JPH0337487B2 - - Google Patents

Info

Publication number
JPH0337487B2
JPH0337487B2 JP56132987A JP13298781A JPH0337487B2 JP H0337487 B2 JPH0337487 B2 JP H0337487B2 JP 56132987 A JP56132987 A JP 56132987A JP 13298781 A JP13298781 A JP 13298781A JP H0337487 B2 JPH0337487 B2 JP H0337487B2
Authority
JP
Japan
Prior art keywords
wood
acid
wood material
graft
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56132987A
Other languages
Japanese (ja)
Other versions
JPS5832807A (en
Inventor
Nobuo Shiraishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiken Trade and Industry Co Ltd
Original Assignee
Daiken Trade and Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiken Trade and Industry Co Ltd filed Critical Daiken Trade and Industry Co Ltd
Priority to JP13298781A priority Critical patent/JPS5832807A/en
Publication of JPS5832807A publication Critical patent/JPS5832807A/en
Publication of JPH0337487B2 publication Critical patent/JPH0337487B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Chemical And Physical Treatments For Wood And The Like (AREA)

Description

【発明の詳細な説明】 本発明は木質材成分中の水酸基を化学的に修飾
せしめた後、該木質材をグラフト重合化処理に付
すことからなる木質材の改質方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for modifying a wood material, which comprises chemically modifying hydroxyl groups in a wood component and then subjecting the wood material to a graft polymerization treatment.

木質材は熱可塑性に乏しく、熱、あるいは熱と
圧力を同時に加えても容易にこれを変形、緻密化
することはできず、一般の熱可塑性樹脂と比べる
と成形適性が著しく劣つている。さらに、木質材
は厳しい加熱条件下で成形すると炭化し、また厳
しい加圧条件下ではその組織構造が破損するとい
う欠点を有する。
Wood materials have poor thermoplasticity and cannot be easily deformed or densified by applying heat or heat and pressure at the same time, and their moldability is significantly inferior to that of general thermoplastic resins. Furthermore, wood materials have the disadvantage that they become carbonized when molded under severe heating conditions, and their tissue structure is damaged under severe pressurized conditions.

一方、木質材の主成分であるセルロースをアセ
チル化したり、グラフト共重合することにより木
質材の寸法安定性等の物性を改善できることは、
既に旧くから知られている。
On the other hand, it is possible to improve physical properties such as dimensional stability of wood by acetylating or graft copolymerizing cellulose, which is the main component of wood.
It has been known for a long time.

又、本発明者らは、エステル化剤やエーテル化
剤で木質材を処理することにより、木質材に熱可
塑性を付与し得ることを見い出したが完全な熱溶
融を伴う顕著な熱可塑性の付与となると エステル化剤として高級脂肪酸を用いる場合、 トリフルオル酢酸−酢酸系でアセチル化したの
ち熟成ケン化する場合、 硫酸触媒法によつてアセチル化したのち熟成ケ
ン化する場合、 を除いては容易でない。
Additionally, the present inventors have discovered that it is possible to impart thermoplasticity to wood by treating it with an esterifying agent or an etherifying agent, but it is not possible to impart remarkable thermoplasticity with complete thermal melting. It is not easy to do this except when using a higher fatty acid as an esterifying agent, when acetylating with a trifluoroacetic acid-acetic acid system and then aging saponification, or when acetylating using a sulfuric acid catalyst method and then aging saponifying. .

しかも、高級脂肪酸やトリフルオル酢酸は高価
で実用上の問題を有し又硫酸触媒法の場合は、反
応処理後の硫酸の洗條が困難であるということも
判明した。
Furthermore, it has been found that higher fatty acids and trifluoroacetic acid are expensive and have practical problems, and in the case of a sulfuric acid catalyst method, it is difficult to wash away the sulfuric acid after the reaction treatment.

本発明者らはさらに鋭意検討を行つた結果、エ
ステル化剤やエーテル化剤等の木質材成分中の水
酸基と反応し得る反応体で木質材を処理した後、
この処理木質材をグラフト共重合化処理に付すこ
とによつて、用いる反応体が無水酢酸等の実用性
の高い低級脂肪酸無水物からなるエステル化剤、
あるいはエーテル化剤等従来完全な熱溶融を伴う
程顕著な熱可塑性を付与することが困難であつた
反応体を用いた場合にも、容易に優れた熱可塑的
性質を木質材に付与せしめることを見い出し本発
明を完成するに至つた。即ち本発明は、木質材を
該木質材成分中の水酸基と反応し得る反応体で処
理し、次いで該処理木質材を重合性物質と反応さ
せてグラフト共重合化処理に付すことからなる木
質材の改質方法を提供するものである。
As a result of further intensive studies, the present inventors found that after treating wood with a reactant that can react with the hydroxyl group in the wood components, such as an esterifying agent or an etherifying agent,
By subjecting this treated wood to a graft copolymerization treatment, the reactant used is an esterifying agent consisting of a highly practical lower fatty acid anhydride such as acetic anhydride.
Alternatively, it is possible to easily impart excellent thermoplastic properties to wood materials even when using reactants such as etherification agents, which have conventionally been difficult to impart remarkable thermoplastic properties to the extent that they require complete thermal melting. This discovery led to the completion of the present invention. That is, the present invention provides a wood material which is obtained by treating a wood material with a reactant capable of reacting with a hydroxyl group in the wood component, and then subjecting the treated wood material to a graft copolymerization treatment by reacting with a polymerizable substance. The present invention provides a method for modifying.

