JPH0337573A - Digital harmonic measuring device - Google Patents

Digital harmonic measuring device

Info

Publication number
JPH0337573A
JPH0337573A JP17377989A JP17377989A JPH0337573A JP H0337573 A JPH0337573 A JP H0337573A JP 17377989 A JP17377989 A JP 17377989A JP 17377989 A JP17377989 A JP 17377989A JP H0337573 A JPH0337573 A JP H0337573A
Authority
JP
Japan
Prior art keywords
frequency
harmonic
amplitude
measured
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17377989A
Other languages
Japanese (ja)
Inventor
Kazuyo Shibata
柴田 和世
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUKUOKA DENKI KEIKI KK
Original Assignee
FUKUOKA DENKI KEIKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUKUOKA DENKI KEIKI KK filed Critical FUKUOKA DENKI KEIKI KK
Priority to JP17377989A priority Critical patent/JPH0337573A/en
Publication of JPH0337573A publication Critical patent/JPH0337573A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Frequencies, Analyzing Spectra (AREA)

Abstract

PURPOSE:To reduce the error due to frequency shift by calculating the Pythagoras sum of the amplitude of the frequency component of harmonic and the amplitudes of the frequency components on both sides thereof from the discrete spectrum obtained by applying frequency analysis to the time N-times nominal frequency. CONSTITUTION:When a signal to be measured such as commercial power supply voltage is inputted to the input terminal 1 of the signal to be measured, the digital data corresponding to the amplitude of the signal to be measured is outputted from an A/D converter 4 through a transformer 2 and an LPF 3 and stored in an RAM 8. Subsequently, the digital data N-times the nominal frequency cycle of the signal to be measured is transmitted to an RAM 6 from the RAM 8 and subjected to Fourier operation by a high speed processor 7 exclusive to Fourier transform. Then, from the obtained discrete spectrum, the Pythagoras sum of the amplitude of the frequency of the spectrum and the amplitudes of the frequency components on both sides thereof is calculated by a CPU 5 to be outputted as harmonic amplitude from an output apparatus 10. By this method, the error due to frequency shift can be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ディジタル演算形の高調波測定器に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a digital calculation type harmonic measuring instrument.

〔従来の技術〕[Conventional technology]

最近の産業用あるいは家庭用の電気、電子機器において
は、パワートランジスタ、インバータあるいはサイリス
タを利用した電力制御技術が普及している。このような
電力スイッチング素子を電気、電子機器に用いた場合、
配電系統に高調波ノイズが乗り、配電系統を介して他の
需要家の電源に回り込む。
2. Description of the Related Art In recent industrial or household electrical and electronic equipment, power control technology using power transistors, inverters, or thyristors has become widespread. When such power switching elements are used in electrical and electronic equipment,
Harmonic noise gets onto the power distribution system and flows through the power distribution system to the power supplies of other consumers.

従来においては、さほど問題にはならなかったが、大容
量のサイリスク応用機器が出回るにつれて、しばしば高
調波障害例が報告されるに到っている。たとえば、蛍光
灯の安定器の焼損や、コンピュータの誤動作、コンデン
サのパンク等の障害である。
In the past, this did not pose much of a problem, but as large-capacity SI risk application equipment becomes available, cases of harmonic interference are frequently reported. For example, failures include burnt-out fluorescent lamp ballasts, computer malfunctions, and punctured capacitors.

このような高周波障害に対する対策を行うには、まず、
その実態を把握することが必要となる。
To take measures against such high frequency interference, first,
It is necessary to understand the actual situation.

電力系統などにおける高調波の測定は、測定結果の一般
化のため、一般に測定時間を基本波の公称周波数周期の
数倍にとる。したがって、測定人力の基本周波数に変動
があると含まれる高調波周波数も変動し、その結果、周
波数分析により公称周波数の倍数として得られる離散ス
ペクトル中の高調波周波数に対しずれを生ずる。また逆
に、高調波測定器のサンプリング周波数が変動しても、
同様のずれを生ずる。
When measuring harmonics in power systems, etc., the measurement time is generally several times the nominal frequency period of the fundamental wave in order to generalize the measurement results. Therefore, if there is a variation in the fundamental frequency of the measured human power, the included harmonic frequencies will also vary, resulting in deviations from the harmonic frequencies in the discrete spectrum obtained by frequency analysis as multiples of the nominal frequency. Conversely, even if the sampling frequency of the harmonic measuring instrument fluctuates,
A similar deviation occurs.

