JPH0337341A - Speed controller for automobile - Google Patents

Speed controller for automobile

Info

Publication number
JPH0337341A
JPH0337341A JP17072689A JP17072689A JPH0337341A JP H0337341 A JPH0337341 A JP H0337341A JP 17072689 A JP17072689 A JP 17072689A JP 17072689 A JP17072689 A JP 17072689A JP H0337341 A JPH0337341 A JP H0337341A
Authority
JP
Japan
Prior art keywords
road surface
fuzzy
speed
automobile
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17072689A
Other languages
Japanese (ja)
Inventor
Akihiko Fujiwara
明彦 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP17072689A priority Critical patent/JPH0337341A/en
Publication of JPH0337341A publication Critical patent/JPH0337341A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To carry out the optimum speed control corresponding to the road surface state by controlling the road surface state by fuzzy-estimating the dynamic frictional coefficient between the road surface and a tire on the basis of the state of the road surface on which an automobile travels and the traveling speed and controlling the speed of the automobile according to the result of the estimation. CONSTITUTION:In the control of the speed of an automobile, the state of a road surface on which the automobile travels and the traveling speed of the automobile are detected by the means 2 and 6. Then, each detection signal is inputted into a fuzzy controller 8, and the speed of the automobile is fuzzy- controlled according to a plurality of fuzzy rules having the detected road surface state and the traveling speed as the former variables and having the dynamic frictional coefficient between the road surface and a tire as the posterior variables and the membership function of each above-described variable which is allotted for a prescribed fuzzy label. Then, a driving mechanism 12 such as a throttle valve in an engine is controlled by a speed control circuit 10 according to the dynamic frictional coefficient outputted from the fuzzy controller.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、自動車の速度制御装置に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a speed control device for a motor vehicle.

(従来の技術) 従来における自動車の速度制御方法として、リミット最
高速度を設定し、走行速度がそのリミット最高速度を越
えるとプラグの点火度合いを制限する最高速度の制御方
法がある。
(Prior Art) As a conventional speed control method for an automobile, there is a maximum speed control method in which a maximum speed limit is set, and when the traveling speed exceeds the maximum speed limit, the degree of ignition of a plug is limited.

(発明が解決しようとする課題) しかしながら、このような従来の最高速度制御方法は、
路面状況に応じたものではなかったから、路面が滑りや
すい状態の場合には、そのリミット最高速度内の場合で
も自動車がスリップや転倒する危険が生ずる問題点があ
った。
(Problem to be solved by the invention) However, such conventional maximum speed control methods,
Since it was not adapted to the road surface conditions, there was a problem in that when the road surface was slippery, there was a risk that the vehicle would slip or fall even if it was within the maximum speed limit.

本発明は、このような課題に鑑みてなされたものであっ
て、路面状況に応じた速度制御ができるようにすること
を目的としている。
The present invention has been made in view of such problems, and an object of the present invention is to enable speed control according to road surface conditions.

(課題を課題するための手段) このような目的を達成するために、本発明の自動車の速
度制御装置においては、路面状態および当該自動車の走
行速度をそれぞれ検出する検出手段と、前記検出手段か
ら入力される路面状態および走行速度に関する各データ
を前件部変数とし、動摩擦係数を後件部変数とする複数
のファジィルールと、ファジィラベル毎に割り当てられ
た前記各前件部変数と後件部変数それぞれのメンバーシ
ップ関数とに従って当該自動車の速度をファジィコント
ロールするファジィコントローラとを備えたことを特徴
としている。
(Means for Achieving the Problem) In order to achieve such an object, the speed control device for an automobile of the present invention includes a detection means for detecting the road surface condition and the traveling speed of the automobile, and a A plurality of fuzzy rules in which input data related to road surface conditions and traveling speed are used as antecedent variables, and the dynamic friction coefficient is used as a consequent variable, and each of the antecedent variables and consequent variables are assigned to each fuzzy label. The present invention is characterized by comprising a fuzzy controller that fuzzy controls the speed of the vehicle according to the membership function of each variable.