本発明方法を、(a)木質材を反応体で処理する段
階(第1段階)、および(b)この様に処理した木質
材をグラフト共重合化する段階(第2段階)に分
け、以下に詳細に説明する。
The method of the present invention is divided into (a) a step of treating wood material with a reactant (first step), and (b) a step of graft copolymerizing the thus treated wood material (second step), as follows. will be explained in detail.

第1段階では木質材を適当な手段で反応体と接
触せしめることにより、木質材成分、特にセルロ
ースの水酸基を化学的に修飾し、セルロースの結
晶構造を非晶化する。
In the first step, the wood material is brought into contact with a reactant by an appropriate means to chemically modify the hydroxyl groups of wood components, particularly cellulose, and to amorphize the crystal structure of cellulose.

本発明で使用し得る木質材は粉粒状、繊維状、
シート状、板状または柱状などであつてよいが、
板状、柱状などの厚みのある形状のものは、主と
してその表面を改質する目的で使用されることが
多い。
The wood material that can be used in the present invention is powdery, fibrous,
It may be sheet-like, plate-like, column-like, etc.
Thick shapes such as plates and columns are often used primarily for the purpose of modifying their surfaces.

既述した如く、反応体とは木質材成分、特にセ
ルロースの水酸基と化学的に反応する物質を意味
し、その代表的なものとしてエステル化剤および
エーテル化剤を挙げることができる。
As mentioned above, the term "reactant" refers to a substance that chemically reacts with the hydroxyl groups of wood components, particularly cellulose, and typical examples thereof include esterification agents and etherification agents.

エステル化剤としては有機酸無水物(例えば酢
酸、プロピオン酸、酪酸などの酸無水物)、有機
酸ハロゲン化物(例えば上記の酸の他カプロン
酸、ラウリン酸、ステアリン酸およびメタクリル
酸などの酸ハロゲン化物、特に酸塩化物)、およ
び有機酸無水物と脂肪酸の混合物(例えば無水ト
リフルオル酢酸または無水クロル酢酸と酢酸、プ
ロピオン酸、カプロン酸またはラウリン酸などと
の混合物)などを挙げることができる。これらの
エステル化剤は単独で、あるいは2種以上混合し
て使用することができる。特に本発明では、酢
酸、プロピオン酸等低級脂肪酸の無水物やハロゲ
ン化物が経済性に鑑み実用上好ましい。
Esterifying agents include organic acid anhydrides (for example, acid anhydrides such as acetic acid, propionic acid, and butyric acid), organic acid halides (for example, in addition to the above acids, acid halides such as caproic acid, lauric acid, stearic acid, and methacrylic acid). (in particular acid chlorides), and mixtures of organic acid anhydrides and fatty acids (for example mixtures of trifluoroacetic anhydride or chloroacetic anhydride with acetic acid, propionic acid, caproic acid or lauric acid, etc.). These esterifying agents can be used alone or in combination of two or more. In particular, in the present invention, anhydrides and halides of lower fatty acids such as acetic acid and propionic acid are practically preferred in view of economical efficiency.

上記エステル化剤には、木質材成分との反応を
促進するための触媒および/または、エステル化
剤の木材細胞膜内への浸透を促進するための溶剤
を添加しておくことができる。この様な触媒とし
ては過塩素酸、尿素−硫安、塩化亜鉛および硫
酸、ピリジンなどが、溶剤としては酢酸、ベンゼ
ン、トルエン、ジメチルホルムアミド、四酸化二
窒素−ジメチルホルムアミドなどが挙げられ、ま
た各々2種またはそれ以上の混合物として用いて
もよい。
A catalyst for promoting the reaction with the wood component and/or a solvent for promoting the penetration of the esterifying agent into the wood cell membrane can be added to the esterifying agent. Examples of such catalysts include perchloric acid, urea-ammonium sulfate, zinc chloride, sulfuric acid, pyridine, etc., and solvents include acetic acid, benzene, toluene, dimethylformamide, dinitrogen tetroxide-dimethylformamide, etc. It may be used as a species or as a mixture of more than one species.

