JPH0337350A - Fuel controller of internal combustion engine - Google Patents

Fuel controller of internal combustion engine

Info

Publication number
JPH0337350A
JPH0337350A JP17029589A JP17029589A JPH0337350A JP H0337350 A JPH0337350 A JP H0337350A JP 17029589 A JP17029589 A JP 17029589A JP 17029589 A JP17029589 A JP 17029589A JP H0337350 A JPH0337350 A JP H0337350A
Authority
JP
Japan
Prior art keywords
fuel
time
internal combustion
combustion engine
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17029589A
Other languages
Japanese (ja)
Inventor
Itsuzo Tabata
田幡 五三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP17029589A priority Critical patent/JPH0337350A/en
Publication of JPH0337350A publication Critical patent/JPH0337350A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To prevent lean conditions of air-fuel ratio at the time of fuel supply reset in a device in which fuel cutting is performed at the time of deceleration of an internal combustion engine by performing controlling so as to enable fuel supply for only a specified time in response to a fuel cut time while cutting fuel at the deceleration operation time. CONSTITUTION:At the operation time of an internal combustion engine 2, in an ECU 38, fuel injection from a fuel injection valve 10 is calculated based on output signals from an intake temperature sensor 30, an opening rate sensor 32, an water temperature sensor 34, a pressure sensor 36, a turning angle sensor 40, an O2 sensor 42 and the like. The fuel injection is controlled so that the air-fuel ratio of mixed air is converged to a target value. At the deceleration operation time of the engine 2, fuel cut is performed so as to aim at improvement of fuel consumption, decrease of exhaust hazardous component and the like. In this case, it is judged whether the specified fuel cut time is passed or not at the time of cutting fuel. When it is YES, the fuel injection is performed for only a specified time set according to the fuel cut time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は内燃機関の燃料制御装置に係り、特に内燃機
関が減速運転から定常運転に復帰した際の空燃比のリー
ン化を防止し得て、アイドル回転数の不安定化を防止し
得てエンジンストールを回避し得る内燃機関の燃料制御
装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a fuel control device for an internal combustion engine, and in particular, to a fuel control device for an internal combustion engine that can prevent the air-fuel ratio from becoming lean when the internal combustion engine returns to steady operation from deceleration operation. The present invention relates to a fuel control device for an internal combustion engine that can prevent destabilization of idle speed and avoid engine stall.

〔従来の技術〕[Conventional technology]

内燃機関にあっては、燃料消費率の改善や排気有害成分
の低減等のために、減速運転時に燃料カットを行うもの
がある。しかし、減速運転時に燃料カットするため、減
速運転から定常運転に復帰した際に、空燃比がリーン化
してアイドル回転数が不安定となり、エンジンストール
を惹起するおそれがある。
Some internal combustion engines cut fuel during deceleration operation in order to improve fuel consumption rate, reduce harmful exhaust gas components, and the like. However, since fuel is cut during deceleration operation, when the deceleration operation returns to steady operation, the air-fuel ratio becomes lean and the idle speed becomes unstable, which may cause engine stall.

そこで、特開昭63−235636号公報に開示の如く
、燃料カット中に燃料復帰条件が成立した時点で、直ち
に燃料供給を再開することにより、空燃比のリーン化に
よるアイドル回転数の不安定化を防止し、エンジンスト
ールを回避しようとしたものがある。
Therefore, as disclosed in Japanese Patent Application Laid-Open No. 63-235636, by immediately restarting fuel supply when the fuel return condition is satisfied during fuel cut, the idle speed becomes unstable due to lean air-fuel ratio. Some attempts have been made to prevent this and avoid engine stall.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、内燃機関が減速運転から定常運転に復帰した
際に、特にシングルポイントインジェクシッン式の燃料
供給装置を備えた内燃機関においては、噴射弁から燃焼
室までの吸気通路が長いため、燃料供給に遅れを生じる
ことになり、空燃比が著しくリーン化する。このため、
定常運転に復帰した際のアイドル回転数の安定化、エン
ジンストールの惹起を改善すべく、前記公報に開示の如
く直ちに燃料供給を開始し、あるいは、燃料を増量して
供給するものがある。
By the way, when the internal combustion engine returns to steady operation from deceleration operation, especially in internal combustion engines equipped with a single-point injection type fuel supply system, the fuel supply is interrupted because the intake passage from the injection valve to the combustion chamber is long. As a result, the air-fuel ratio becomes significantly leaner. For this reason,
In order to stabilize the idle speed and prevent engine stalling when normal operation is resumed, there is a system that immediately starts supplying fuel or supplies an increased amount of fuel, as disclosed in the above-mentioned publication.

