JPH0337742B2 - - Google Patents

Info

Publication number
JPH0337742B2
JPH0337742B2 JP56168091A JP16809181A JPH0337742B2 JP H0337742 B2 JPH0337742 B2 JP H0337742B2 JP 56168091 A JP56168091 A JP 56168091A JP 16809181 A JP16809181 A JP 16809181A JP H0337742 B2 JPH0337742 B2 JP H0337742B2
Authority
JP
Japan
Prior art keywords
photoelectric conversion
signal
conversion device
output
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56168091A
Other languages
Japanese (ja)
Other versions
JPS5868967A (en
Inventor
Katsunori Hatanaka
Shunichi Uzawa
Yutaka Hirai
Naoki Ayada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP56168091A priority Critical patent/JPS5868967A/en
Publication of JPS5868967A publication Critical patent/JPS5868967A/en
Publication of JPH0337742B2 publication Critical patent/JPH0337742B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Facsimile Heads (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光情報信号を光電変換して電気信号と
して出力する光電変換装置に関するものであり、
特にフアクシミリ、デジタル複写機、レーザ記録
装置等の文字及び画像入力装置等に適した固体光
電変換装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a photoelectric conversion device that photoelectrically converts an optical information signal and outputs it as an electric signal.
In particular, the present invention relates to a solid-state photoelectric conversion device suitable for character and image input devices such as facsimiles, digital copying machines, and laser recording devices.

〔従来技術及び発明が解決しようとする課題〕[Prior art and problems to be solved by the invention]

従来の光電変換装置は光電変換機能を有する光
電変換要素(画素)群と、該光電変換要素群から
出力される電気信号を順次時系列に配列された形
で取り出す走査機能をもつ回路とを包含するもの
で、フオトダイオードとMOS・FET(Field
Effect Transistor)を構成要素として包含する
もの(「MOSタイプ」と略記する)或いはCCD
(Charge Coupled Device)やBBD(Backet
Brigade Device)、すなわち所謂CTD(Charge
Transfer Device)を構成要素として包含するも
の(「CTDタイプ」と略記する)等々各種の方式
がある。
A conventional photoelectric conversion device includes a group of photoelectric conversion elements (pixels) that have a photoelectric conversion function, and a circuit that has a scanning function that sequentially extracts electrical signals output from the group of photoelectric conversion elements in a chronologically arranged form. photodiode and MOS/FET (Field
(abbreviated as "MOS type") or CCD
(Charge Coupled Device) and BBD (Backet
Brigade Device), so-called CTD (Charge Device)
There are various methods, such as those that include (abbreviated as ``CTD type'') a ``Transfer Device'' as a component.

而乍ら、これ等MOSタイプにしろCTDタイプ
にしろSi単結晶(C−Siと略記する)ウエーハー
基板を使用する為に、光電変換部の受光面の面積
は、C−Siウエーハー基板の大きさで限定されて
仕舞う。即ち、現時点に於いては、全領域に於け
る均一性も含めると精々数インチ程度の大きさの
C−Siウエーハー基板が製造され得るに過ぎない
為に、この様なC−Siウエーハー基板を使用する
MOSタイプ或いはCTDタイプをその構成要素と
する光電変換装置に於いては、その受光面は、先
のC−Siウエーハー基板の大きさを越え得るもの
ではない。
However, since both MOS and CTD types use Si single crystal (abbreviated as C-Si) wafer substrates, the area of the light-receiving surface of the photoelectric conversion section is the same as the size of the C-Si wafer substrate. It ends up being limited. That is, at present, it is possible to manufacture C-Si wafer substrates with a size of several inches at most, including uniformity in the entire area. use
In a photoelectric conversion device whose components are MOS type or CTD type, its light receiving surface cannot exceed the size of the aforementioned C-Si wafer substrate.

従つて、受光面がこの様な限られた小面積であ
る光電変換部を有する光電変換装置では、例えば
デイジタル複写機の光情報入力装置として適用す
る場合、縮小倍率の大きい光学系を複写しようと
する原稿と受光面との間に介在させ、該光学系を
介して原稿の光学像を受光面に結像させる必要が
ある。
Therefore, in a photoelectric conversion device having a photoelectric conversion section whose light receiving surface has such a limited and small area, when used as an optical information input device of a digital copying machine, for example, it is difficult to copy an optical system with a large reduction magnification. It is necessary to interpose an optical image of the document on the light receiving surface via the optical system.

この様な場合、以下に述べる様に解像度を高め
る上で技術的な限度がある。
In such a case, there are technical limits to increasing the resolution, as described below.

即ち、光電変換装置の解像度が例えば10本/
mm、受光面の長手方向の長さが3cmであるとし、
A4サイズの原稿を複写しようとする場合、受光
面に結像される原稿の光学像は約1/69に縮小さ
れ、A4原稿に対する前記光電変換装置の実質的
な解像度は約1.5本/mmに低下して仕舞う。この
様に実質的な解像度は、複写しようとする原稿の
サイズが大きくなるに従つて、(受光面のサイ
ズ)/(原稿のサイズ)の割合で低下する。
In other words, the resolution of the photoelectric conversion device is, for example, 10 lines/
mm, and the length of the light receiving surface in the longitudinal direction is 3 cm,
When attempting to copy an A4 size original, the optical image of the original formed on the light receiving surface is reduced to approximately 1/69, and the actual resolution of the photoelectric conversion device for the A4 original is approximately 1.5 lines/mm. It will decline and end. As described above, as the size of the original to be copied increases, the actual resolution decreases at the ratio of (size of light-receiving surface)/(size of original).