これらの触媒および/または溶剤は、エステル
化剤に添加する代りに、あるいは添加すると共
に、該エステル化剤で処理する前の木質材に予め
含浸させておいてもよい。
Instead of or in addition to being added to the esterifying agent, these catalysts and/or solvents may be impregnated in advance into the wood material before being treated with the esterifying agent.

次に、エーテル化剤としては、例えばエチレン
オキサイド、プロピレンオキサイド等の1,2−
エポキシド、塩化メチル、塩化エチル等のハロゲ
ン化アルキル、塩化ベンジル等の芳香族ハロゲン
化物、ジメチル硫酸等のジアルキル硫酸、モノク
ロル酢酸等のα−ハロゲン酸、シアン化ビニル等
の陰性基で活性化されたビニル化合物、ホルムア
ルデヒド等のアルデヒドなどを用いることができ
る。
Next, as the etherification agent, for example, 1,2- such as ethylene oxide, propylene oxide, etc.
Activated with epoxides, alkyl halides such as methyl chloride and ethyl chloride, aromatic halides such as benzyl chloride, dialkyl sulfates such as dimethyl sulfate, α-halogen acids such as monochloroacetic acid, and negative groups such as vinyl cyanide. Vinyl compounds, aldehydes such as formaldehyde, etc. can be used.

エーテル化剤の場合も、エステル化剤の場合と
同様、触媒(例えば水酸化ナトリウムの如きアル
カリ触媒)や溶剤(例えばエステル化剤の場合に
使用されるものと同様の溶剤)を適宜添加するこ
とができ、またエーテル化剤で処理する前の木質
材に予めこれらを含浸させておくこともできる
が、触媒の場合は特に後者によるのが好ましい。
In the case of an etherification agent, as in the case of an esterification agent, a catalyst (for example, an alkaline catalyst such as sodium hydroxide) and a solvent (for example, a solvent similar to that used in the case of an esterification agent) may be appropriately added. It is also possible to pre-impregnate the wood material with the etherification agent before treating it with the etherification agent, but in the case of a catalyst, the latter method is particularly preferred.

水酸基と反応し得る反応体としては、上記のエ
ステル化剤およびエーテル化剤のほか、イソシア
ネート類(例えばメチルイソシアネート、エチル
イソシアネートなど)を挙げることができる。
In addition to the above-mentioned esterifying agents and etherifying agents, examples of reactants capable of reacting with hydroxyl groups include isocyanates (eg, methyl isocyanate, ethyl isocyanate, etc.).

反応体を木質材と接触させるには、例えば木質
材を反応体中に浸漬するか、あるいは反応体を気
化せしめ、これに木質材をさらせばよい。また、
この様な方法を減圧下、加圧下あるいは減圧加圧
法により行ない、木質材への反応体の含浸を促進
させることができる。
The reactant may be brought into contact with the wood material by, for example, immersing the wood material in the reactant, or by vaporizing the reactant and exposing the wood material to this. Also,
Such a method can be carried out under reduced pressure, increased pressure, or a reduced pressure method to promote impregnation of the reactant into the wood material.

この様な反応体による化学的処理により、木質
材成分、特にセルロースの水酸基がエステル化、
エーテル化などの化学的修飾を受けてセルロース
の結晶構造の非晶化が進み、かくして膨潤化され
た状態の木質材が得られる。この際、セルロース
とともに木質材の主成分をなすヘミセルロースお
よびリグニンの水酸基も同様の化学変化を受ける
ことがあり、この場合は木質材成分間の結合が弱
まり、木質材の膨潤化の程度が一層著しくなる。
Chemical treatment with such reactants esterifies the hydroxyl groups of wood components, especially cellulose.
Through chemical modification such as etherification, the crystalline structure of cellulose becomes amorphous, thus producing wood in a swollen state. At this time, the hydroxyl groups of hemicellulose and lignin, which are the main components of wood along with cellulose, may undergo similar chemical changes, and in this case, the bonds between the wood components become weaker, and the degree of swelling of the wood becomes even more significant. Become.

以上の第1段階で得られる処理木質材を、第2
段階のグラフト共重合化処理に付す。
The treated wood material obtained in the first stage is
It is subjected to a step-by-step graft copolymerization treatment.

グラフト共重合化処理は、上記木質材を重合性
物質中に浸漬したり、気化状態の重合性物質にさ
らしたりあるいは木質材に重合性物質を塗布した
後、適当な手段でグラフト共重合化させることか
らなる。グラフト重合は、第1段階で化学的処理
された処理木質材中のセルロースを幹重合体と
し、主としてその残余水酸基と添加する重合性物
質との間で起ると考えられる。
Graft copolymerization treatment involves immersing the wood material in a polymerizable substance, exposing it to a vaporized polymerizable substance, or applying a polymerizable substance to the wood material, and then graft copolymerizing it by an appropriate method. Consists of things. Graft polymerization is thought to occur mainly between the residual hydroxyl groups of cellulose in the treated wood material that has been chemically treated in the first step as a backbone polymer and the added polymerizable substance.