ところが、減速運転時の燃料カット時間が長くなると、
吸気管内が乾いた状態となるため、定常運転に復帰した
際に供給を開始された燃料が燃焼室に達するまでに時間
がかかることにより燃料供給に遅れを生じ、空燃比が更
にリーン化し、アイドル回転数の不安定化やエンジンス
トールを惹起する不都合があった。
However, if the fuel cut time during deceleration operation becomes longer,
Because the inside of the intake pipe becomes dry, it takes time for the fuel that starts to be supplied when normal operation is resumed to reach the combustion chamber, causing a delay in fuel supply, making the air-fuel ratio even leaner, and reducing the idle speed. This has the disadvantage of causing instability in the rotational speed and engine stall.

また、冷却水温度や吸気温度が低い場合は、燃料の霧化
が悪化することにより、燃料供給の遅れを助長すること
になるため、空燃比のさらなるリーン化を招き、アイド
ル回転数の落込みやエンジンストールの惹起に対して厳
しい状況にある。
In addition, if the cooling water temperature or intake air temperature is low, fuel atomization will worsen and fuel supply delays will be exacerbated, leading to an even leaner air-fuel ratio and a drop in idle speed. The situation is severe with regard to engine stalls and engine stalls.

〔発明の目的〕[Purpose of the invention]

そこで、この発明の目的は、内燃機関が減速運転から定
常運転に復帰した際の空燃比のリーン化を防止し得て、
アイドル回転数の不安定化を防止し得てエンジンストー
ルを回避し得る内燃機関の燃料制御装置を実現すること
にある。
Therefore, an object of the present invention is to prevent the air-fuel ratio from becoming lean when the internal combustion engine returns from deceleration operation to steady operation,
An object of the present invention is to realize a fuel control device for an internal combustion engine that can prevent destabilization of the idle speed and avoid engine stall.

〔問題点を解決するための手段〕[Means for solving problems]

この目的を達成するために、この発明は、内燃機関の減
速運転時に燃料カットすべく制御する内燃機関の燃料制
御装置において、前記内燃機関の減速運転時の燃料カッ
ト中にこの燃料カット時間に応じて所定時間だけ燃料供
給すべく制御する制御手段を設けたことを特徴とする。
In order to achieve this object, the present invention provides a fuel control device for an internal combustion engine that performs control to cut fuel during deceleration operation of the internal combustion engine. The present invention is characterized in that a control means is provided for controlling fuel supply for a predetermined period of time.

〔作用〕[Effect]

この発明の構成によれば、制御手段によって内燃機関の
減速運転時の燃料カット中にこの燃料カット時間に応じ
て所定時間だけ燃料供給すべく it’l+御すること
により、内燃機関が減速運転から定常運転に復帰した際
の空燃比のリーン化を防止することができる。
According to the configuration of the present invention, the control means controls it'l+ to supply fuel for a predetermined period of time according to the fuel cut time during fuel cut during deceleration operation of the internal combustion engine, so that the internal combustion engine can stop the deceleration operation. It is possible to prevent the air-fuel ratio from becoming lean when normal operation is resumed.

〔実施例〕〔Example〕

次にこの発明の実施例を図に基づいて詳細に説明する。 Next, embodiments of the present invention will be described in detail based on the drawings.