従つて、この点を解決するには、この様な方式
に於いては、光電変換装置の解像度を高める製造
技術が要求されるが、先の様な限られた小面積で
基板を使用して要求される解像度を得るには、集
積密度を極めて高くし且つ構成素子に欠陥がない
様にして製造しなければならないが、斯かる製造
技術にも自づと限度がある。
Therefore, in order to solve this problem, manufacturing technology that increases the resolution of the photoelectric conversion device is required in such a method, but it is difficult to use a manufacturing technology that increases the resolution of the photoelectric conversion device. In order to obtain the required resolution, devices must be manufactured with extremely high integration densities and with defect-free components, but such manufacturing techniques have their own limitations.

他方光電変換装置を複数配置して、全受光面の
長手方向の長さが複写し得る最大サイズの原稿の
主走査方向の長さと1:1になる様にし、結像さ
れる原稿の光学像を光電変換装置の数に分割して
実質的な解像度の低下を避けようとする方法が提
案されている。
On the other hand, a plurality of photoelectric conversion devices are arranged so that the length in the longitudinal direction of all light-receiving surfaces is 1:1 with the length in the main scanning direction of the maximum size document that can be copied, and an optical image of the document to be imaged is formed. A method has been proposed in which the resolution is divided into a number of photoelectric conversion devices to avoid a substantial drop in resolution.

而乍ら、斯かる方式に於いても、次に述べる様
な不都合さがある。即ち、光電変換装置を複数配
置すると必然的に各光電変換装置間に受光面の存
在しない境界領域が生じ、全体的に見る場合、受
光面は連続的でなくなつて仕舞い、原稿の結像さ
れる光学像は分断され、且つ境界領域に相当する
部分は、光電変換装置の受光面に入力されず、複
写されて来る画像は線状に白抜けした或いは線状
に白抜けする部分に相当する部分が除かれて結合
された不完全なものとなる。又、複数の受光面に
分割されて結像された光学像は、各受光面に於い
て各々光学的反転像となつている為、全体像は原
稿像の光学的反転像とは異なつている。従つて、
受光面に結像された光学像をそのまま再生したの
では元の原稿像を再現することは出来ない。
However, even in such a method, there are disadvantages as described below. In other words, when a plurality of photoelectric conversion devices are arranged, a boundary area where no light-receiving surface exists is inevitably created between each photoelectric conversion device, and when viewed as a whole, the light-receiving surface is no longer continuous and the image of the document is not formed. The optical image is divided, and the portion corresponding to the boundary area is not input to the light-receiving surface of the photoelectric conversion device, and the copied image corresponds to a line-shaped white spot or a line-shaped white spot. Parts are removed and combined into an incomplete product. Furthermore, since the optical image that is divided into multiple light-receiving surfaces and formed is an optically reversed image on each light-receiving surface, the overall image is different from the optically reversed image of the original image. . Therefore,
If the optical image formed on the light-receiving surface is reproduced as it is, the original original image cannot be reproduced.

この様に、従来の光電変換装置に於いては、そ
の受光面が小さい為に高解像度で情報を再現する
のは極めて困難であつた。
As described above, in conventional photoelectric conversion devices, it has been extremely difficult to reproduce information with high resolution because the light receiving surface is small.

従つて、長尺化された受光面を有し、且つ解像
性に優れた光電変換部を有する光電変換装置が望
まれている。殊にフアクシミリやデジタル複写機
の光情報入力装置、或いはその他の、原稿に書か
れた文字や像を読取る画像読取装置に適用するも
のとしては、再生される原稿のサイズに略々等し
い受光面を有し、再生像に要求される解像度を低
下させず、原稿を忠実に再生させ得る光電変換部
を具備した光電変換装置が不可欠である。
Therefore, there is a demand for a photoelectric conversion device having a photoelectric conversion section having an elongated light-receiving surface and excellent resolution. In particular, when applied to optical information input devices of facsimiles, digital copying machines, or other image reading devices that read characters and images written on originals, it is recommended to use a light-receiving surface that is approximately the same size as the original that is to be reproduced. A photoelectric conversion device equipped with a photoelectric conversion section that can faithfully reproduce a document without reducing the resolution required for a reproduced image is essential.

〔発明の目的〕[Purpose of the invention]

本発明は上記の諸点に鑑み成されたものであつ
て、その目的とするところは、長尺化された受光
面を有し且つ高解像度化、高感度化された光電変
換部を具備し、極めて軽量化された光電変換装置
を提供することにある。
The present invention has been made in view of the above points, and its object is to provide a photoelectric conversion section having an elongated light-receiving surface and having high resolution and high sensitivity. An object of the present invention is to provide a photoelectric conversion device that is extremely lightweight.

本発明の別の目的は、増幅手段に多結晶シリコ
ンを利用して長尺化が容易で且つ高速動作や高増
幅率の固体光電変換装置を提供することにある。
Another object of the present invention is to provide a solid-state photoelectric conversion device that uses polycrystalline silicon for the amplification means, can be easily made long, operates at high speed, and has a high amplification factor.

更に本発明の他の目的は各素子の環境特性のバ
ラツキを補償し且つ素子同士の干渉の影響を防止
できる長尺化に適した低雑音の固体光電変換装置
を提供することにある。
Another object of the present invention is to provide a low-noise solid-state photoelectric conversion device suitable for increasing length, which can compensate for variations in environmental characteristics of each element and prevent the influence of interference between elements.