重合性物質としてはメタクリル酸メチル、スチ
レン、アクリル酸、アクリロニトリル、アクリル
アミド、ブタジエンなどのビニル化合物のモノマ
ー、オリゴマーおよびプレポリマーを使用するこ
とができる。
As the polymerizable substance, monomers, oligomers and prepolymers of vinyl compounds such as methyl methacrylate, styrene, acrylic acid, acrylonitrile, acrylamide and butadiene can be used.

グラフト共重合は常法に従つて行なうことがで
きる。即ち、例えば過酸化水素、過酸化ベンゾイ
ル、アゾビスイソブチロニトリル、過硫酸アンモ
ニウム、過硫酸カリウムなどのラジカル重合触媒
を重合性物質と共に木質材に含浸させてラジカル
重合させる方法、同様にしてセリウム塩などのレ
ドツクス系触媒を用いる方法、および重合性物質
を木質材に含浸させた後γ線、電子線などの放射
線を照射する方法などがあり、いづれの方法を用
いて行なつてもよい。
Graft copolymerization can be carried out according to conventional methods. That is, for example, a method of radical polymerization by impregnating a radical polymerization catalyst such as hydrogen peroxide, benzoyl peroxide, azobisisobutyronitrile, ammonium persulfate, potassium persulfate, etc. together with a polymerizable substance into a wood material, and similarly a method of radical polymerization using a cerium salt. There are methods using a redox catalyst such as, and methods of impregnating a wood material with a polymerizable substance and then irradiating it with radiation such as gamma rays or electron beams. Either method may be used.

既述した如く、第1段階の処理で得た木質材は
非晶化、膨潤化されている為、この第2段階の処
理においては、導管、仮導管などの空隙は勿論の
こと、細胞内へも重合性物質が十分にかつ容易に
含浸し、かくして均一性の高いグラフト共重合体
が得られる。尚、木質材に含浸した重合性物質が
全てグラフト共重合に関与するのではなく、一部
はホモポリマーとなつて木質材の空隙に残留する
と考えられるが、これは特に除去する必要はな
い。むしろ、ホモポリマーの存在はグラフト共重
合化処理された木質材成分との相溶性を向上させ
る利点をもち、又複合物として最終成品の物性を
向上させ得る場合が多い。
As mentioned above, since the wood material obtained in the first stage treatment is amorphous and swollen, in this second stage treatment, not only voids such as ducts and tracheids but also intracellular The polymerizable substance is sufficiently and easily impregnated into the graft copolymer, and thus a highly uniform graft copolymer can be obtained. It should be noted that not all of the polymerizable substance impregnated into the wood material participates in the graft copolymerization, and some of it is thought to become a homopolymer and remain in the voids of the wood material, but this does not need to be particularly removed. Rather, the presence of the homopolymer has the advantage of improving compatibility with the graft copolymerized wood component, and can often improve the physical properties of the final product as a composite.

このようにして得られる改質された木質材は、
エステル化剤、エーテル化剤等の反応体による処
理でその成分中の水酸基が化学的に修飾されて内
部可塑性が進んでいるとともに、更に重合性物質
とグラフト共重合化せしめられていることによ
り、熱溶融を容易に生じる程顕著な熱可塑性を付
与される。
The modified wood material obtained in this way is
The hydroxyl groups in the components are chemically modified by treatment with reactants such as esterification agents and etherification agents, resulting in advanced internal plasticity, as well as being graft copolymerized with polymerizable substances. It has such remarkable thermoplasticity that it can be easily melted by heat.

特に反応体として無水酢酸、無水プロピオン酸
等の無水低級脂肪酸、その他の実用性は高いが従
来完全な熱溶融を伴う程顕著な熱可塑性を付与す
ることが困難であつたものを用いた場合にも、グ
ラフト共重合化せしめることにより顕著な熱可塑
性を付与せしめることができる。
In particular, when using lower fatty acid anhydrides such as acetic anhydride and propionic anhydride as reactants, and other highly practical substances, it has traditionally been difficult to impart remarkable thermoplasticity to the extent of complete thermal melting. Also, remarkable thermoplasticity can be imparted by graft copolymerization.

従つて本発明方法で得られる木質材は、その付
与された高い熱可塑性を利用して、例えば次のよ
うに用いることができる。
Therefore, the wood material obtained by the method of the present invention can be used, for example, in the following manner by taking advantage of its high thermoplasticity.