第1〜5図は、この発明の実施例を示すものである0図
において、2は内燃機関、4は燃料制御装置である。こ
の内燃機関2は、シングルポイントインジェクション式
の燃料供給装置を備えている。即ち、内燃機関2の吸気
通路6には、上流側から順次に、エアクリーナ8と、燃
料系を構成する燃料噴射弁10と、吸気絞り弁12と、
が設けられている。エアクリーナ8から取り入れられた
空気は、燃料噴射弁lOから噴射供給された燃料と混合
されて混合気を生成し、吸気絞り弁12により調量され
て燃焼室14に吸入され、燃焼される。燃焼生成された
排気は、排気通路16により外部に排出される。
1 to 5 show an embodiment of the present invention. In FIG. 0, 2 is an internal combustion engine, and 4 is a fuel control device. This internal combustion engine 2 is equipped with a single point injection type fuel supply device. That is, in the intake passage 6 of the internal combustion engine 2, in order from the upstream side, an air cleaner 8, a fuel injection valve 10 forming a fuel system, an intake throttle valve 12,
is provided. The air taken in from the air cleaner 8 is mixed with fuel injected and supplied from the fuel injection valve 1O to generate an air-fuel mixture, which is metered by the intake throttle valve 12 and taken into the combustion chamber 14, where it is combusted. Exhaust gas produced by combustion is exhausted to the outside through the exhaust passage 16.

前記燃料噴射弁10は、燃料供給通路18により燃料タ
ンク20に連通されている。燃料タンク20の燃料は、
燃料ポンプ22により前記燃料供給通路18を介して前
記燃料噴射弁lOに供給される。燃料供給通路18は、
燃料圧力調整器24を介して燃料戻り通路26により前
記燃料タンク20に連通されている。燃料圧力調整器2
4は、前記吸気絞り弁12下流側の吸気通路6に連通ず
る燃料圧力調整用圧力導入通路28により吸気圧力を導
入して燃料圧力を所定圧力に調整し、過剰の燃料を前記
燃料戻り通路26により燃料タンク20に戻す。
The fuel injection valve 10 is communicated with a fuel tank 20 through a fuel supply passage 18. The fuel in the fuel tank 20 is
The fuel is supplied to the fuel injection valve IO by the fuel pump 22 via the fuel supply passage 18. The fuel supply passage 18 is
A fuel return passage 26 communicates with the fuel tank 20 via a fuel pressure regulator 24 . Fuel pressure regulator 2
4 introduces intake pressure through a fuel pressure adjustment pressure introduction passage 28 communicating with the intake passage 6 on the downstream side of the intake throttle valve 12, adjusts the fuel pressure to a predetermined pressure, and drains excess fuel into the fuel return passage 26. is returned to the fuel tank 20.

前記吸気通路6には、吸気温度を検出する吸気温センサ
30と、吸気絞り弁12の開度状態を検出するスロット
ル開度センサ32と、冷却水温度を検出する水温センサ
34と、吸気圧力を検出する圧力センサ36と、が設け
られている。これら各種センサ30〜36は、燃料制御
l装置4の制御手段たる制御部3Bの入力側に接続され
ている。
The intake passage 6 includes an intake temperature sensor 30 that detects the intake air temperature, a throttle opening sensor 32 that detects the opening state of the intake throttle valve 12, a water temperature sensor 34 that detects the cooling water temperature, and an intake air temperature sensor 34 that detects the intake air pressure. A pressure sensor 36 for detection is provided. These various sensors 30 to 36 are connected to the input side of a control section 3B, which is a control means of the fuel control device 4.

また、この制御部38の入力側には、内燃機関2に設け
た回転角を検出する回転角センサ40と、排気道!16
に設けた排気成分値を検出する排気センサたる02セン
サ42と、点火系を構成するイグニシッンコイル/イグ
ナイタ44と、が接続されるとともに、さらに、ダイア
グノーシス開始信号部46と、車速センサ48と、空調
機器5゜と、パワーステアリング部52と、スタータ部
54と、テスト端子部56と、バッテリ58と、メイン
リレー60と、が接続されている。なお、イグニション
コイル/イグナイタ44は、制御部38の出力側にも接
続されている。
Further, on the input side of this control unit 38, there is a rotation angle sensor 40 provided in the internal combustion engine 2 that detects the rotation angle, and an exhaust path! 16
An 02 sensor 42, which is an exhaust sensor that detects exhaust component values provided in , the air conditioner 5°, the power steering section 52, the starter section 54, the test terminal section 56, the battery 58, and the main relay 60 are connected. Note that the ignition coil/igniter 44 is also connected to the output side of the control section 38.