上述した目的は光電変換素子の複数と:各光電
変換素子毎に電気的に接続され、該光電変換素子
への入射光量に応じて該光電変換素子より出力さ
れる信号に応じて増幅された信号を出力する信号
増幅手段としての半導体層が多結晶シリコンから
なる半導体素子の複数と:各光電変換素子毎に設
けられ、各光電変換素子の環境特性を補償する為
のシリコン半導体薄膜を有する補償手段の複数
と:各信号増幅手段毎に設けられ、各信号増幅手
段より出力される信号がクロストークするのを防
止する為のクロストーク防止手段の複数と:を具
備する光電変換信号出力ユニツトの複数と、前記
複数の信号増幅手段を各ユニツト毎に排他的に選
択するユニツト選択信号を伝送するユニツト駆動
配線と、各ユニツトに於ける同位の信号増幅手段
の出力信号を伝送する共通化された信号出力配線
と、が同一基板上に一体的に設けられていること
を特徴とする固体光電変換装置により達成され
る。
The above-mentioned purpose is to connect a plurality of photoelectric conversion elements: each photoelectric conversion element is electrically connected, and a signal is amplified according to the signal output from the photoelectric conversion element according to the amount of light incident on the photoelectric conversion element. a plurality of semiconductor elements whose semiconductor layers are made of polycrystalline silicon as signal amplification means for outputting: a compensation means provided for each photoelectric conversion element and having a silicon semiconductor thin film for compensating the environmental characteristics of each photoelectric conversion element; A plurality of photoelectric conversion signal output units comprising: a plurality of crosstalk prevention means provided for each signal amplification means to prevent crosstalk between signals output from each signal amplification means; and a plurality of photoelectric conversion signal output units comprising: , unit drive wiring for transmitting a unit selection signal for exclusively selecting the plurality of signal amplification means for each unit, and a common signal for transmitting the output signal of the signal amplification means of the same rank in each unit. This is achieved by a solid-state photoelectric conversion device characterized in that the output wiring and the output wiring are integrally provided on the same substrate.

特に、光電変換層を非晶質シリコンにて形成す
れば光吸収係数に基づき光電変換能の優れたもの
になる。
In particular, if the photoelectric conversion layer is formed of amorphous silicon, it will have excellent photoelectric conversion ability based on the light absorption coefficient.

更に、本発明の好適な実施態様例に於いては、
前記光電変換素子を構成する構成要素としての光
電変換機能を有する半導体部は、非晶質シリコン
(以後「A−Si」と略記する)の半導体薄膜、又
は、多結晶シリコン(以後「poly−Si」と略記す
る)の半導体薄膜で構成される。殊に、本発明に
於いては、前記信号増幅手段の半導体部がpoly−
Siの半導体薄膜で構成されることから、前記光電
変換素子の半導体部も好ましくはpoly−Siの半導
体薄膜で構成するのが生産性・量産性のより一層
の向上と信頼性の向上から望ましいものである。
Furthermore, in a preferred embodiment of the present invention,
The semiconductor portion having a photoelectric conversion function as a component constituting the photoelectric conversion element is a semiconductor thin film of amorphous silicon (hereinafter abbreviated as "A-Si") or polycrystalline silicon (hereinafter abbreviated as "poly-Si"). It consists of a semiconductor thin film (abbreviated as ")". In particular, in the present invention, the semiconductor portion of the signal amplification means is made of poly-
Since it is composed of a semiconductor thin film of Si, it is desirable that the semiconductor part of the photoelectric conversion element is also preferably composed of a thin semiconductor film of poly-Si, from the viewpoint of further improving productivity and mass production, and improving reliability. It is.

〔実施態様例の説明〕[Description of implementation examples]

以下本発明に於ける走査回路の説明を行う。第
1図に本発明に於ける第1の実施態様例の走査回
路を掲げる。A4短手方向に約8画素/mmの密度
の画像読み取りを実現する為に必要な1728(54×
32)の光導電素子S1-0〜S5-31は外部バイアス電
源VB1により給電される。また光導電素子と同一
物質で形成されるかもしくは同一環境特性(例え
ば温度、湿度等)を有し前記光導電素子の変化を
補償する特性を持つた補償手段としての補償用素
子W1-0〜W54-31は外部バイアス電源VB2によつて
給電される。従つて前記光導電素子と補償用素子
との接続点電位は光導電素子への入射光量に対応
した環境条件に対して補償された値を取る事にな
る。
The scanning circuit according to the present invention will be explained below. FIG. 1 shows a scanning circuit according to a first embodiment of the present invention. 1728 (54×
32) photoconductive elements S 1-0 to S 5-31 are powered by an external bias power supply V B1 . Also, a compensation element W 1-0 as a compensation means, which is formed of the same material as the photoconductive element or has the same environmental characteristics (for example, temperature, humidity, etc.) and has characteristics to compensate for changes in the photoconductive element. ~W 54-31 is powered by an external bias power supply V B2 . Therefore, the potential at the connection point between the photoconductive element and the compensation element takes a value compensated for the environmental conditions corresponding to the amount of light incident on the photoconductive element.

