JPH0338229B2 - - Google Patents

Info

Publication number
JPH0338229B2
JPH0338229B2 JP62282099A JP28209987A JPH0338229B2 JP H0338229 B2 JPH0338229 B2 JP H0338229B2 JP 62282099 A JP62282099 A JP 62282099A JP 28209987 A JP28209987 A JP 28209987A JP H0338229 B2 JPH0338229 B2 JP H0338229B2
Authority
JP
Japan
Prior art keywords
present
electrostriction
hysteresis
piezoelectric actuator
dielectric constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62282099A
Other languages
Japanese (ja)
Other versions
JPH01126266A (en
Inventor
Masaki Ishimori
Kenji Kumamoto
Kazuya Yakushinji
Mutsuo Munekata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Onoda Cement Co Ltd
Original Assignee
Onoda Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Onoda Cement Co Ltd filed Critical Onoda Cement Co Ltd
Priority to JP62282099A priority Critical patent/JPH01126266A/en
Publication of JPH01126266A publication Critical patent/JPH01126266A/en
Publication of JPH0338229B2 publication Critical patent/JPH0338229B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明はサブミクロンオーダーの超精密位置決
めに使用される圧電アクチユエータ素子に使用さ
れる圧電性磁器組成物に関する。 [従来の技術] 圧電アクチユエータ素子は第1図に記載するよ
うな積層構造を有しており、該素子に使用される
圧電性磁器組成物にはPb(Ni1/3Nb2/3)O3
PbTiO3−PbZrO3系、Pb(Mg1/3Nb2/3)O3
PbTiO3−PbZrO3系などのPbTiO3−PbZrO3を主
成分とし、複合ペロブスカイト等の第三成分を添
加した組成物が大きな電気歪を発生する材料とし
て使用されてきた。 ところが、近年、圧電アクチユエータ素子の小
型化、低電圧駆動化、高速駆動化が要求されるに
伴い、圧電アクチユエータ素子の低容量化が望ま
れるようになつた。そのため、素子の小型化、多
積層化、更に、積層間隔の薄肉化が進んできた。 [発明が解決しようとするる問題点] しかし、従来、アクチユエータ用材料として使
われてきたチタン酸ジルコン酸鉛系の磁器はその
組成が相境界の近くにあり、また、電気歪を大き
くするために第三成分として複合ペロブスカイト
を添加しているために、比誘電率が3000〜10000
と非常に高くなり、素子の多積層化、積層間隔の
薄肉化に伴い素子が大容量になり、高速駆動化す
る圧電アクチユエータ用材料としては不適であ
る。 更に、比誘電率が高いほど機械的品質係数Qm
が低くなるため、電圧印加に伴う分極反転、脱分
極の効果が大きく、電気歪のヒステリシス、ドリ
フトが大きくなる。また、温度特性が悪いという
欠点がある。 本発明の目的は従来の圧電アクチユエータ用材
料を使用した圧電アクチユエータ素子の大容量化
という問題点、更にはアクチユエータ素子の電気
歪のヒステリシス、ドリフトという問題点を解決
し、圧電アクチユエータ用材料として低比誘電率
で、更には電気歪のヒステリシス、ドリフトの小
さい材料を提供することにある。 [問題点を解決するための手段] 本発明者らは上述の問題点を解決すべく、鋭意
研究した結果、チタン酸鉛は比誘電率が120と低
いが、チタン酸鉛はその結晶異方性のために単独
では焼結できず、チタンの1部分を亜鉛とタンタ
ルで置き換えることによりチタン酸鉛の低比誘電
率を生かしたまま、1100〜1200℃という低温で焼
結可能な磁器が得られることを見出し、本発明を
完成するに至つた。 すなわち、本発明は一般式 Pb[Tix(Zn1/3Ta2/3)Y]O3 (式中、0.3≦X≦0.8、X+Y=1) で表されるアクチユエータ用圧電性磁器組成物に
係る。 [作用] 本発明のアクチユエータ用圧電性磁器組成物は
一般式Pb[TiX(Zn1/3Ta2/3)Y]O3(式中、0.3≦
X≦0.8、X+Y=1)で表される。すなわち、
チタン酸鉛のチタンの1部分を亜鉛とタンタルに
置き換えたものである。チタン/亜鉛及びタンタ
ルの合計量の比はTiX(Zu及びTaの合計量)Y
で表して0.3≦X≦0.8、X+Y=1である。ここ
で、チタンの割合すなわちXが0.3未満であると、
パイロクロア相が生成し易く、それによつて電気
歪が大きく低下するために好ましくなく、また、
Xが0.8を超えると、チタン酸鉛の異方性のため
に磁器組成物が焼結しにくくなるために好ましく
ない。なお、亜鉛とタンタルの割合は亜鉛1/
3、タンタル2/3である。 本発明のアクチユエータ用圧電性磁器組成物は
比誘電率が300〜400と低く、電気歪が大きい。更
に、本発明の磁器組成物は比誘電率が小さいため
に電気歪のヒステリシス、ドリフトが小さく、温
度特性も良く、アクチユエータ用材料として最適
である。 本発明の磁器組成物は通常のニユーセラミツク
ス製造法により得ることができる。例えば、
PbO、TiO2、ZnO、Ta2O5を上述の一般式に規
定した範囲内にあるように秤量し、混合する。次
に、得られた混合物を700〜900℃の温度範囲で仮
焼後、粉砕し、バインダーを少量添加して0.5〜
3トン/cm2、好ましくは1トン/cm2程度の圧力で
加圧成形する。この成形体を1100〜1200℃の温度
範囲で1〜4時間焼成することにより本発明の磁
器組成物を得ることができる。 なお、本発明の磁器組成物の原料としては、加
熱により上記酸化物に分解する化合物またはそれ
ら化合物相互の化合物も使用することができる。
これらの原料としては例えば炭酸塩、酢酸塩、硫
酸塩等を使用できる。 また、バインダーとしてはポリビニルアルコー
ル(PVA)等を使用することができる。 [実施例] 実施例 PbO、TiO2、ZnO、Ta2O5を出発原料とし、
第1表に示す組成になるように秤量し、ポツトミ
ルを用いて湿式混合した後、900℃で2時間仮焼
した。この仮焼粉末200gにバインダーとして
PVAを5g添加し、造粒後、1トン/cm2の成形
圧で直径20mm、厚さ2mmの円板に成形した。この
成形体を1100〜1200℃の温度で2時間焼成するこ
とにより円板状の焼結体(アクチユエータ用圧電
性磁器組成物)を得た。 次に、得られた焼結体の両面を研摩し、銀電極
を焼付けた後、分極処理をシリコンオイル中にお
いて80℃で50KV/cmの電界を30分間印加するこ
とにより行なつた。 これら試料の密度、容量を測定し、比誘電率を
求めると共に厚さ方向に20KV/cmの電界を印加
し、その時の変位量を測定した。
[Industrial Field of Application] The present invention relates to a piezoelectric ceramic composition used in a piezoelectric actuator element used for ultra-precise positioning on the order of submicrons. [Prior Art] A piezoelectric actuator element has a laminated structure as shown in FIG. 3
PbTiO 3 −PbZrO 3 system, Pb(Mg 1/3 Nb 2/3 )O 3
Compositions containing PbTiO 3 -PbZrO 3 as a main component such as PbTiO 3 -PbZrO 3 system and adding a third component such as composite perovskite have been used as materials that generate large electrostriction. However, in recent years, as piezoelectric actuator elements have been required to be smaller, driven at lower voltages, and driven at higher speeds, it has become desirable to reduce the capacitance of piezoelectric actuator elements. For this reason, progress has been made in making devices smaller, increasing the number of layers, and thinning the spacing between the layers. [Problems to be Solved by the Invention] However, lead zirconate titanate-based porcelain, which has been conventionally used as a material for actuators, has a composition near the phase boundary, and also increases electrostriction. Because composite perovskite is added as a third component, the dielectric constant is 3000 to 10000.
This makes it extremely expensive, and as elements become multi-layered and the spacing between layers becomes thinner, the capacity of the element increases, making it unsuitable as a material for piezoelectric actuators that are driven at high speeds. Furthermore, the higher the dielectric constant, the higher the mechanical quality factor Qm