一方、制御部38の出力側には、前記燃料噴射弁10が
接続されるとともに、ポンプリレー62を介して前記燃
料ポンプ22が接続されている。
On the other hand, the fuel injection valve 10 is connected to the output side of the control section 38, and the fuel pump 22 is also connected via a pump relay 62.

また、この制御部3Bの出力側には、ダイアグノーシス
ランプ64と、吸気通路6の吸気絞り弁12上流側及び
下流側を連通ずるバイパス通路66のバイパス空気量を
制御するバイパス空気制御弁68と、吸気通路6の吸気
絞り弁12下流側及び図示しないEGR弁を連通ずるE
GR弁制御用圧力導入通路70の導入圧力を調整する圧
力調整弁72と、が接続されている。
Further, on the output side of the control section 3B, a diagnosis lamp 64 and a bypass air control valve 68 for controlling the amount of bypass air in a bypass passage 66 that communicates the upstream and downstream sides of the intake throttle valve 12 of the intake passage 6 are provided. , E that communicates with the downstream side of the intake throttle valve 12 of the intake passage 6 and the EGR valve (not shown).
A pressure regulating valve 72 that adjusts the introduction pressure of the GR valve control pressure introduction passage 70 is connected.

これにより、燃料制御装置4の制御部38は、第2図に
示す如く、入力信号として各種センサ30〜36及び機
器類40〜60からの機関回転数、点火パルス、冷却水
温度、吸気温度、スロットル開度等を人力し、燃料噴射
弁10を動作させて内燃機関2に燃料を噴射供給し、0
2センサ42の信号を入力して前記内燃機関2に供給さ
れる混合気の空燃比を目標値に収束させるべく制御する
とともに、内燃機関2の減速運転時に燃料カットすべく
制御する。
As a result, the control unit 38 of the fuel control device 4 receives input signals from various sensors 30 to 36 and devices 40 to 60 such as engine speed, ignition pulse, cooling water temperature, intake air temperature, etc., as shown in FIG. Manually adjust the throttle opening, etc., operate the fuel injection valve 10 to inject and supply fuel to the internal combustion engine 2, and then
2 sensor 42 is input to control the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine 2 to converge to a target value, and also to perform fuel cut during deceleration operation of the internal combustion engine 2.

即ち、内燃機関2の減速運転時には、燃料消費率の改善
や排気有害成分の低減等のために、第3図(B)に示す
如く燃料カットする。ところが、この燃料カットによっ
て、第3図(D)に示す如く空燃比がリーン化する。こ
のとき、第3図(A)に示す如く機関回転数が降下する
が、従来は、クラッチOFFにより機関回転数が復帰回
転になった際に、第3図(B)に破線で示す如く燃料復
帰して供給される燃料の基本噴射を増量補正することに
より、アイドル回転数の安定化・エンジンストールの回
避を図っていた。なお、減速運転時には、第3図(C)
に示す如く、点火パルスはカットされず供給される。
That is, during deceleration operation of the internal combustion engine 2, fuel is cut as shown in FIG. 3(B) in order to improve the fuel consumption rate and reduce harmful exhaust components. However, due to this fuel cut, the air-fuel ratio becomes lean as shown in FIG. 3(D). At this time, the engine speed drops as shown in Fig. 3 (A), but conventionally, when the engine speed returns to the normal speed due to clutch OFF, the engine speed drops as shown by the broken line in Fig. 3 (B). By increasing the basic injection amount of fuel that is supplied after recovery, the aim is to stabilize the idle speed and avoid engine stall. In addition, during deceleration operation, Fig. 3 (C)
As shown in the figure, the ignition pulse is supplied without being cut.