選択可能な信号増幅手段としての増幅用MOS
(又はMIS)トランジスタA1-0〜A54-31の32個毎
に共通のドレイン側配線、例えばブロツク駆動線
b1に排他的に電圧を供給すれば、前記接続点の電
位に応じて増幅用MOS(又はMIS)トランジスタ
はバイアスされている事になり、各増幅用MOS
(又はMIS)トランジスタは個々に対応して接続
されている光導電素子への入射光量に対応したチ
ヤンネル抵抗を持つ事になる。従つて自動的に個
別データ線D0〜D31上へは光導電素子S1-0〜S1-31
への入射光量に対応した信号電流が出力される事
になる。上述の動作を確保する為には個別データ
線D0〜D31は電流増幅器等の低インピーダンス入
力回路へ接続すべきは自明の事である。ここでク
ロストーク防止手段としての電流分離用ダイオー
ドR1-0〜R54-31は個別データ線に接続された増幅
用MOS(又はMIS)トランジスタ間の信号分離を
(特に非選択時に)確実にする為に設けられてい
る。
Amplification MOS as selectable signal amplification means
(or MIS) A common drain side wiring for every 32 transistors A 1-0 to A 54-31 , such as a block drive line.
If voltage is exclusively supplied to b 1 , the amplification MOS (or MIS) transistor will be biased according to the potential of the connection point, and each amplification MOS
(or MIS) transistors each have a channel resistance that corresponds to the amount of light incident on the photoconductive element to which it is connected. Therefore, the photoconductive elements S 1-0 to S 1-31 are automatically transferred onto the individual data lines D 0 to D 31 .
A signal current corresponding to the amount of incident light is output. It is obvious that in order to ensure the above operation, the individual data lines D 0 to D 31 should be connected to a low impedance input circuit such as a current amplifier. Here, the current separation diodes R 1-0 to R 54-31 as crosstalk prevention means ensure signal separation between the amplifying MOS (or MIS) transistors connected to the individual data lines (especially when not selected). It is set up for the purpose of

また選択可能な増幅素子と同じもしくは似た環
境特性(主としてトランジスタスレツシヨルド電
圧等で)を持つならば適当なVB1、VB2の値の選
択によつて増幅素子の環境特性も補償可能な事は
明白であり、特に後述の増幅用素子と光導電性素
子及び補償用素子が同一テクノロジによつて製作
される場合には大きな効果が生まれる。
Furthermore, if the environmental characteristics of the selectable amplifying element are the same or similar (mainly transistor threshold voltage, etc.), it is possible to compensate for the environmental characteristics of the amplifying element by selecting appropriate values of V B1 and V B2 . This is obvious, especially when the amplifying element, the photoconductive element, and the compensating element, which will be described later, are manufactured using the same technology.

第2の実施態様例の走査回路を第2図に掲げ
る。第1図に示した第1の例は入射光量の読み出
し精度を多く要求しない場合、もしくは増幅用と
して使用するトランジスタが同一ロツト製品で伝
達特性、特にスレツシヨルド電圧の分布が小さい
場合等には十分な効果が期待でき、回路も簡単で
ある。しかしながら特に高い精度で光量情報を読
み取る場合等には前記伝達特性の分布が問題に成
る場合がある。第2図に示した例は上記の問題を
解決する為に増幅用トランジスタA1-0〜A54-31
各ソース回路に抵抗F1-0〜F54-31を挿入し、電流
帰還によつて複合した伝達特性の均一化を実現し
た例である。回路動作の説明は増幅用トランジス
タの動作に電流帰還を利用した負帰還を作用させ
る事が理解されれば、第1図に示す第1の実施態
様例の走査回路の説明から明らかである。
A scanning circuit according to a second embodiment is shown in FIG. The first example shown in Figure 1 is sufficient when high accuracy in reading out the amount of incident light is not required, or when the transistors used for amplification are products of the same lot and the transfer characteristics, especially the distribution of the threshold voltage, are small. It is expected to be effective and the circuit is simple. However, especially when reading light amount information with high accuracy, the distribution of the transfer characteristics may become a problem. In the example shown in Figure 2, in order to solve the above problem, resistors F 1-0 to F 54-31 are inserted into the source circuits of the amplification transistors A 1-0 to A 54-31 , and the current feedback is This is an example of achieving uniformity of complex transfer characteristics. The explanation of the circuit operation will be clear from the explanation of the scanning circuit of the first embodiment shown in FIG. 1, if it is understood that negative feedback using current feedback is applied to the operation of the amplifying transistor.

本発明に於ける第3の実施態様例の走査回路例
を第3図aに、その変形例を第3図bに掲げる。
これ等の例では前記の電流帰還を実現する素子と
して抵抗の代わりに非線形動作素子であるトラン
ジスタP1-0〜P54-31(図に一部のみを掲載)を用
い、また増幅用トランジスタA1-0〜A54-31のドレ
イン側共通線からの分離手段としてMOS(又は
MIS)トランジスタT1-0〜T54-31を用いており、
特に増幅用トランジスタA1-0〜A54-31、電流帰還
用トランジスタP1-0〜P54-31及び信号分離用トラ
ンジスタT1-0〜T54-31とを同一テクノロジーで製
作される素子で構成する事により容易に集積化出
来るという大きな効果が生まれる。
An example of a scanning circuit according to the third embodiment of the present invention is shown in FIG. 3a, and a modification thereof is shown in FIG. 3b.
In these examples, transistors P 1-0 to P 54-31 (only a part of which are shown in the figure), which are nonlinear operating elements, are used instead of resistors as elements to realize the current feedback, and an amplification transistor A is used. MOS ( or
MIS) transistors T 1-0 to T 54-31 are used,
In particular, the amplification transistors A 1-0 to A 54-31 , the current feedback transistors P 1-0 to P 54-31 , and the signal separation transistors T 1-0 to T 54-31 are manufactured using the same technology. By configuring this, a great effect is produced that it can be easily integrated.

更に第3図aの場合には電流帰還用トランジス
タP1-0〜P54-31への共通ゲートへのバイアス電源
VGよりの給電電圧を変える事により複合して伝
達特性をプログラム出来る特徴を有する。種々の
共通ゲートバイアス値に対する伝達特性の変化を
第4図に示す。
Furthermore, in the case of Fig. 3a, the bias power supply to the common gate of the current feedback transistors P 1-0 to P 54-31 is applied.
It has the feature that the transfer characteristics can be programmed in combination by changing the power supply voltage from V G. FIG. 4 shows the change in transfer characteristics for various common gate bias values.