このように、測定人力の高調波周波数と離散スペクトル
の高調波周波数にずれが士ずろと、測定人力の高調波成
分の一部は、離散スペクトルの高調波周波数の両側に拡
散する。
In this way, when there is a difference between the harmonic frequency of the measuring human force and the harmonic frequency of the discrete spectrum, some of the harmonic components of the measuring human force are spread to both sides of the harmonic frequency of the discrete spectrum.

第4図(a)、 (b)は公称周波数60旧、振幅10
の矩形波が60.3Hzに変動したときの高調波成分拡
散の例である。サンプリング時間は0.1秒、ヅンプリ
ンクレートは1024+長である。
Figure 4 (a) and (b) are nominal frequency 60 old, amplitude 10
This is an example of harmonic component diffusion when the rectangular wave fluctuates to 60.3 Hz. The sampling time is 0.1 seconds, and the sampling rate is 1024+length.

このような基本周波数の変動に伴い、高調波周波数と離
散スペクトルの高調波周波数にずれが生ずる影響をなく
すため、従来は、基本波と同期をとる方式が使われてい
る。
In order to eliminate the effect of a shift between the harmonic frequency and the harmonic frequency of the discrete spectrum due to such fluctuations in the fundamental frequency, a method of synchronizing with the fundamental wave has been used in the past.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、この方式では、ハート的に同期をとるた
め、回路が複雑になり、コストが高く、簡易な測定器に
は適用できない。
However, since this method synchronizes in a heart-like manner, the circuit becomes complicated and the cost is high, and it cannot be applied to simple measuring instruments.

そこで本発明は、周波数ずれにより離散スペクトルの当
該高調波周波数の両側に拡散している高調波成分の一部
を当該高調波成分と合皮することにより、周波数ずれに
よる誤差を低減することを目的とする。
Therefore, an object of the present invention is to reduce the error caused by the frequency shift by combining a part of the harmonic components that are spread on both sides of the harmonic frequency of the discrete spectrum due to the frequency shift with the harmonic component. shall be.

〔課題を解決するための手段〕[Means to solve the problem]

この目的を遠戚するため、本発明のデインタル高調波測
定器は、測定入力の基本波の公称周波数周期のN倍の時
間についてディジタル的に周波数分析する手段と、周波
数分析して得られる離散スペクトルから当該高調波及び
その両側n個の周波数成分の振幅のピタコラス和を高調
波振幅として出力する手段とを備えたことを特徴とする
In order to achieve this objective distantly, the digital harmonic measuring instrument of the present invention includes means for digitally analyzing the frequency over a period of time N times the nominal frequency period of the fundamental wave of the measurement input, and a discrete spectrum obtained by the frequency analysis. The present invention is characterized by comprising means for outputting, as a harmonic amplitude, a Pitacolous sum of the amplitudes of the harmonic and n frequency components on both sides thereof.

ただし、n<(N−1)/2、 n、  N  整数とする。However, n<(N-1)/2, n, N is an integer.

〔作用〕[Effect]

いま、公称周波数Fl(z(例えば601(z)  の
系統の高調波を測定するものとし、高調波測定器の測定
周期が公称周波数周期(T=1/F)のN倍(例えば6
倍)であったとする。測定入力の基本周波数周期か公称
周波数周期より△Tだけ長くなったとし、この人力をP
Hz(例えば5120Hz)  のレートでサンプリン
グして周波数分析した結果、次式で表される離散スペク
トルが得られたとする。
Now, assume that harmonics of a system with a nominal frequency Fl(z (for example, 601(z)) are to be measured, and the measurement period of the harmonic measuring instrument is N times (for example, 601(z)) the nominal frequency period (T=1/F).
times). Suppose that the fundamental frequency period of the measurement input is longer than the nominal frequency period by △T, and this human power is P.
Assume that as a result of sampling and frequency analysis at a rate of Hz (for example, 5120 Hz), a discrete spectrum expressed by the following equation is obtained.