(作用) 上記構成によれば、路面状態、および走行速度を用いて
動摩擦係数をファジィ推論し、その推論結果に従って的
確な速度制御を行う。
(Operation) According to the above configuration, the dynamic friction coefficient is fuzzy inferred using the road surface condition and the traveling speed, and accurate speed control is performed according to the inference result.

(実施例) 以下、本発明の実施例を図面を参照して詳細に説明する
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は、本発明の実施例に係る自動車の速度制御装置
のブロック回路図である。第1図において、2は超音波
を路面に送波し、その路面からの超音波の反射波に基づ
いて路面状態を検出する路面状態検出手段である。具体
的に説明すると、乾燥路面、凍結路面、小石の多い路面
、あるいは水溜まりのある路面などからの上記反射波は
送波から反射波の受波までのタイミング時間とか、その
波形・レベルとかが相異なるから、路面状態検出手段2
はそれらをあらかじめテーブルメモリに記憶させておき
、そのテーブルメモリに記憶されている反射波の波形・
レベルと、反射波実測部からの反射波のそれとを比較す
ることで、路面状態信号X1を電圧の形で出力する。
FIG. 1 is a block circuit diagram of a speed control device for an automobile according to an embodiment of the present invention. In FIG. 1, reference numeral 2 denotes a road surface condition detection means that transmits ultrasonic waves to the road surface and detects the road surface condition based on the reflected waves of the ultrasonic waves from the road surface. To be more specific, the above-mentioned reflected waves from a dry road surface, a frozen road surface, a road surface with many pebbles, a road surface with puddles, etc., have different timings from transmission to reception of the reflected waves, and their waveforms and levels. Since it is different, road surface condition detection means 2
stores them in a table memory in advance, and then displays the reflected wave waveform/waveform stored in the table memory.
By comparing the level with that of the reflected wave from the reflected wave measurement section, a road surface condition signal X1 is output in the form of a voltage.

6は自動車の走行速度を検出し、その検出に従って電圧
の形でもって走行速度信号x2を出力する走行速度検出
手段である。
Reference numeral 6 denotes a running speed detection means for detecting the running speed of the automobile and outputting a running speed signal x2 in the form of a voltage according to the detection.

8は前記各検出手段2.6のそれぞれから入力される路
面状態信号X11および走行速度信号X2を前件部変数
とし、路面とタイヤ間の動摩擦係数yを後件部変数とす
る第2図に示されるファジィルールの複数と、第3−お
よび第4図に示されるファジィラベル毎に割り当てられ
た前記各前件部変数111.X2と後件部変数yそれぞ
れのメンバーシップ関数とに従って当該自動車の速度を
ファジィコントロールするファジィコントローラである
8 is a diagram in which the road surface condition signal X11 and the traveling speed signal X2 inputted from each of the detection means 2.6 are used as antecedent variables, and the dynamic friction coefficient y between the road surface and the tires is used as a consequent variable. The plurality of fuzzy rules shown and each antecedent variable 111 assigned to each fuzzy label shown in FIGS. 3-4. This is a fuzzy controller that fuzzy controls the speed of the vehicle according to X2 and the membership function of each consequent variable y.

10はファジィコントローラ8から一電圧の形で出力さ
れてくる動摩擦係数出力に応答する速度制御回路である
。12はエンジンのスロットル弁の駆動機構であり、速
度制御回路10からの制御信号に基づいて駆動されるよ
うになっている。
Reference numeral 10 denotes a speed control circuit that responds to the dynamic friction coefficient output output from the fuzzy controller 8 in the form of one voltage. Reference numeral 12 denotes a drive mechanism for a throttle valve of the engine, which is driven based on a control signal from the speed control circuit 10.