以上述べた走査回路では常に光導電素子からの
出力信号を増幅(上記例では電流に変換増幅して
いる)してマトリツクス配線部に信号を送り出し
ている。一般に光導電素子の導電率は可成り低
く、また本発明の光電変換装置の主なる用途であ
るデイジタル複写機、フアクシミリ等で要求され
る長尺化された画像読み取り装置への応用に於い
ては、広いマトリツクス配線を要求され、微弱な
電気信号を長い配線を通して処理する事になり、
良好なSN比を期待出来ぬ場合が多い。本発明の
大きな特徴の一つは上例の様に光導電素子の出力
信号を選択する選択素子に増幅作用を持たせてお
り、上記のマトリツクス配線を低インピーダンス
で駆動出来る事になり雑音等の悪影響を大きく低
減せしめた事にある。
The above-described scanning circuit always amplifies the output signal from the photoconductive element (in the above example, converts and amplifies it into a current) and sends the signal to the matrix wiring section. In general, the conductivity of photoconductive elements is quite low, and when applied to elongated image reading devices required for digital copying machines, facsimiles, etc., which are the main uses of the photoelectric conversion device of the present invention, , a wide matrix wiring is required, and weak electrical signals must be processed through long wiring.
In many cases, a good signal-to-noise ratio cannot be expected. One of the major features of the present invention is that, as shown in the above example, the selection element that selects the output signal of the photoconductive element has an amplifying effect, and the above matrix wiring can be driven with low impedance, reducing noise and other noise. This has greatly reduced the negative impact.

第5図に本発明の光電変換装置の構成の模式的
説明図を示す。ガラス等の透明な基板50上に一
列に作られた光導電素子群(素子構造は後述)
SB1〜SB54は、やはり同じ基板上に薄膜技術で形
成された電極配線を通して集積化された走査回路
I1〜I54(図には一部のみが示される)にワイヤ・
ボンデイングに依つて接続されている。また走査
回路I1〜I54からの出力線もやはりワイヤ・ボンデ
イングによつて基板50上に蒸着法で形成された
電極に接続されマトリツクス配線部51に導か
れ、最終的に出力用電極に連結される。駆動線b1
〜b54等外部制御線もやはり基板50上の薄膜電
極配線を通して走査回路I1〜I54に導かれる。本実
施例で示されるハイブリツト構造の光電変換素子
も以下の実施例で示されるモノリシツク構造に於
ける光導電素子と同一構造を有するので、その際
に詳細に説明される。
FIG. 5 shows a schematic explanatory diagram of the configuration of the photoelectric conversion device of the present invention. A group of photoconductive elements made in a row on a transparent substrate 50 such as glass (the element structure will be described later)
SB 1 to SB 54 are scanning circuits integrated through electrode wiring formed using thin film technology on the same substrate.
Wires I 1 to I 54 (only partially shown)
They are connected by bonding. The output lines from the scanning circuits I1 to I54 are also connected to electrodes formed on the substrate 50 by vapor deposition using wire bonding, guided to the matrix wiring section 51, and finally connected to the output electrodes. be done. drive line b 1
External control lines such as ~ b54 are also led to the scanning circuits I1 to I54 through the thin film electrode wiring on the substrate 50. The photoelectric conversion element having a hybrid structure shown in this example has the same structure as the photoconductive element having a monolithic structure shown in the following example, and will therefore be explained in detail at that time.

第6図に示す実施態様例は第1図に示された走
査回路を全て一枚の基板上に堆積した薄膜技術に
よつて実現した本発明の光電変換装置の例であ
る。第6図aは平面図、第6図bは第6図aに示
されるX−X′で示される位置での切断面図であ
る。基板3100上には光電変換部3101、補
償用素子部3102及び選択可能な増幅部310
3と、図示されていないが紙面右側に位置するマ
トリツクス配線部と信号入出力電極及び電源供給
電極部が作製されている。マトリツクス配線部の
概略図は第7図で示される一般的なものである。
70〜74等はスルーホール接続部を、75は光
電変換部及び走査回路部分に対応する。
The embodiment shown in FIG. 6 is an example of a photoelectric conversion device of the present invention in which the scanning circuit shown in FIG. 1 is all deposited on one substrate using thin film technology. FIG. 6a is a plan view, and FIG. 6b is a sectional view taken along line X-X' in FIG. 6a. On the substrate 3100 are a photoelectric conversion section 3101, a compensation element section 3102, and a selectable amplification section 310.
3, a matrix wiring section, a signal input/output electrode, and a power supply electrode section, which are not shown but are located on the right side of the paper, are fabricated. A general schematic diagram of the matrix wiring section is shown in FIG.
Reference numerals 70 to 74 correspond to through-hole connection parts, and 75 corresponds to a photoelectric conversion part and a scanning circuit part.

光電変換部3101の個別電極3105は透明
基板3100を通過してきた光が入射可能な様に
蒸着薄膜技術によつてインジウム錫酸化物
(ITO)等の透明導電性材料で形成され、又、該
電極3105の周辺に画素形状の均一化の為にク
ロム(Cr)等の遮光用電極3107を蒸着技術
とフオト・エツチング技術とで画素毎に独立して
作製される。更に前記個別電極3105上には
SiH4ガスとH2ガス混合ガス中でグロー放電を発
生せしめ、SiH4の分解によつて堆積するアモル
フアス水素化シリコン(以後「A−Si:H」と略
記する)の光導電性薄膜を形成し、この膜をフオ
ト・エツチングにより画素毎にパターニングして
A−Si系光導電素子3116を作製する。引き続
いて共通対向電極3108がAl等の金属材料を
用いて蒸着エツチング・プロセスを経た薄膜技術
によつて形成される。
The individual electrodes 3105 of the photoelectric conversion unit 3101 are formed of a transparent conductive material such as indium tin oxide (ITO) by vapor deposition thin film technology so that light passing through the transparent substrate 3100 can be incident. Around the pixel 3105, a light-shielding electrode 3107 made of chromium (Cr) or the like is formed independently for each pixel using vapor deposition technology and photo-etching technology in order to make the pixel shape uniform. Furthermore, on the individual electrode 3105
A glow discharge is generated in a mixed gas of SiH 4 and H 2 to form a photoconductive thin film of amorphous hydrogenated silicon (hereinafter abbreviated as "A-Si:H") that is deposited by decomposition of SiH 4. Then, this film is patterned pixel by pixel by photo-etching to fabricate an A-Si photoconductive element 3116. Subsequently, a common counter electrode 3108 is formed using a metal material such as Al by thin film technology via a vapor deposition etching process.