しかし、燃料カットの時間が長くなると、特にシングル
ポイントインジェクション式の燃料噴射弁IOを備えた
内燃機関2にあっては、吸気管内が全く乾いた状態とな
るため、燃料復帰して燃料が供給されても、供給される
燃料が吸気管壁に付着することにより空燃比のリーン化
の時間が助長されて長くなり、第3図(D)に実線で示
す如く空燃比のリッチ化に遅れを生じ、第3図(A)に
破線で示す如く機関回転数の過降下によるアイドル回転
数の不安定化・エンジンストールの惹起を招くことにな
る。
However, if the fuel cut period becomes long, especially in the case of an internal combustion engine 2 equipped with a single-point fuel injection valve IO, the inside of the intake pipe will become completely dry, and the fuel will be restored and fuel will not be supplied. However, as the supplied fuel adheres to the intake pipe wall, the time required for the air-fuel ratio to become lean is promoted and becomes longer, resulting in a delay in enriching the air-fuel ratio, as shown by the solid line in Figure 3 (D). , as shown by the broken line in FIG. 3(A), the engine speed drops excessively, resulting in instability of the idle speed and engine stall.

そこで、内燃機関2の減速運転時に燃料カットすべく制
御する内燃機関2の燃料制御装置4において、制御部3
8によって、内燃機関2の減速運転時の燃料カット中に
この燃料カット時間Tに応じて所定時間tだけ燃料供給
すべく制御することにより、内燃機関2が減速運転から
定常運転に復帰した際の空燃比のリーン化を防止してい
る。
Therefore, in the fuel control device 4 of the internal combustion engine 2 that performs control to cut fuel during deceleration operation of the internal combustion engine 2, the control unit 3
8, by controlling to supply fuel for a predetermined time t according to this fuel cut time T during fuel cut during deceleration operation of the internal combustion engine 2, when the internal combustion engine 2 returns from deceleration operation to steady operation. This prevents the air-fuel ratio from becoming lean.

次に作用を説明する。Next, the effect will be explained.

第4図に示す如く、制御部38は、制御がスター1(1
00)すると、内燃機関2の減速運転による燃料カット
中であるか否かを判断(101)する、NOの場合は、
エンド(104)になる。
As shown in FIG. 4, the control unit 38 controls the star 1 (1
00) Then, it is determined (101) whether or not fuel is being cut due to deceleration operation of the internal combustion engine 2. If NO,
It becomes the end (104).

ステップ101においてYESの場合は、燃料カフ)時
間Tを経過したか否かを判断(102)する。Noの場
合は、エンド(104)になる。
If YES in step 101, it is determined whether fuel cuff time T has elapsed (102). If No, it becomes the end (104).

ステップ102においてYESの場合は、第3図(B)
に実線で示す如く所定時間tだけ燃料噴射弁10に噴射
パルスを供給して動作させ、内燃機関2に燃料を噴射供
給し、エンド(104)になる、なお、所定時間tは、
燃料カソト時間Tに応じて設定される値である。
If YES in step 102, see FIG. 3(B).
As shown by the solid line, the fuel injection valve 10 is operated by supplying an injection pulse for a predetermined time t, fuel is injected and supplied to the internal combustion engine 2, and the end (104) is reached.The predetermined time t is
This is a value that is set according to the fuel discharge time T.

このように、内燃機関2の減速運転時の燃料カット中に
燃料カソト時間Tに応じて所定時間tだけ燃料供給すべ
く制御することにより、内燃機関2が減速運転から定常
運転に復帰した際の吸気管壁の乾きをなくして空燃比の
リーン化を防止することができる。
In this way, by controlling fuel supply for a predetermined time t according to the fuel supply time T during fuel cut during deceleration operation of the internal combustion engine 2, when the internal combustion engine 2 returns from deceleration operation to steady operation, It is possible to prevent the air-fuel ratio from becoming lean by eliminating dryness of the intake pipe wall.

このため、第3図(A)に実線で示す如く、空燃比のリ
ーン化によるアイドル回転数の不安定化を防止し得て、
エンジンストールの惹起を回避することができる。また
、制御部38内のプログラムの変更のみで対処すること
ができるので、部品の追加増設を要せず、構造が複雑化
せず、コストを低度とし得て、経済的に有利である。
Therefore, as shown by the solid line in FIG. 3(A), it is possible to prevent the idle speed from becoming unstable due to the lean air-fuel ratio.
Engine stall can be avoided. Further, since the problem can be dealt with by simply changing the program in the control unit 38, there is no need to add additional parts, the structure does not become complicated, and the cost can be kept low, which is economically advantageous.