As the voltage becomes lower, the effect of polarization inversion and depolarization accompanying voltage application becomes large, and the hysteresis and drift of electrostriction become large. It also has the disadvantage of poor temperature characteristics. The purpose of the present invention is to solve the problems of increasing the capacity of piezoelectric actuator elements using conventional piezoelectric actuator materials, as well as the problems of electrostrictive hysteresis and drift of actuator elements, and to solve the problems of increasing the capacity of piezoelectric actuator elements using conventional piezoelectric actuator materials. The object of the present invention is to provide a material with low dielectric constant and low electrostriction hysteresis and drift. [Means for Solving the Problems] In order to solve the above-mentioned problems, the present inventors conducted intensive research and found that lead titanate has a low dielectric constant of 120, but lead titanate has a low crystal anisotropy. Due to its nature, it cannot be sintered alone, but by replacing a portion of titanium with zinc and tantalum, it is possible to create porcelain that can be sintered at low temperatures of 1100 to 1200℃ while taking advantage of the low dielectric constant of lead titanate. The present invention was completed based on this discovery. That is, the present invention provides a piezoelectric ceramic composition for actuators represented by the general formula Pb[Tix(Zn 1/3 Ta 2/3 )Y]O 3 (wherein, 0.3≦X≦0.8, X+Y=1). Related. [Function] The piezoelectric ceramic composition for actuators of the present invention has the general formula Pb[TiX(Zn 1/3 Ta 2/3 )Y]O 3 (where 0.3≦
X≦0.8, X+Y=1). That is,
Part of the titanium in lead titanate is replaced with zinc and tantalum. The ratio of the total amount of titanium/zinc and tantalum is TiX (total amount of Zu and Ta) Y
It is expressed as 0.3≦X≦0.8, and X+Y=1. Here, if the proportion of titanium, that is, X is less than 0.3,
It is unfavorable because a pyrochlore phase is likely to be generated, which greatly reduces electrostriction, and
If X exceeds 0.8, it is not preferable because the anisotropy of lead titanate makes it difficult to sinter the ceramic composition. In addition, the ratio of zinc and tantalum is zinc 1/
3. It is 2/3 tantalum. The piezoelectric ceramic composition for actuators of the present invention has a low dielectric constant of 300 to 400 and a large electrostriction. Furthermore, the ceramic composition of the present invention has a small dielectric constant, so it has small electrostrictive hysteresis and drift, and has good temperature characteristics, making it ideal as a material for actuators. The porcelain composition of the present invention can be obtained by a conventional new ceramic manufacturing method. for example,
PbO, TiO 2 , ZnO, and Ta 2 O 5 are weighed and mixed within the range specified by the above general formula. Next, the resulting mixture is calcined at a temperature range of 700 to 900°C, then ground, and a small amount of binder is added to
Pressure molding is carried out at a pressure of about 3 tons/cm 2 , preferably about 1 ton/cm 2 . The porcelain composition of the present invention can be obtained by firing this molded body at a temperature range of 1100 to 1200°C for 1 to 4 hours. In addition, as a raw material for the ceramic composition of the present invention, it is also possible to use compounds that decompose into the above-mentioned oxides when heated, or mutual compounds of these compounds.
As these raw materials, for example, carbonates, acetates, sulfates, etc. can be used. Furthermore, polyvinyl alcohol (PVA) or the like can be used as the binder. [Example] Example Using PbO, TiO 2 , ZnO, Ta 2 O 5 as starting materials,
The compositions were weighed so as to have the compositions shown in Table 1, wet mixed using a pot mill, and then calcined at 900°C for 2 hours. 200g of this calcined powder as a binder
After adding 5 g of PVA and granulating it, it was molded into a disk with a diameter of 20 mm and a thickness of 2 mm at a molding pressure of 1 ton/cm 2 . This molded body was fired at a temperature of 1100 to 1200° C. for 2 hours to obtain a disk-shaped sintered body (piezoelectric ceramic composition for actuator). Next, both sides of the obtained sintered body were polished and silver electrodes were baked, and then polarization treatment was carried out in silicone oil by applying an electric field of 50 KV/cm at 80° C. for 30 minutes. The density and capacitance of these samples were measured, and the relative dielectric constant was determined. An electric field of 20 KV/cm was applied in the thickness direction, and the amount of displacement at that time was measured.