尚、上記グロー放電分解法による蒸着プロセス
に於いてはSiH4/H4ガス中に適当濃度のPH3
スもしくはB2H6ガスを混入させる事で広い範囲
にドーピング量を変化させることが出来、それに
よつて適宜のn型導電特性、又はp型導電特性を
もつたA−Si:H薄膜を作製する事ができ、又、
A−Si層は外気に触れる事なく連続的に各導電型
の層を堆積できる。例えば上記A−Si:H光導電
膜はその上面部及び下面部をP原子を高濃度にド
ープしたA−Si:Hのn+層で形成する事により電
極金属との抵抗性接触を確保している。従つて、
以後の説明では各導電型のA−Si層の成膜法は
一々触れない。
In addition, in the vapor deposition process using the glow discharge decomposition method described above, the doping amount can be varied over a wide range by mixing an appropriate concentration of PH 3 gas or B 2 H 6 gas into the SiH 4 /H 4 gas. , thereby making it possible to produce an A-Si:H thin film with appropriate n-type conductivity or p-type conductivity, and
The A-Si layer can be successively deposited with layers of each conductivity type without being exposed to the outside air. For example, the above A-Si:H photoconductive film secures resistive contact with the electrode metal by forming its upper and lower surfaces with an n + layer of A-Si:H doped with a high concentration of P atoms. ing. Therefore,
In the following explanation, the method of forming the A-Si layer of each conductivity type will not be mentioned.

補償用素子部3102の各素子3117は光導
電素子部3101の各素子3116と同時に作製
されるが補償用素子3117は、素子3116の
光入射用透明電極3105の代わりに遮光用電極
3107が設けられている点で光電変換素子31
16と異なる。従つて前述の様にVB1、VB2の各
電源よりバイアス電圧供給線3115及び310
4に与える電圧値を逆極性で同一絶対値を持つ様
に供給する事により両素子に共通で、しかも特に
温度に対して敏感な暗電流をキヤンセルする事が
出来るし、両素子を適当にバランスさせれば増幅
用MIS構造トランジスタ3112の伝達特性の補
償も可能となる。
Each element 3117 of the compensation element section 3102 is manufactured at the same time as each element 3116 of the photoconductive element section 3101, but the compensation element 3117 is provided with a light shielding electrode 3107 instead of the light incident transparent electrode 3105 of the element 3116. The photoelectric conversion element 31
Different from 16. Therefore, as mentioned above, the bias voltage supply lines 3115 and 310 are connected from the V B1 and V B2 power supplies.
By supplying the voltage value applied to 4 so that it has the same absolute value with opposite polarity, it is possible to cancel the dark current that is common to both elements and is particularly sensitive to temperature, and to balance both elements appropriately. By doing so, it is also possible to compensate for the transfer characteristics of the MIS structure transistor 3112 for amplification.

poly−Siからなる半導体部を有するトランジス
タ3112の選択用ドレイン電極部3111に於
いてはpoly−Si薄膜のエツチング速度がドープし
たP原子濃度に依存する事を利用してn+層を取
り去つており、ドレイン電極形式の材料として
Au等の金属を用いる事により、ドレイン電極3
111と半導体層3120は、第1図R1-0
R54-31で示される分離ダイオードとしての機能を
持つシヨツトキー・バリヤ・ダイオードを形成し
ている。またソース側電極3113とn型半導体
層3120との接触部分にはn+層3121が残
されておりオーム性接触を保つている。絶縁層3
119はやはりSi3N4、SiO2のスパツタ膜等の絶
縁材料で作製され、特に選択電極3110は光電
変換部からの出力線である遮光電極3107との
静電結合を小さくする目的で形成されている。
In the selection drain electrode part 3111 of the transistor 3112 having a semiconductor part made of poly-Si, the n + layer is removed by taking advantage of the fact that the etching rate of the poly-Si thin film depends on the concentration of doped P atoms. As a drain electrode type material
By using metal such as Au, the drain electrode 3
111 and the semiconductor layer 3120 are shown in FIG .
It forms a Schottky barrier diode designated R 54-31 which functions as an isolation diode. Further, an n + layer 3121 is left at the contact portion between the source side electrode 3113 and the n-type semiconductor layer 3120 to maintain ohmic contact. Insulating layer 3
119 is also made of an insulating material such as a sputtered film of Si 3 N 4 or SiO 2 , and in particular, the selection electrode 3110 is formed for the purpose of reducing the electrostatic coupling with the light shielding electrode 3107 which is the output line from the photoelectric conversion section. ing.