本発明方法を粉粒状または繊維状木質材に適用
した場合、改質後の木質材に、又は該木質材に他
の合成樹脂を混合したものに熱と圧力を加えて成
型することが一層容易となり押出成型、射出成型
等の成形加工で任意の形状に形成することができ
る。また、シート状、板状木質材に適用した場合
は、極めて容易にこれを曲面状または折曲状など
に成形加工することができる。さらに、厚板状ま
たは柱状木質材の表面に本発明方法を適した場合
は、これを加熱圧締することにより、その表面を
緻密で耐性水、耐摩耗性に優れたものに形成する
ことができる。しかも、スチレン等ビニルポリマ
ーの木質材成分へのグラフト、および木質材空隙
内に残存するホモポリマーの種類や量によつてこ
れら成形品に所望の物性を付与せしめることもで
き、又成形する際の加熱、加圧条件を調整するこ
とによつて改質された木質材の熱軟化状態、熱溶
融状態を加減しながら、所望の外観品質の成形品
に炭化や破損を生じることなく形成できる。
When the method of the present invention is applied to granular or fibrous wood materials, it is easier to mold the wood material after modification or by applying heat and pressure to the wood material mixed with other synthetic resins. It can be formed into any shape by extrusion molding, injection molding, or other molding processes. Furthermore, when applied to a sheet-like or plate-like wooden material, it can be extremely easily formed into a curved or bent shape. Furthermore, when the method of the present invention is suitable for the surface of thick plate-like or columnar wood materials, the surface can be formed into a dense material with excellent water and abrasion resistance by heat-pressing the material. can. In addition, desired physical properties can be imparted to these molded products by grafting vinyl polymers such as styrene onto wood components, and by changing the type and amount of the homopolymer remaining in the wood voids. By adjusting the heating and pressurizing conditions, it is possible to adjust the heat softening state and heat melting state of the modified wood material, and form a molded product with a desired appearance quality without causing carbonization or damage.

以下に本発明の実施例を挙げる。 Examples of the present invention are listed below.

実施例 1 木粉15gを氷酢酸26.3ml中に数時間浸漬して前
処理したのち無水酢酸62.2ml、無水プロピオン酸
36.5ml(モル比7:3)に氷酢酸48ml、過塩素酸
0.19mlを加えた液温35℃に調整した混合液に6時
間浸漬して反応させ洗條乾燥してアセチル−プロ
ピオニル化木粉を得た。
Example 1 15 g of wood flour was pretreated by immersing it in 26.3 ml of glacial acetic acid for several hours, followed by 62.2 ml of acetic anhydride and propionic anhydride.
36.5 ml (molar ratio 7:3), 48 ml of glacial acetic acid, perchloric acid
0.19 ml was added thereto, and the mixture was immersed for 6 hours to react, washed and dried to obtain acetyl-propionylated wood flour.

このアセチル−プロピオニル化木粉5gを反応
容器に入れピリジン20mlとスチレン20mlを加えて
容器内を窒素置換したのち線量率0.1Mrad/hrで
Co60r線同時照射を19時間行い反応終了後メタノ
ール中に浸漬しホモポリマーを共析出沈殿させ
た。得られたグラフト共重合化処理済木粉1は、
ホモポリマーをベンゼン抽出によつて除き、みか
けのグラフト率を算出したところ12%(尚グラフ
ト効率は35%)であつた。
Put 5 g of this acetyl-propionylated wood flour into a reaction container, add 20 ml of pyridine and 20 ml of styrene, replace the inside of the container with nitrogen, and then reduce the dose rate to 0.1 Mrad/hr.
Simultaneous irradiation with Co 60 r-rays was performed for 19 hours, and after the reaction was completed, the homopolymer was immersed in methanol to co-precipitate the homopolymer. The obtained graft copolymerized wood flour 1 is
The homopolymer was removed by benzene extraction, and the apparent grafting rate was calculated to be 12% (grafting efficiency was 35%).

又上記と同一条件のもとに線量率0.1Mrad/hr
のCo60r線同時照射時間だけを1時間、24時間、
34時間、と替えてグラフト共重合化処理済木粉
2,3,4を得た。
Also, under the same conditions as above, the dose rate was 0.1 Mrad/hr.
Co 60 r-ray simultaneous irradiation time of 1 hour, 24 hours,
After 34 hours, graft copolymerized wood flours 2, 3, and 4 were obtained.

このグラフト共重合化処理木粉2,3,4のみ
かけのグラフト率は、各々2%、15%、18%であ
つた。
The apparent graft ratios of the graft copolymerization-treated wood flours 2, 3, and 4 were 2%, 15%, and 18%, respectively.