【表】 *印は比較例を表す。
得られた結果を第1表に併記する。第1表から
明らかなように、本発明の磁器組成物(試料No.3
〜13)の比誘電率が150〜400と低く、電気歪が
2.0×10-4〜8.0×10-4と大きい材料である。 これに対してXが0.90、0.85である比較品で
は、焼結しなかつたり(試料No.1)、焼結しても
分極操作で破壊する(試料No.2)。 また、Xが0.25、0.20、0.10である比較品では、
変位が起こらなかつたり(試料No.15及び16)、変
位が起こつたとしても小さい(試料No.14)。 また、一例として第2図A及びBに従来品と本
発明品(試料No.8)の電気歪のヒステリシスの様
子を示す。第2図A及びBから明らかなように従
来品に比較して本発明品は変位が直線的になり、
ヒステリシスが大幅に改善されていることがわか
る。 [発明の効果] 本発明のアクチユエータ用圧電性磁器組成物を
使用して圧電アクチユエータ素子を作成すれば、
小型低容量・低電圧駆動・大変位の圧電アクチユ
エータを得ることができる。更には、圧電アクチ
ユエータ素子の電気歪のヒステリシス、ドリフ
ト、温度特性も改良することができる。
[Table] *marks indicate comparative examples.
The obtained results are also listed in Table 1. As is clear from Table 1, the porcelain composition of the present invention (Sample No. 3
~13) has a low dielectric constant of 150 to 400, and has a low electrostriction.
It is a large material with a size of 2.0×10 -4 to 8.0×10 -4 . On the other hand, comparative products with X of 0.90 and 0.85 either do not sinter (Sample No. 1), or are destroyed by polarization even if sintered (Sample No. 2). In addition, for comparison products where X is 0.25, 0.20, and 0.10,
No displacement occurred (Samples No. 15 and 16), or even if displacement occurred, it was small (Sample No. 14). As an example, FIGS. 2A and 2B show the electrostriction hysteresis of the conventional product and the product of the present invention (sample No. 8). As is clear from FIGS. 2A and B, the displacement of the product of the present invention is linear compared to the conventional product,
It can be seen that the hysteresis has been significantly improved. [Effects of the Invention] If a piezoelectric actuator element is created using the piezoelectric ceramic composition for actuators of the present invention,
A small, low capacity, low voltage drive, large displacement piezoelectric actuator can be obtained. Furthermore, the electrostrictive hysteresis, drift, and temperature characteristics of the piezoelectric actuator element can also be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は積層アクチユエータ素子の概略図であ
り、第2図Aは従来品の電気歪のヒステリシスを
示すグラフであり、第2図Bは本発明品(試料No.
8)の電気歪のヒステリシスを示すグラフであ
る。 図中、1…内部電極、2…外部電極、3…絶縁
体。
FIG. 1 is a schematic diagram of a laminated actuator element, FIG. 2A is a graph showing the electrostriction hysteresis of a conventional product, and FIG. 2B is a graph of a product of the present invention (sample No.
8) is a graph showing electrostriction hysteresis. In the figure, 1... internal electrode, 2... external electrode, 3... insulator.