ただし、lニスベクトル番号でi/(NXT)Hz戊分
を示す。
However, the lvarnish vector number indicates i/(NXT)Hz.

1−Oは直流分を示す。1-O indicates a direct current component.

A、: i/ (NxT)敗成分の振幅したがって、測
定入力の第に調波の振幅は、−NXk番目のスペクトル
が対応する。
A: i/ (NxT) Amplitude of the loss component Therefore, the amplitude of the 1st harmonic of the measurement input corresponds to the -NXkth spectrum.

本発明においては、第Nxk番目のスペクトルとその両
側のn個(n< (N−1)/2)のスペクトルを次式
によって合皮したものを第に調波の振幅3よ として得
るものである。
In the present invention, the Nxkth spectrum and n spectra on both sides (n < (N-1)/2) are synthesized using the following formula, and the amplitude of the third harmonic is obtained as the amplitude 3. be.

なお、この方法は測定すべき高調波上限に、に対し、周
期のずれΔTが下式の範囲内で使用される。
Note that this method is used within the range of the period shift ΔT given by the following equation with respect to the upper limit of the harmonic to be measured.

F(1,/ T) −1/ (T (−△′T”))x
k。≦1/(2,、T)ずなわら、 △T/T≦1/(2に□−1) 〔実施例〕 以下、本発明を実施例に基ついて具体的に説明する。
F(1,/T) −1/ (T (−△′T”))x
k. ≦1/(2,,T) Zunawara, ΔT/T≦1/(2 to □-1) [Example] The present invention will be specifically described below based on Examples.

第1図は本発明の高調波測定器の実施例の構成を示すフ
ロック図である。
FIG. 1 is a block diagram showing the configuration of an embodiment of the harmonic measuring instrument of the present invention.

第1図において、被測定信号入力端子1に商用電源電圧
等の被測定信号が人力されると、トランス2及びローパ
スフィルタ3を介してA/D変換器4から被測定信号の
振幅に対応するディジタルテ゛−夕が出力され、RAM
8にストアされる。RA M 8より被測定信号の公称
周波数周期のN倍分のディジタルデータがRAM6に転
送され、FFT(高速フーリエ変換)専用プロセッサ7
 (ディジタルングナルプロセッf:DsP)によりフ
ーリエ演算を行い、得られた離散スペクトルからCPU
5により当該周波数及びその両側n個(デイツプスイッ
チ1↓の設定値)の周波数成分の振幅のピタゴラス和を
高調波振幅として出力装置10より出力するように処理
する。
In FIG. 1, when a signal to be measured such as a commercial power supply voltage is inputted to a signal under test input terminal 1, an amplitude corresponding to the amplitude of the signal to be measured is output from an A/D converter 4 via a transformer 2 and a low-pass filter 3. Digital data is output and RAM
8 is stored. Digital data corresponding to N times the nominal frequency period of the signal under test is transferred from RAM 8 to RAM 6, and then processed by FFT (Fast Fourier Transform) dedicated processor 7.
(Digital Processor f: DsP) performs Fourier operation, and from the obtained discrete spectrum, the CPU
5, the output device 10 outputs the Pythagorean sum of the amplitudes of the frequency and n frequency components on both sides thereof (set value of dip switch 1↓) as a harmonic amplitude.

第2図に、以上のデータ処理のフローチャートを示す。FIG. 2 shows a flowchart of the above data processing.

この第2図に示している高調波出力処理方法を、第3図
のフローチャートを参照しながら詳細に説明する。
The harmonic output processing method shown in FIG. 2 will be explained in detail with reference to the flowchart in FIG. 3.