次いで上記で得られたグラフト共重合化処理済
木粉1,2,3,4および、上記操作で得られた
(グラフト共重合化処理をしていない)アセチル
プロピオニル化木粉5を熱機械試験機(真空理工
株式会社製)で圧力:3Kg/cm2、昇温速度:
1Co/minの基に熱可塑性の測定を行つた。その
結果を第1図(熱機械挙動図)に示す。
Next, the graft copolymerization treated wood flours 1, 2, 3, and 4 obtained above and the acetylpropionylated wood flour 5 obtained in the above operation (without graft copolymerization treatment) were subjected to a thermomechanical test. Pressure: 3Kg/cm 2 , heating rate:
Thermoplasticity was measured on the basis of 1 Co/min. The results are shown in Figure 1 (thermo-mechanical behavior diagram).

尚第1図中、縦軸は加熱による試料の熱軟化に
伴うおちこみ変形量(△)を、横軸は加熱温度
(T)を示す。
In FIG. 1, the vertical axis shows the amount of depression deformation (Δ) due to thermal softening of the sample due to heating, and the horizontal axis shows the heating temperature (T).

第1図から明らかなようにアセチル−プロピオ
ニル化木粉5では、熱軟化を生じるが、300℃以
上の温度でも完全に熱流動しないのに対し、グラ
フト共重合化処理済木粉1,2,3,4は、僅か
なみかけのグラフト率においても、ほぼ300℃で
完全な熱流動を生じ溶融を伴う顕著な熱可塑性が
付与されることが確認できた。
As is clear from FIG. 1, acetyl-propionylated wood flour 5 undergoes thermal softening, but does not completely thermally flow even at temperatures of 300°C or higher, whereas graft copolymerized wood flour 1, 2, It was confirmed that samples 3 and 4 exhibited complete thermal fluidity at approximately 300°C and were endowed with remarkable thermoplasticity accompanied by melting even at a small apparent grafting rate.

又得られたグラフト共重合化処理済木粉1,
2,3,4は、強く加圧すると加熱温度を低減さ
せることができ、例えば150℃、100Kg/cm2の条件
下で熱圧すると、木粉が溶融したシート状等の成
型物に好適に成型することができた。
In addition, the obtained graft copolymerization treated wood flour 1,
For items 2, 3, and 4, the heating temperature can be lowered by applying strong pressure. For example, hot pressing at 150℃ and 100Kg/cm 2 is suitable for molded products such as sheets with molten wood flour. I was able to mold it.

実施例 2 木粉15gを実施例1と同一条件下で前処理した
のち、無水酢酸89.1ml、氷酢酸48ml、過塩素酸
0.19mlからなる液温35℃の混合液に6時間浸漬し
て反応させ、洗條乾燥してアセチル化木粉を得
た。
Example 2 15 g of wood flour was pretreated under the same conditions as in Example 1, and then treated with 89.1 ml of acetic anhydride, 48 ml of glacial acetic acid, and perchloric acid.
It was immersed in a 0.19 ml mixture at a temperature of 35°C for 6 hours to react, washed and dried to obtain acetylated wood flour.

このアセチル化木粉5gを反応容器に入れピリ
ジン20mlとスチレン20mlを加え容器内を窒素置換
した後線量率0.1MradでCo60r線同時照射を10時
間行つた。
5 g of this acetylated wood flour was placed in a reaction vessel, 20 ml of pyridine and 20 ml of styrene were added, and the inside of the vessel was purged with nitrogen, followed by simultaneous Co 60 r-ray irradiation at a dose rate of 0.1 Mrad for 10 hours.

得られたグラフト共重合化処理済木粉6は、見
かけのグラフト率8%(グラフト効率30%)であ
つた。
The resulting graft copolymerization treated wood flour 6 had an apparent grafting rate of 8% (grafting efficiency 30%).

このグラフト共重合化処理済木粉6と、上記操
作で得られた(グラフト共重合化処理をしていな
い)アセチル化木粉7を、実施例1で述べた熱機
械試験機で実施例1と同一条件の基に熱可塑性の
測定を行つた。その結果を第2図に示す。
Example 1 This graft copolymerization treated wood flour 6 and the acetylated wood flour 7 obtained by the above operation (not subjected to graft copolymerization treatment) were tested in the thermomechanical testing machine described in Example 1. Thermoplasticity was measured under the same conditions as . The results are shown in FIG.

第2図から明らかなようにアセチル化木粉7で
は300℃の温度でも完全に熱流動しないのに対し
グラフト共重合化処理済木粉1はほぼ300℃で完
全な熱流動を生じ顕著な熱可塑性が付与されたこ
とが確認できた。
As is clear from Figure 2, acetylated wood flour 7 does not have complete thermal fluidity even at a temperature of 300°C, whereas graft copolymerized wood flour 1 exhibits complete thermal fluidity at approximately 300°C, resulting in significant heat generation. It was confirmed that plasticity was imparted.