Claims (1)

【特許請求の範囲】 1 一般式 Pb[Tix(Zn1/3Ta2/3)Y]O3 (式中、0.3≦x≦0.8、X+Y=1) で表されるアクチユエータ用圧電性磁器組成物。[Claims] 1. Piezoelectric ceramic composition for actuator represented by the general formula Pb[Tix(Zn 1/3 Ta 2/3 )Y]O 3 (wherein, 0.3≦x≦0.8, X+Y=1) thing.
JP62282099A 1987-11-10 1987-11-10 Piezo-electric ceramics composition for actuator Granted JPH01126266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62282099A JPH01126266A (en) 1987-11-10 1987-11-10 Piezo-electric ceramics composition for actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62282099A JPH01126266A (en) 1987-11-10 1987-11-10 Piezo-electric ceramics composition for actuator

Publications (2)

Publication Number Publication Date
JPH01126266A JPH01126266A (en) 1989-05-18
JPH0338229B2 true JPH0338229B2 (en) 1991-06-10

Family

ID=17648112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62282099A Granted JPH01126266A (en) 1987-11-10 1987-11-10 Piezo-electric ceramics composition for actuator

Country Status (1)

Country Link
JP (1) JPH01126266A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111087238B (en) * 2019-12-30 2021-12-31 潍坊歌尔微电子有限公司 Sodium bismuth titanate based leadless piezoelectric ceramic and preparation method thereof

Also Published As

Publication number Publication date
JPH01126266A (en) 1989-05-18

Similar Documents

Publication Publication Date Title
JP4929522B2 (en) Piezoelectric ceramic composition
EP3000795A1 (en) Piezoelectric composition, piezoelectric element and sputtering target
CN103172374A (en) Piezoelectric ceramic and piezoelectric device
JPH11292625A (en) Production of piezoelectric ceramic
US11296273B2 (en) Piezoelectric composition and piezoelectric device
WO2017203211A1 (en) Temperature stable lead-free piezoelectric/electrostrictive materials with enhanced fatigue resistance
KR930002641B1 (en) Ferroelectric ceramics
US5788876A (en) Complex substituted lanthanum-lead-zirconium-titanium perovskite, ceramic composition and actuator
US20150102253A1 (en) Piezoelectric materials for low sintering
JPH0566896B2 (en)
JPH0338229B2 (en)
JP3384048B2 (en) Piezoelectric ceramic composition
JP2006193414A (en) Method for producing piezoelectric ceramic and method for producing piezoelectric element
JP2567913B2 (en) Ferroelectric ceramics
JPH0687652A (en) Piezoelectric material
KR102540032B1 (en) Piezoelectric ceramic laminate
JP2567914B2 (en) Ferroelectric ceramics
JP3554395B2 (en) Piezoelectric material
JP2862086B2 (en) Piezoelectric porcelain composition for actuator
JP2580257B2 (en) Ferroelectric ceramics
JP2001302343A (en) Piezoelectric ceramic composition
KR100246241B1 (en) Piezoelectric ceramic composition
JPH0478582B2 (en)
JPH11278929A (en) Porcelain composition for integrally baked type laminated piezoelectric actuator
JPH0469108B2 (en)