なお、内燃機関2の冷機時の如く冷却水温度や吸気温度
が低い場合には、空燃比のさらなるり一ン化を招くので
、第5図に示す如く冷機時には所定時間tを大とする等
、冷却水温度や吸気温度に対して所定時間tをテーブル
化し、−層精細な制御を行うことにより、より効果的に
アイドル回転数の安定化、エンジンストールの回避を図
ることができる。
Note that when the cooling water temperature and intake air temperature are low, such as when the internal combustion engine 2 is cold, the air-fuel ratio is further reduced, so the predetermined time t is increased when the engine is cold, as shown in FIG. By tabulating the predetermined time t with respect to the cooling water temperature and intake air temperature and performing fine control, it is possible to more effectively stabilize the idle speed and avoid engine stall.

また、所定時間tだけ燃料噴射弁lOに供給される噴射
パルスは、連続することなく数パルスに分割して燃料噴
射弁10に供給しミ燃料供給することもできる。さらに
、所定時間tにより燃料を供給した後において、燃料カ
ット時間Tが再び経過した場合には、再度所定時間tだ
け燃料供給すべく制御することにより、さらに効果的に
アイドル回転数の安定化、エンジンストールの回避を図
ることができる。つまり、燃料カット時間が長い場合に
は、燃料カット中の一回の所定時間tの燃料供給によっ
ては、復帰までに吸気管壁が乾いてしまうので、繰返し
て所定時間tだけ燃料供給すべく制御することにより、
吸気管壁の乾きをなくして空燃比のリーン化を防止する
ことができる。
Further, the injection pulse supplied to the fuel injection valve lO for the predetermined time t may not be continuous, but may be divided into several pulses and supplied to the fuel injection valve 10 to supply fuel. Furthermore, after fuel has been supplied for a predetermined time t, if the fuel cut time T has elapsed again, by controlling to supply fuel again for a predetermined time t, the idle speed can be more effectively stabilized. Engine stall can be avoided. In other words, if the fuel cut time is long, if fuel is supplied for a predetermined time t at one time during the fuel cut, the intake pipe wall will dry before recovery, so the control is controlled so that fuel is repeatedly supplied for a predetermined time t. By doing so,
It is possible to prevent the air-fuel ratio from becoming lean by eliminating dryness of the intake pipe wall.

(発明の効果) このようにこの発明によれば、制御手段によって内燃機
関の減速運転時の燃料カット中にこの燃料カット時間に
応じて所定時間だけ燃料供給すべく制御することにより
、内燃機関が減速運転から定常運転に復帰した際の空燃
比のリーン化を防止することができる。
(Effects of the Invention) According to the present invention, the control means controls the internal combustion engine to supply fuel for a predetermined period of time according to the fuel cut time during the fuel cut during deceleration operation of the internal combustion engine. It is possible to prevent the air-fuel ratio from becoming lean when returning from deceleration operation to steady operation.

このため、空燃比のリーン化によるアイドル回転数の不
安定化を防止し得て、エンジンストールの惹起を回避す
ることができる。
Therefore, it is possible to prevent the idle rotation speed from becoming unstable due to lean air-fuel ratio, and to avoid engine stall.