実施例 3 実施例1で得られたアセチル−プロピオニル化
木粉5gを反応容器に入れ1×10-3モルのFeSO4
を含有する水溶液50ml、1×10-2モルの過酸化水
素を含有する水溶液50mlおよびメタクリル酸メチ
ル80mlを加え50℃で4時間反応を行つた。得られ
たグラフト共重合化処理済木粉の見かけのグラフ
ト率は60%(グラフト効率22%)であつた。この
グラフト共重合化処理済木粉も完全な熱流動を生
じる顕著な熱可塑性が付与されていた。
Example 3 5 g of acetyl-propionylated wood flour obtained in Example 1 was placed in a reaction vessel, and 1×10 -3 mol of FeSO 4 was added.
50 ml of an aqueous solution containing hydrogen peroxide, 50 ml of an aqueous solution containing 1×10 -2 mol of hydrogen peroxide, and 80 ml of methyl methacrylate were added, and a reaction was carried out at 50° C. for 4 hours. The apparent grafting rate of the resulting graft copolymerized wood flour was 60% (grafting efficiency 22%). This graft copolymerized wood flour was also endowed with remarkable thermoplasticity that caused perfect thermal flow.

実施例 5 0.8mm厚のカバ材柾目単板を水酸化ナトリウム
溶液中に1時間浸漬して前処理し、次いで無水酢
酸を減圧加圧注入し、130℃で30分反応させ、重
量増加率18%のアセチル化単板を得た。次いで、
ピリジン:スチレン=1:1の溶液を注入し、容
器内を窒素置換後、線量率0.1MradでCo60照射
を10時間行なつた。
Example 5 A 0.8 mm thick straight-grain birch wood veneer was pretreated by immersing it in a sodium hydroxide solution for 1 hour, then acetic anhydride was injected under reduced pressure and reacted at 130°C for 30 minutes, resulting in a weight increase rate of 18 % acetylated veneer was obtained. Then,
A solution of pyridine:styrene=1:1 was injected, and after replacing the inside of the container with nitrogen, Co60 irradiation was performed for 10 hours at a dose rate of 0.1 Mrad.

得られたグラフト共重合処理単板の見かけのグ
ラフト率は6%であつた。この処理単板をホツト
プレスにて温度130℃、プレス圧5Kg/cm2、プレ
ス時間20分間で加熱圧締した所、春材部の透明度
が高く、かつ、年輪巾がもとの単板より広がつた
外観の化粧材として使用可能な単板を得た。
The apparent grafting rate of the resulting graft copolymerization treated veneer was 6%. When this treated veneer was heat-pressed in a hot press at a temperature of 130°C, a press pressure of 5 kg/cm 2 , and a press time of 20 minutes, the spring wood part had high transparency and the annual ring width was wider than the original veneer. A veneer that can be used as a decorative material with a rough appearance was obtained.

実施例 4 実施例2で得られたアセチル化木粉5gを、2
%過硫酸アンモニウム水溶液中に30分間浸漬した
のち、メタクリル酸メチル50mlとメタノール50ml
を加え、60℃で3時間反応を行つた。
Example 4 5 g of acetylated wood flour obtained in Example 2 was
% ammonium persulfate aqueous solution for 30 minutes, then 50 ml of methyl methacrylate and 50 ml of methanol.
was added, and the reaction was carried out at 60°C for 3 hours.

得られたグラフト共重合化処理済木粉のみかけ
のグラフト率は約120%であつた。
The apparent grafting rate of the resulting graft copolymerized wood flour was about 120%.

このグラフト共重合化処理済木粉も、完全な熱
流動を生じる顕著な熱可塑性が付与されていた。
This graft copolymerization-treated wood flour also had significant thermoplasticity that resulted in perfect thermal flow.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はそれぞれアセチル−プロ
ピオニル化木粉およびアセチル化木粉のスチレン
によるグラフト共重合化処理前、および処理後の
熱機械挙動図を示す。 1,2,3,4および6……見かけのグラフト
率がそれぞれ2%、12%、15%、18%および8%
であるグラフト共重合化処理木粉、5および7…
…グラフト共重合化処理前の木粉。
Figures 1 and 2 show thermomechanical behavior diagrams of acetyl-propionylated wood flour and acetylated wood flour before and after graft copolymerization treatment with styrene, respectively. 1, 2, 3, 4 and 6...apparent grafting rate is 2%, 12%, 15%, 18% and 8% respectively
Graft copolymerization treated wood flour, 5 and 7...
...Wood flour before graft copolymerization treatment.