第3図において、フーリエ変換プロセッーv7より得た
データ(FFTi)) を2乗し、全てを加算しくMA
DD)、これを開平し、実効値(RMSD)を求める(
第3図ステップ12〜14)基本波についても、基本波
と両ザイド2波を2乗加算しくBASA)、これを開平
し、基本波実効値を求め、これにより歪率を演算する(
第3図ステップ15) 各次数高調波については、デイツプスイッチ11により
Dを設定し、離散スペクトルから当該周波数及びその両
側n個の周波数成分の振幅のピタコラス和を高調波振幅
とする。
In Figure 3, the data obtained from the Fourier transform processor v7 (FFTi) is squared and all are added together.
DD), square root this and find the effective value (RMSD) (
Steps 12 to 14 in Fig. 3) For the fundamental wave, add the fundamental wave and both Zyde waves to the squares (BASA), square root this, obtain the effective value of the fundamental wave, and calculate the distortion factor from this (
Step 15 in FIG. 3) For each harmonic, D is set by the dip switch 11, and from the discrete spectrum, the pitacous sum of the amplitudes of the frequency and n frequency components on both sides thereof is taken as the harmonic amplitude.

第3図のステップ18における各次数高調波の演算(n
=1)  において、!()=FFTD()とすると、
第3次高調波は次式で表される。
Calculation of each harmonic (n
=1) In ! If ()=FFTD(), then
The third harmonic is expressed by the following equation.

J[χ(NX3−1)]2+ χ(NX3)]2→[χ
(Nx3+1)]2同様に第5次高調波は、次のように
表される。
J[χ(NX3-1)]2+ χ(NX3)]2→[χ
(Nx3+1)]2 Similarly, the fifth harmonic is expressed as follows.

J[x (N xs−1)j24[x (N x5)]
’+[x (N x5+1)]2これにより、各次数高
調波の含有率を求め(第3図ステップ20)、実効値、
歪率及び各次数高調波の含有率を表示及びプリンターに
出力する。
J[x (N xs-1)j24[x (N x5)]
'+[x (N x5+1)]2 From this, the content rate of each harmonic is determined (step 20 in Figure 3), and the effective value,
The distortion rate and content rate of each harmonic are displayed and output to a printer.

〔発明の効果〕〔Effect of the invention〕

ゑ上に説明したように、本発明においては、測定人力の
基本波の公称周波数周期のN倍の時間についてディジタ
ル的に周波数分析する手段と、周波数分析して得られる
離散スペクトルから当該高調波及びその両側n個の周波
数成分の振幅のピタゴラス和を高調波振幅として出力す
ることとしている。このように、周波数ずれにより離散
スペクトルの当該高調波周波数の両側に拡散している高
調波成分の一部を当該高調波成分と合成することにより
、周波数ずれによる誤差を低減することができる。この
処理はマイクロコンピュータのソフトウェア−にで行う
ことができるため、誤差の少ない高調波測定器を小型、
安価に実現することができる。
As explained above, the present invention includes a means for digitally analyzing the frequency for a time that is N times the nominal frequency period of the fundamental wave of the measured human power, and the harmonics and The Pythagorean sum of the amplitudes of n frequency components on both sides is output as a harmonic amplitude. In this way, by combining a part of the harmonic components that are spread on both sides of the harmonic frequency of the discrete spectrum due to the frequency shift with the harmonic component, it is possible to reduce errors caused by the frequency shift. This processing can be performed using microcomputer software, making it possible to create a harmonic measuring instrument with small errors and small size.
It can be realized at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の構成を5−ずブロック図、第
2図は本発明のデータ処理の流れを示すフロー71′ヤ
ード、第3図は第2図の高調波出力処理のフローチャー
ト、第4図は基本波と高調波の分布を示すスペクトル図
である。 1:被測定信号入力端子 2ニドランス      3:ローパスフィルタ4:A
/D変換器   5:CPU 6:RAM 7:フーリエ変換プロセッサ 3:RAM       9・ROM 1Q:出力装置 11:ディソブスインチ
FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention, FIG. 2 is a flowchart showing the data processing flow of the present invention, and FIG. 3 is a flowchart of the harmonic output processing of FIG. 2. , FIG. 4 is a spectrum diagram showing the distribution of the fundamental wave and harmonics. 1: Measured signal input terminal 2 Nidorance 3: Low pass filter 4: A
/D converter 5: CPU 6: RAM 7: Fourier transform processor 3: RAM 9/ROM 1Q: Output device 11: Disob's inch