また、制御手段のプログラムの変更のみで対処すること
ができるので、部品の追加増設を要せず、構造が複雑化
せず、コストを低度とし得て、経済的に有利である。
Further, since the problem can be dealt with by simply changing the program of the control means, there is no need to add additional parts, the structure is not complicated, and the cost can be kept low, which is economically advantageous.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜5図はこの発明の実施例を示し、第1図は内燃機
関の燃料制御装置の概略説明図、第2図は燃料供給系の
ブロソク図、第3図は機関回転数と噴射パルスと点火パ
ルスと空燃比とのタイムチャート、第4図は制御のフロ
ーチャート、第5図は温度と所定時間との関係を示す図
である。 図において、2は内燃機関、4は燃料制御装置、6は吸
気通路、10は燃料噴射弁、12は吸気絞り弁、16は
排気通路、30は吸気温センサ、32は開度センサ、3
4は水温センサ、36は圧力センサ、38は制御部、4
0は回転角センサ、42は02センサ、44はイグニシ
ョンコイル/イグナイタである。
1 to 5 show embodiments of the present invention, FIG. 1 is a schematic explanatory diagram of a fuel control device for an internal combustion engine, FIG. 2 is a block diagram of a fuel supply system, and FIG. 3 is an engine rotation speed and injection pulse. FIG. 4 is a control flowchart, and FIG. 5 is a diagram showing the relationship between temperature and predetermined time. In the figure, 2 is an internal combustion engine, 4 is a fuel control device, 6 is an intake passage, 10 is a fuel injection valve, 12 is an intake throttle valve, 16 is an exhaust passage, 30 is an intake temperature sensor, 32 is an opening sensor, 3
4 is a water temperature sensor, 36 is a pressure sensor, 38 is a control unit, 4
0 is a rotation angle sensor, 42 is a 02 sensor, and 44 is an ignition coil/igniter.

Claims (1)

【特許請求の範囲】[Claims] 1、内燃機関の減速運転時に燃料カットすべく制御する
内燃機関の燃料制御装置において、前記内燃機関の減速
運転時の燃料カット中にこの燃料カット時間に応じて所
定時間だけ燃料供給すべく制御する制御手段を設けたこ
とを特徴とする内燃機関の燃料制御装置。
1. In a fuel control device for an internal combustion engine that controls fuel cut during deceleration operation of the internal combustion engine, control is performed to supply fuel for a predetermined time according to the fuel cut time during fuel cut during deceleration operation of the internal combustion engine. A fuel control device for an internal combustion engine, comprising a control means.
JP17029589A 1989-06-30 1989-06-30 Fuel controller of internal combustion engine Pending JPH0337350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17029589A JPH0337350A (en) 1989-06-30 1989-06-30 Fuel controller of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17029589A JPH0337350A (en) 1989-06-30 1989-06-30 Fuel controller of internal combustion engine

Publications (1)

Publication Number Publication Date
JPH0337350A true JPH0337350A (en) 1991-02-18

Family

ID=15902315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17029589A Pending JPH0337350A (en) 1989-06-30 1989-06-30 Fuel controller of internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0337350A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0514620A (en) * 1991-07-05 1993-01-22 Fuji Xerox Co Ltd Light emitting device, manufacture thereof and picture reader

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0514620A (en) * 1991-07-05 1993-01-22 Fuji Xerox Co Ltd Light emitting device, manufacture thereof and picture reader

Similar Documents

Publication Publication Date Title
US4836164A (en) Engine speed control system for an automotive engine
JPH084564A (en) Integral type air-fuel ratio sensor for gas fuel internal combustion engine
JPH0458051A (en) Used fuel determining device for internal combustion engine
CN101432517A (en) Air-fuel ratio control system for internal combustion engine and control method of the same
JPH02271042A (en) Accelerating fuel controller of engine
JPH0337350A (en) Fuel controller of internal combustion engine
JPH0643814B2 (en) Dual fuel switching control method and device
JPH03488B2 (en)
US4612889A (en) Idle control method for an internal combustion engine
JP2751322B2 (en) Fuel control device for internal combustion engine
JP2564846B2 (en) Air-fuel ratio controller for LPG engine
JP2932141B2 (en) Intake control device for internal combustion engine
JPH01155044A (en) Electronic control fuel injection system for internal combustion engine
JPH01240742A (en) Fuel supply device for engine
JP2511864B2 (en) Electronic fuel injection device
JPS61223239A (en) Starting fuel injection controller of internal-combustion engine
JPH02119656A (en) Fuel supply device for engine
JPS623141A (en) Engine starting time controller
JPS59153948A (en) Air-fuel ratio control method of internal-combustion engine
JPH09250369A (en) Device for controlling supply amount of fuel gas for gas engine
JPH02215943A (en) Fuel injection system for engine
JPH01267331A (en) Fuel supply device for engine
JPH08135486A (en) Injection quantity control device for internal combustion engine
JPH01100338A (en) Fuel control device of car engine
JPH01224427A (en) Air-fuel ratio control device of internal combustion engine