ファジィコントローラ8は第2図に示されるif(前件
部)〜then(後件部)形式の複数種類のファジィル
ールを記憶している。第2図に示される各ファジィルー
ルにおいて、xi、x2はそれぞれ対応する路面状態検
出手段2、走行速度検出手段6から与えられる前件部変
数、yは動摩擦係数の後件部変数、NL・・・PLのそ
れぞれは前件部変数および後件部変数が属するファジィ
集合のファジィラベル名である。xiに関するファジィ
ラベルは、NL:rつるつるJ 、NM: rかなり細
か」、NS:「やや細か」、ZR:「普通」、PS: 
rやや粗いJ、PM:rかなり粗い」、PL:「粗い」
であり、速度に関するファジィラベルは、ZR: r停
止J 、PS: r低速J、PM:「中速J、PL:r
高速」であり、動摩擦係数yに関するファジィラベルは
、ZR: r小J、PS:「やや小、、l、PM:rや
や大J、PL:r大」である。
The fuzzy controller 8 stores a plurality of types of fuzzy rules in the form of if (antecedent part) to then (consequent part) shown in FIG. In each fuzzy rule shown in FIG. 2, xi and x2 are antecedent variables given from the corresponding road surface condition detection means 2 and traveling speed detection means 6, respectively, y is a consequent variable of the dynamic friction coefficient, NL... - Each PL is a fuzzy label name of a fuzzy set to which the antecedent variable and the consequent variable belong. The fuzzy labels for xi are NL: r smooth J, NM: r quite fine, NS: somewhat fine, ZR: normal, PS:
r Slightly rough J, PM: r Fairly rough", PL: "Rough"
, and the fuzzy labels related to speed are ZR: r stop J, PS: r low speed J, PM: "medium speed J, PL: r
The fuzzy labels regarding the dynamic friction coefficient y are ZR: r small J, PS: r slightly small, l, PM: r slightly large J, PL: r large.

例えばルール1[i f  x 1=NL、X 2=P
L  then  y=ZR]は、言語表現によると「
路面がつるつるで、走行が高速である場合は動摩擦係数
値」となり、ルールn[if  X1=PL、x 2=
PS  then  y=PL]は、言語表現によると
「路面が粗く、走行が低速である場谷は動摩擦係数出力
」となる。
For example, rule 1 [if x 1=NL, X 2=P
According to the linguistic expression, “L then y=ZR]
If the road surface is smooth and the vehicle is traveling at high speed, the coefficient of kinetic friction will be ', and the rule n[if X1=PL, x2=
According to the linguistic expression, PS then y=PL] is "dynamic friction coefficient output when the road surface is rough and the vehicle is traveling at low speed."

また、ファジィコントローラ8は第3図(a)(b)、
第4図に示すような、前件部変数Xl。
Furthermore, the fuzzy controller 8 is shown in FIGS. 3(a) and 3(b),
Antecedent variable Xl as shown in FIG.

に2、後件部変数yのそれぞれのメンバーシップ関数座
標系におけるメンバーシップ関数を記憶している。第3
図(a)の横軸には粗さ値が、第3図(b)の横軸には
速度値が示されている。第4図の横軸には動摩擦係数値
が示されている。
2. The membership function of each of the consequent variables y in the membership function coordinate system is stored. Third
The horizontal axis in FIG. 3(a) shows the roughness value, and the horizontal axis in FIG. 3(b) shows the velocity value. The horizontal axis of FIG. 4 shows the dynamic friction coefficient value.

つぎに、第1図の速度制御装置の動作を第2図ないし第
4図を参照して説明する。
Next, the operation of the speed control device shown in FIG. 1 will be explained with reference to FIGS. 2 to 4.