Claims (1)

【特許請求の範囲】 1、測定入力の基本波の公称周波数周期のN倍の時間に
ついてディジタル的に周波数分析する手段と、周波数分
析して得られる離散スペクトルから当該高調波及びその
両側n個の周波数成分の振幅のピタゴラス和を高調波振
幅として出力する手段とを備えたことを特徴とするディ
ジタル高調波測定器。 ただし、n<(N−1)/2、 n、N:整数
[Claims] 1. Means for digitally analyzing the frequency over a period of time N times the nominal frequency period of the fundamental wave of the measurement input; 1. A digital harmonic measuring instrument comprising means for outputting a Pythagorean sum of amplitudes of frequency components as a harmonic amplitude. However, n<(N-1)/2, n, N: integer
JP17377989A 1989-07-04 1989-07-04 Digital harmonic measuring device Pending JPH0337573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17377989A JPH0337573A (en) 1989-07-04 1989-07-04 Digital harmonic measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17377989A JPH0337573A (en) 1989-07-04 1989-07-04 Digital harmonic measuring device

Publications (1)

Publication Number Publication Date
JPH0337573A true JPH0337573A (en) 1991-02-18

Family

ID=15966995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17377989A Pending JPH0337573A (en) 1989-07-04 1989-07-04 Digital harmonic measuring device

Country Status (1)

Country Link
JP (1) JPH0337573A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007018133A (en) * 2005-07-06 2007-01-25 Matsushita Electric Ind Co Ltd Merchandise output port device for automatic vending machine
CN105629064A (en) * 2015-12-30 2016-06-01 浙江埃菲生能源科技有限公司 Novel sine-wave low-pass filtering and extraction method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007018133A (en) * 2005-07-06 2007-01-25 Matsushita Electric Ind Co Ltd Merchandise output port device for automatic vending machine
CN105629064A (en) * 2015-12-30 2016-06-01 浙江埃菲生能源科技有限公司 Novel sine-wave low-pass filtering and extraction method

Similar Documents

Publication Publication Date Title
Gallo et al. A new test procedure to measure power electronic devices’ frequency coupling admittance
Abdel-Galil et al. Online tracking of voltage flicker utilizing energy operator and Hilbert transform
JPH0697256B2 (en) AC level calibration device
JP2007033286A (en) Method and device for measuring impedance
JPS60171414A (en) Lock-in amplifier
JP3147566B2 (en) Frequency spectrum analyzer
Salor Spectral correction-based method for interharmonics analysis of power signals with fundamental frequency deviation
JPH0337573A (en) Digital harmonic measuring device
Kadar et al. The effect of current and voltage transformers accuracy on harmonic measurements in electric arc furnaces
EP0430256B1 (en) Method and equipment for cablibrating output levels of waveform analyzing apparatus
JP2505707B2 (en) Frequency measurement method by Fourier analysis
US4344028A (en) Testing device for low-frequency amplifiers
JPH0915273A (en) Measuring method for fundamental frequency and measuring device
JPH0275966A (en) Electronic watthour meter
JPS58150872A (en) Method and device for testing frequency response of device to input signal
WO2023139870A1 (en) Impedance measurement device and method
CN117761393B (en) Time domain signal acquisition method and device
JP2000055952A (en) Apparatus for measuring circuit element
JP2573789B2 (en) Insulation resistance measuring device
CN113567742A (en) Harmonic testing method and device for radio frequency switch
JPH04172271A (en) Virtual measuring device, digital-signal processing device, electronic-device adjusting apparatus and semiconductor testing apparatus
Martyński et al. Electronic filters measurement device
JPH07333261A (en) Method for analyzing voltage component
Santana et al. 13.8 kV series active power filter implementation using a noise-tolerant algorithm
JPS58165062A (en) Circuit element measuring apparatus