engine
JP3956783B2 (en) Control device for spark ignition engine
JP4103819B2 (en) Variable valve operating device for internal combustion engine
JPH0893515A (en) Valve gear characteristics and air-fuel ratio change-over control method in internal combustion engine
JPH05141336A (en) Ignition device for internal combustion engine
JP4024121B2 (en) Valve operating device for internal combustion engine
JP4104518B2 (en) Variable cylinder internal combustion engine
JP2009174432A (en) Engine intake/exhaust control method and engine intake/exhaust control device
KR970021677A (en) An internal combustion engine
JP4591300B2 (en) 4-cycle spark ignition engine
JPH0338413B2 (en)
JPH0623527B2 (en) Multi-cylinder internal combustion engine
JP2004011478A (en) Intake-air amount control method for internal combustion engine
JP4125441B2 (en) Internal combustion engine
JPS58190507A (en) Variable driving apparatus for internal-combustion engine
JP4165259B2 (en) Air-fuel ratio control device for internal combustion engine
JPS6213709A (en) Multicylinder internal-combustion engine
JP3885697B2 (en) Control device for spark ignition engine
JP2005344531A (en) Control device for internal combustion engine
JP3979196B2 (en) Control device for spark ignition engine
JP3815402B2 (en) Control device for spark ignition engine
JP2006112258A (en) Variable cycle type internal combustion engine
EP1472445B1 (en) Dual mode engine with controlled auto-ignition