Claims (1)

【特許請求の範囲】 1 木質材を該木質材成分中の水酸基と反応し得
る反応体で処理し、次いで該処理木質材を重合性
物質と反応させてグラフト重合化処理に付すこと
からなる木質材の改質方法。 2 反応体がエステル化剤またはエーテル化剤で
ある特許請求の範囲第1項に記載の木質材の改質
方法。 3 グラフト重合化処理に使用される重合性物質
がビニル化合物のモノマー、オリゴマーまたはプ
レポリマーである特許請求の範囲第1項または第
2項のいずれかに記載の木質材の改質方法。
[Claims] 1. A wood material comprising treating a wood material with a reactant capable of reacting with a hydroxyl group in the wood component, and then subjecting the treated wood material to a graft polymerization treatment by reacting with a polymerizable substance. Method of modifying materials. 2. The method for modifying wood materials according to claim 1, wherein the reactant is an esterification agent or an etherification agent. 3. The method for modifying wood materials according to claim 1 or 2, wherein the polymerizable substance used in the graft polymerization treatment is a vinyl compound monomer, oligomer, or prepolymer.
JP13298781A 1981-08-24 1981-08-24 Modifying method of woody material Granted JPS5832807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13298781A JPS5832807A (en) 1981-08-24 1981-08-24 Modifying method of woody material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13298781A JPS5832807A (en) 1981-08-24 1981-08-24 Modifying method of woody material

Publications (2)

Publication Number Publication Date
JPS5832807A JPS5832807A (en) 1983-02-25
JPH0337487B2 true JPH0337487B2 (en) 1991-06-05

Family

ID=15094125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13298781A Granted JPS5832807A (en) 1981-08-24 1981-08-24 Modifying method of woody material

Country Status (1)

Country Link
JP (1) JPS5832807A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63183910A (en) * 1987-01-26 1988-07-29 Okura Ind Co Ltd Production of plastic-like woody molded article
FR2693398B1 (en) * 1992-07-10 1994-10-07 Eurogam Densification process for softwoods and products obtained by this process.
SE0000870L (en) * 2000-03-16 2001-09-17 Lindhe Curt New procedure
WO2007091614A1 (en) * 2006-02-07 2007-08-16 Dai Nippon Printing Co., Ltd. Flooring material
JP4797692B2 (en) * 2006-02-27 2011-10-19 大日本印刷株式会社 Flooring
JP6183824B2 (en) * 2013-02-28 2017-08-23 国立研究開発法人産業技術総合研究所 Method for producing thermoplastic wood material and thermoplastic wood material produced thereby
JP2018051837A (en) * 2016-09-27 2018-04-05 パナソニックIpマネジメント株式会社 Method for producing modified wood
CN115157400B (en) * 2022-07-06 2023-04-14 东北林业大学 Modification treatment method for wood board core for snowboard

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49116203A (en) * 1973-03-08 1974-11-06
JPS6117245A (en) * 1984-07-03 1986-01-25 Matsushita Electric Ind Co Ltd Digital magnetic recording and reproducing device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49116203A (en) * 1973-03-08 1974-11-06
JPS6117245A (en) * 1984-07-03 1986-01-25 Matsushita Electric Ind Co Ltd Digital magnetic recording and reproducing device

Also Published As

Publication number Publication date
JPS5832807A (en) 1983-02-25

Similar Documents

Publication Publication Date Title
US3247133A (en) Method of forming graft copolymer ion exchange membranes
US3298942A (en) Production of graft copolymers of perhalogenated olefins
US3765934A (en) Process for impregnating porous, cellulosic material by in situ polymerization of styrene-maleic anhydride complex
JP2000507279A (en) Formaldehyde-free binder for moldings
US3958069A (en) Cellulose-polymer composites
JPH0337487B2 (en)
JPH078883B2 (en) Method for producing modified water absorbent resin
US2899402A (en) Process for manufacturing fiber re-
US3250640A (en) Process for manufacturing reinforced polyester resin sheets
US3304272A (en) Ion exchange materials prepared by absorbing styrene onto particulate polyethylene, introduction of ion exchange groups and shaping
JP3007979B2 (en) Foamable plastics and foams thereof
US3869432A (en) Styrene-maleic anhydride complex and process for making same
JPS6247686B2 (en)
US3846265A (en) Production of shaped structures
US3759774A (en) Process of making structural parts of improved surface properties
US3978261A (en) Elastomeric particles having polymerizable surface layer
US3579369A (en) Wood members impregnated with synthetic organic resins and method of producing such impregnated members
JPS60242003A (en) Improved wood
US3606993A (en) Durable press cotton textile products produced conducting graft copolymerization process followed by cross-linking with dmdheu
US3900685A (en) Cellulose-polymer composites
US2891015A (en) Carboxylic acid type cation exchange resins prepared in the presence of plasticizer and polymer
Quinney et al. The activation of wood fibre for thermoplastic coupling, the reaction of wood with a potential coupling agent
EP0007085B1 (en) Ethylene copolymers and their use in the preparation of expanded products
US2894917A (en) Carboxylic acid type cation exchange resins of large dimensions
US3766149A (en) Diallyl phthalate ethylene precopolymer and process for preparation thereof