まず、各検出手段2.6それぞれから与えられる信号x
l=α、×2=βに基づいて第3図(a)(b)からそ
れぞれ各ファジィルールの対応するメンバーシップ関数
に適合するメンバーシップ値、NLf (α)=0.N
Mf (α)=0.NSf (α)=0.7.ZRf 
(U)=0.3.PSf ((t)=0゜PMf (a
’)=0.PLr (a”)=O,ZRf (β)=0
.PSf(β’)=0.8.PMf (13> =0.
2゜PL、rCβ)=0が求められる。 そして、各フ
ァジィルール毎に、各前件部XI、X2のメンバーシッ
プ値の最も小さい値が前件部適合度として選択される(
MIN演算)。例えば、ルール!においては、前件部の
各メンバーシップ値が[0,0]故に前件部適合度は「
0」となる。このように各ルールにおいて得られる前件
部適合度によって第4図から各ファジィルールのyに関
する各メンバーシップ関数が裁断され、さらに裁断され
たすべてのファジィルールのyに関する各メンバーシッ
プ関数が重ね合わされ(MAX演算)、その斜線で示す
重ね合わせ図形の重心G位置に対応する位置の動摩擦係
数y に関する動摩擦係数データYが出力される。
First, the signal x given from each detection means 2.6
Based on l=α, ×2=β, membership values that fit the corresponding membership functions of each fuzzy rule from FIGS. 3(a) and (b), respectively, NLf (α)=0. N
Mf (α)=0. NSf (α)=0.7. ZRf
(U)=0.3. PSf ((t)=0°PMf (a
') = 0. PLr (a”)=O, ZRf (β)=0
.. PSf(β')=0.8. PMf (13>=0.
2°PL, rCβ)=0 is obtained. Then, for each fuzzy rule, the smallest membership value of each antecedent part XI, X2 is selected as the antecedent part suitability (
MIN operation). For example, rules! In, since each membership value of the antecedent part is [0,0], the antecedent part fitness is "
0". In this way, each membership function with respect to y of each fuzzy rule is cut from FIG. 4 based on the antecedent suitability obtained for each rule, and each membership function with respect to y of all the cut fuzzy rules is superimposed. (MAX calculation), dynamic friction coefficient data Y regarding the dynamic friction coefficient y at the position corresponding to the position of the center of gravity G of the superimposed figure shown by the diagonal line is output.

このデータYは電圧信号として速度制御回路1Oに与え
られ、速度制御回路IOからはそのデータYに対応する
制御信号がスロットル弁の駆動機構12に与えられ、こ
れにより、動摩擦係数が小さい場合には、スロットル弁
が閉じられて燃料の供給が制限され、これにより、走行
速度がスリップの発生しない安全な速度に維持される。
This data Y is given to the speed control circuit 1O as a voltage signal, and a control signal corresponding to the data Y is given from the speed control circuit IO to the throttle valve drive mechanism 12. , the throttle valve is closed to limit the fuel supply, thereby maintaining the vehicle speed at a safe speed without slipping.

逆の場合にはスロットル便が開かれ、燃料供給は制限さ
れない。
In the opposite case, the throttle flight is opened and the fuel supply is not restricted.

(発明の効果) 以上説明したことから明らかなように、本発明によれば
、路面の状態と走行速度とを用いて動摩擦係数をファジ
ィ推論し、その推論結果に従って自動車の速度を制御す
るので、道路状態に対応した適切な速度制御がなされる
(Effects of the Invention) As is clear from the above explanation, according to the present invention, the dynamic friction coefficient is fuzzy inferred using the road surface condition and the traveling speed, and the speed of the vehicle is controlled according to the inference result. Appropriate speed control is performed according to road conditions.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の実施例に係り、第1図は本発明の実施例に
係る速度制御装置の構成を示すブロック図、第2図は第
1図のファジィコントローラに記憶されているファジィ
ルールを示す図、第3図(a)(b)のそれぞれは前件
部変数におけるメンバーシップ関数を示す図、第4図は
後件部変数におけるメンバーシップ関数を示す図である
。 2・・・路面状態検出手段、 6・・・走行速度検出手段、 8・・・ファジィコントローラ。
The figures relate to an embodiment of the present invention, FIG. 1 is a block diagram showing the configuration of a speed control device according to the embodiment of the present invention, and FIG. 2 shows fuzzy rules stored in the fuzzy controller of FIG. 1. 3(a) and 3(b) each show a membership function for an antecedent part variable, and FIG. 4 shows a membership function for a consequent part variable. 2... Road surface condition detection means, 6... Traveling speed detection means, 8... Fuzzy controller.