第8図a,bに示す光電変換装置は第2図に示
す電流帰還用抵抗F1-0〜F54-31を挿入した例で、
第8図aは模式的平面図、第8図bは第8図aに
於けるX−X′での切断面図である。各部の配置
は第6図の場合とほぼ同じであり、異なる点は抵
抗体3200を設けた点であり、これは適当なド
ーピング量のA−Si又はpoly−Si、或いは適当な
金属の酸化物、ホウ化物、窒化物等を用いて構成
される。抵抗体部3200は、絶縁層3207の
上に適当な抵抗値を有する抵抗膜3204、該抵
抗膜3204の両側に設けた電極3205,32
06及び表面に設けた絶縁膜3208とから成
る。電極3205は増幅部3203のトランジス
タのドレインと接続している。
The photoelectric conversion device shown in FIGS. 8a and 8b is an example in which current feedback resistors F 1-0 to F 54-31 shown in FIG. 2 are inserted,
FIG. 8a is a schematic plan view, and FIG. 8b is a cross-sectional view taken along line X-X' in FIG. 8a. The arrangement of each part is almost the same as in the case of Fig. 6, and the difference is that a resistor 3200 is provided, which is made of A-Si or poly-Si with an appropriate doping amount, or an appropriate metal oxide. , borides, nitrides, etc. The resistor section 3200 includes a resistive film 3204 having an appropriate resistance value on an insulating layer 3207, and electrodes 3205 and 32 provided on both sides of the resistive film 3204.
06 and an insulating film 3208 provided on the surface. The electrode 3205 is connected to the drain of the transistor of the amplification section 3203.

電流帰還素子としてMISトランジスタを、又分
離用素子としてやはりMISトランジスタを採用
し、これ等をpoly−Si薄膜技術で作製した例を第
9図a,bに示す。第9図aは平面図、第9図b
は、第3図aのX−X′での切断面図である。対
応する走査回路は第3図aで既に動作については
説明した。この実施態様例の第6図に示した例と
部材配置に於ける異なる点は、選択可能な増巾素
子としてMISトランジスタ3300チヤンネル3
305を遮光電極3306と平行に配し、かつ分
離用トランジスタ3306、及び電流帰還用トラ
ンジスタ3307とを独立に配置した点とであ
る。尚増巾用MISトランジスタ3300、第6図
のそれとの異なる点は、MISトランジスタ330
0のドレインが、電極金属とオーム性接触を保つ
ように設計されている点である。また分離用MIS
トランジスタ3306のゲートは選択信号線に接
続され、ドレイン側はトランジスタ電源線VDV
接続されている事を図への補足説明としてつけ加
えておく。
FIGS. 9a and 9b show an example in which an MIS transistor is used as the current feedback element and an MIS transistor is used as the separation element, and these are fabricated using poly-Si thin film technology. Figure 9a is a plan view, Figure 9b
is a cross-sectional view taken along line X-X' in FIG. 3a. The operation of the corresponding scanning circuit has already been described in FIG. 3a. The difference in the arrangement of components from the example shown in FIG.
305 is arranged in parallel with the light shielding electrode 3306, and the isolation transistor 3306 and the current feedback transistor 3307 are arranged independently. The difference between the MIS transistor 3300 for increasing the width and that shown in FIG. 6 is that the MIS transistor 330
The point is that the drain of 0 is designed to maintain ohmic contact with the electrode metal. Also, MIS for separation
It should be added as a supplementary explanation to the figure that the gate of the transistor 3306 is connected to the selection signal line, and the drain side is connected to the transistor power supply line VDV .

以上本発明の好適な実施態様例としては、A−
Si:H又はpoly−Siからなる光導電薄層でその半
導体部を構成した光導電素子とpoly−Siでその半
導体部を構成した増幅手段を含む集積化走査回路
及びマトリツクス配線とを単一基板上に組み上げ
たハイブリツド方式の例、及び前記光導電素子、
走査回路をモノリシツク方式で形成した例を掲げ
て説明したが、本発明はこれ等の実施態様例に限
定されるものではない。
As mentioned above, preferred embodiments of the present invention include A-
A photoconductive element whose semiconductor portion is made of a photoconductive thin layer made of Si:H or poly-Si, an integrated scanning circuit including an amplification means whose semiconductor portion is made of poly-Si, and a matrix wiring are mounted on a single substrate. An example of the hybrid method assembled above, and the photoconductive element,
Although an example in which the scanning circuit is formed in a monolithic manner has been described, the present invention is not limited to these embodiments.

〔効果〕〔effect〕

以上実施例で示した如く本発明では従来多数の
光情報を走査し出力する光電変換装置に於いて、
長尺化が精度良く実現可能で、増幅機能を持つ走
査回路を構成する事によつてインピーダンスの高
い光導電素子を広く配置した場合に問題となる雑
音の影響を大きく低減した光電変換装置を作成す
る事を可能ならしめる。そして、本発明によれば
あらゆる環境下において干渉のない低雑音の信号
出力を高応答性をもつて実現できる。
As shown in the embodiments above, in the present invention, in a conventional photoelectric conversion device that scans and outputs a large amount of optical information,
Created a photoelectric conversion device that can be made longer with high accuracy and greatly reduces the influence of noise, which can be a problem when photoconductive elements with high impedance are widely arranged, by configuring a scanning circuit with an amplification function. Make what you do possible. According to the present invention, low-noise signal output without interference can be achieved with high responsiveness under any environment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第3図a,bは各々、本発明の各実
施態様例に係わる走査回路を説明する為の走査回
路図、第4図は本発明に於ける共通ゲートバイア
ス値に対する伝達特性の変化を示す図、第5図及
び第6図a,bは各々本発明の他の実施態様例を
説明する為の説明図で、第6図bは第6図aのX
−X′での切断面図、第7図は本発明に於けるマ
トリツクス配線部を説明する為の説明図、第8図
a,b及び第9図a,bは各々他の本発明の実施
態様例を説明する為の説明図で、第8図bは第8
図aの、第9図bは第9図aの夫々X−X′での
切断面図である。 3100……基板、3101……光電変換部、
3102……補償用素子部、3103……増幅
部、3105……電極、3107……遮光用電
極、3108……共通対向電極、3115……バ
イアス電圧供給線、3120……半導体層、32
00……抵抗体部、3203……増幅部、320
4……抵抗膜。
FIGS. 1 to 3 a and b are scanning circuit diagrams for explaining scanning circuits according to each embodiment of the present invention, and FIG. 4 is a diagram showing transfer characteristics for a common gate bias value in the present invention. Figures 5 and 6 a and b showing changes are explanatory diagrams for explaining other embodiments of the present invention, and Figure 6 b is the
-X' cross-sectional view, FIG. 7 is an explanatory diagram for explaining the matrix wiring part in the present invention, and FIGS. FIG. 8b is an explanatory diagram for explaining an example of the embodiment.
FIGS. 9a and 9b are cross-sectional views taken along line X-X' in FIG. 9a, respectively. 3100...Substrate, 3101...Photoelectric conversion unit,
3102... Compensation element section, 3103... Amplification section, 3105... Electrode, 3107... Light shielding electrode, 3108... Common counter electrode, 3115... Bias voltage supply line, 3120... Semiconductor layer, 32
00...Resistor part, 3203...Amplification part, 320
4...Resistive film.