Claims (1)

【特許請求の範囲】[Claims] (1)路面状態および当該自動車の走行速度をそれぞれ
検出する検出手段と、 前記検出手段から入力される路面状態および走行速度に
関する各データを前件部変数とし、動摩擦係数を後件部
変数とする複数のファジィルールと、ファジィラベル毎
に割り当てられた前記各前件部変数と後件部変数それぞ
れのメンバーシップ関数とに従って当該自動車の速度を
ファジィコントロールするファジィコントローラと、 を備えたことを特徴とする自動車の速度制御装置。
(1) A detection means that detects the road surface condition and the traveling speed of the vehicle, and each data regarding the road surface condition and the traveling speed input from the detection means is used as an antecedent variable, and the coefficient of dynamic friction is used as a consequent variable. A fuzzy controller that fuzzy controls the speed of the vehicle according to a plurality of fuzzy rules and membership functions of each of the antecedent and consequent variables assigned to each fuzzy label. Automobile speed control device.
JP17072689A 1989-06-30 1989-06-30 Speed controller for automobile Pending JPH0337341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17072689A JPH0337341A (en) 1989-06-30 1989-06-30 Speed controller for automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17072689A JPH0337341A (en) 1989-06-30 1989-06-30 Speed controller for automobile

Publications (1)

Publication Number Publication Date
JPH0337341A true JPH0337341A (en) 1991-02-18

Family

ID=15910255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17072689A Pending JPH0337341A (en) 1989-06-30 1989-06-30 Speed controller for automobile

Country Status (1)

Country Link
JP (1) JPH0337341A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996020336A1 (en) * 1994-12-27 1996-07-04 Komatsu Ltd. Device and method for limiting the vehicle speed of a working vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58103011A (en) * 1981-12-14 1983-06-18 Nippon Denso Co Ltd Constant-speed traveling device for car
JPS649036A (en) * 1987-07-01 1989-01-12 Nissan Motor Constant speed running device for automobile

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58103011A (en) * 1981-12-14 1983-06-18 Nippon Denso Co Ltd Constant-speed traveling device for car
JPS649036A (en) * 1987-07-01 1989-01-12 Nissan Motor Constant speed running device for automobile

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996020336A1 (en) * 1994-12-27 1996-07-04 Komatsu Ltd. Device and method for limiting the vehicle speed of a working vehicle
GB2313212A (en) * 1994-12-27 1997-11-19 Komatsu Mfg Co Ltd Device and method for limiting the vehicle speed of a working vehicle
US6052644A (en) * 1994-12-27 2000-04-18 Komatsu Ltd. Apparatus and method for limiting vehicle speed of a working vehicle

Similar Documents

Publication Publication Date Title
US6453228B1 (en) Vehicle drive force control system and method
KR910000319B1 (en) Wheel spin control apparatus for use in an automobile
JP3416137B2 (en) Slip control method and device
KR20210071132A (en) Vehicle driving control method using friction coefficient estimating of road surface
US7426435B2 (en) Engine control system and method
JPH02503180A (en) Drive slip control device
JPH0337341A (en) Speed controller for automobile
KR20210014822A (en) System and method for controlling wheel slip of vehicle
US7124850B2 (en) Four wheel drive assembly and a method for utilizing the same
JPH04276146A (en) Method and device for controlling racing of wheel
US5416709A (en) Fuzzy controller for anti-skid brake systems
Li et al. Traction control of hybrid electric vehicle
Zhang et al. Distributed drive electric vehicle longitudinal velocity estimation with adaptive kalman filter: Theory and experiment
US6088646A (en) Fuzzy logic antiskid control system for aircraft
JP3214176B2 (en) Differential limit torque control device
KR101666880B1 (en) Method for distributing rear wheel driving force of front wheel driving vehicle and computer program thereof
JPH05292604A (en) Idling/slip controller
JPS6291326A (en) Unit for controlling driving force for vehicle
JPH0655959A (en) Vehicular driving force control device
JP3116670B2 (en) Differential limit torque control device
Jiang et al. Modeling and simulation of big bus equipped with autonomous emergency braking system
Kim et al. Modeling and design of hybrid control system for dual hybrid electric vehicle drivetrains
JPS63186931A (en) Driving power controller for vehicle
Chen et al. Anti-slip regulation method for electric vehicles with four in-wheel motors based on the identification of slip ratio
JPH0321556A (en) Brake control device of automobile