Claims (1)

【特許請求の範囲】 1 光電変換素子の複数と: 各光電変換素子毎に電気的に接続され、該光電
変換素子への入射光量に応じて該光電変換素子よ
り出力される信号に応じて増幅された信号を出力
する信号増幅手段としての半導体層が多結晶シリ
コンからなる半導体素子の複数と: 各光電変換素子毎に設けられ、各光電変換素子
の環境特性を補償する為のシリコン半導体薄膜を
有する補償手段の複数と: 各信号増幅手段毎に設けられ、各信号増幅手段
より出力される信号がクロストークするのを防止
する為のクロストーク防止手段の複数と: を具備する光電変換信号出力ユニツトの複数と、 前記複数の信号増幅手段を各ユニツト毎に排他
的に選択するユニツト選択信号を伝送するユニツ
ト駆動配線と、 各ユニツトに於ける同位の信号増幅手段の出力
信号を伝送する共通化された信号出力配線と、が
同一基板上に一体的に設けられていることを特徴
とする固体光電変換装置。 2 前記光電変換素子は非晶質シリコンからなる
光電変換層を具備することを特徴とする特許請求
の範囲第1項に記載の固体光電変換装置。
[Scope of Claims] 1 A plurality of photoelectric conversion elements: Each photoelectric conversion element is electrically connected and amplified according to the signal output from the photoelectric conversion element according to the amount of light incident on the photoelectric conversion element. A plurality of semiconductor elements each having a semiconductor layer made of polycrystalline silicon as a signal amplifying means for outputting a signal; a plurality of compensation means having: a plurality of crosstalk prevention means provided for each signal amplification means to prevent crosstalk between signals output from each signal amplification means; and a photoelectric conversion signal output comprising: A plurality of units, a unit drive wiring for transmitting a unit selection signal for exclusively selecting the plurality of signal amplification means for each unit, and a common unit for transmitting the output signal of the same level signal amplification means in each unit. A solid-state photoelectric conversion device characterized in that a signal output wiring and a signal output wiring are integrally provided on the same substrate. 2. The solid-state photoelectric conversion device according to claim 1, wherein the photoelectric conversion element includes a photoelectric conversion layer made of amorphous silicon.
JP56168091A 1981-10-21 1981-10-21 Photoelectric transducer Granted JPS5868967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56168091A JPS5868967A (en) 1981-10-21 1981-10-21 Photoelectric transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56168091A JPS5868967A (en) 1981-10-21 1981-10-21 Photoelectric transducer

Publications (2)

Publication Number Publication Date
JPS5868967A JPS5868967A (en) 1983-04-25
JPH0337742B2 true JPH0337742B2 (en) 1991-06-06

Family

ID=15861673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56168091A Granted JPS5868967A (en) 1981-10-21 1981-10-21 Photoelectric transducer

Country Status (1)

Country Link
JP (1) JPS5868967A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62154851A (en) * 1985-12-26 1987-07-09 Casio Comput Co Ltd Image sensor

Also Published As

Publication number Publication date
JPS5868967A (en) 1983-04-25

Similar Documents

Publication Publication Date Title
US4390791A (en) Solid-state photoelectric transducer
US4532536A (en) Photo-electric transducer
JPH03231560A (en) Photoelectric converter
US4714836A (en) Photosensitive pixel with exposed blocking element
US4495409A (en) Photosensor with diode array
JPH022304B2 (en)
US4365274A (en) One-dimensional image sensor
JPS62145866A (en) Photoconductive sensor, method and apparatus for driving the same
US4659920A (en) Image sensor arrays with series redundancy
US4788445A (en) Long array photoelectric converting apparatus with insulated matrix wiring
US4746804A (en) Photosensitive pixel with exposed blocking element
JPH022301B2 (en)
JP3135309B2 (en) Photoelectric conversion device and information processing device
JPH0730084A (en) Two-dimensional contact image sensor
JPH022303B2 (en)
JPH0337744B2 (en)
JPH0337742B2 (en)
JPH0337743B2 (en)
JPH022302B2 (en)
JPH0337741B2 (en)
JPH022300B2 (en)
JPS61189065A (en) Image sensor
US4916326A (en) Long array photoelectric converting apparatus with reduced crosstalk
JPS60192361A (en) Color image senser
JPS6152580B2 (en)