JPH0337264B2 - - Google Patents

Info

Publication number
JPH0337264B2
JPH0337264B2 JP57102366A JP10236682A JPH0337264B2 JP H0337264 B2 JPH0337264 B2 JP H0337264B2 JP 57102366 A JP57102366 A JP 57102366A JP 10236682 A JP10236682 A JP 10236682A JP H0337264 B2 JPH0337264 B2 JP H0337264B2
Authority
JP
Japan
Prior art keywords
metal terminal
terminal plate
manganese dioxide
compressed
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57102366A
Other languages
Japanese (ja)
Other versions
JPS5816466A (en
Inventor
Yan Torubuyorun Iensen Peru
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HERESENSU AS
Original Assignee
HERESENSU AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HERESENSU AS filed Critical HERESENSU AS
Publication of JPS5816466A publication Critical patent/JPS5816466A/en
Publication of JPH0337264B2 publication Critical patent/JPH0337264B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/42Grouping of primary cells into batteries
    • H01M6/46Grouping of primary cells into batteries of flat cells
    • H01M6/48Grouping of primary cells into batteries of flat cells with bipolar electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 本発明は単一の平坦な電池を相互に重ねて周縁
に沿つて一体に連結し、亜鉛負極と、アルカリ電
解液と、金属端子板と接触する二酸化マンガン−
炭素圧縮体からなる正極と、プラスチツク容器の
形状の電池ケーシングとから各電池を構成し、各
容器の底の内側および外側に端子板を配置した電
池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention consists of single flat cells stacked on top of each other and connected together along the periphery, with a zinc negative electrode, an alkaline electrolyte, and a manganese dioxide in contact with a metal terminal plate.
This invention relates to a battery in which each battery is comprised of a positive electrode made of compressed carbon and a battery casing in the form of a plastic container, with terminal plates arranged inside and outside the bottom of each container.

約40mm高さの既知の9V電池は複数の好ましい
長さおよび太さを有する円筒状部材から形成され
ている。これらの部材は製造が困難で、むしろ不
合格になる割合(scrapping percentage)が高
い。更に、容積の大部分が有効利用されず、寸法
が制限される。
Known 9V batteries, approximately 40 mm high, are formed from cylindrical members having a plurality of preferred lengths and thicknesses. These parts are difficult to manufacture and have a rather high scrapping percentage. Furthermore, a large portion of the volume is not utilized effectively and the dimensions are limited.

このために、互いに積み重ねる平坦セルが導入
されるようにてつた。このセルについては、例え
ばデンマーク特許出願第5318/78に記載されてい
る。この手段では、容積の28%以上の利用率が得
られている。各電池をプラスチツク容器に入れて
いる。しかし、二酸化マンガン−炭素圧縮体(正
極本体)と金属端子板との間に満足な接触を形成
する場合にある特定の問題を生ずる。
To this end, flat cells that are stacked on top of each other have been introduced. This cell is described, for example, in Danish patent application no. 5318/78. With this method, a capacity utilization rate of more than 28% has been achieved. Each battery is placed in a plastic container. However, certain problems arise in forming satisfactory contact between the manganese dioxide-carbon compact (the positive electrode body) and the metal terminal plate.

本発明は二酸化マンガン−炭素圧縮体と金属端
子板との間に満足な接触を形成する簡単な手段を
見出したことにより達成したことに基づくもので
あり、本発明の方法は二酸化マンガン−炭素圧縮
体からなる正極を負金属端子板に該金属端子板の
縁に沿つて、好ましくは2つの対向する端縁に沿
つて圧締して固定することを特徴とする。本発明
の方法においては二酸化マンガン−炭素圧縮体を
2つの対向する端縁に沿つて曲げたU字状−金属
端子板の側面から着脱できるから大量生産するの
に適当である。金属端子板は2つの対向する端縁
に沿つて90゜より僅かな程度、好ましくは1〜3゜
程度、内方に曲げる必要がある。
The present invention is based on the achievement of the discovery of a simple means of forming a satisfactory contact between a compressed manganese dioxide-carbon body and a metal terminal plate; The positive electrode is fixed to the negative metal terminal plate by pressing along the edge of the metal terminal plate, preferably along two opposing edges. In the method of the present invention, the manganese dioxide-carbon compressed body can be attached and detached from the sides of a U-shaped metal terminal plate bent along two opposing edges, and is therefore suitable for mass production. The metal terminal plate should be bent inward along two opposing edges by less than 90 degrees, preferably about 1 to 3 degrees.

二酸化マンガン−炭素圧縮体の側面から導入し
やすくするために、かかる圧縮体はそのコーナー
を丸くするのが好ましい。
To facilitate introduction from the side of the manganese dioxide-carbon compact, such compacts preferably have rounded corners.

二酸化マンガン−炭素圧縮体は伸ばすことがで
きるから、このブリケットは導入時において金属
端子板より約0.06〜0.08mm小さくすることができ
る。
Since the manganese dioxide-carbon compact can be stretched, the briquettes can be about 0.06 to 0.08 mm smaller than the metal terminal plate when introduced.

次いで、本発明を添付図面について説明する。 The invention will now be described with reference to the accompanying drawings.

第1図に示すアルカリ電池は互いに積み重ねた
複数の平坦電池から形成する。
The alkaline cell shown in FIG. 1 is formed from a plurality of flat cells stacked on top of each other.

第1図には2個のプラスチツク製の容器1を示
し、同時に全周囲に作用する瞬間処理により、表
面2を相互に連結することによつて電池ケーシン
グをこの容器1によつて形成する。ここで瞬間処
理とは、例えば超音波溶接、浸漬による接着、高
温溶着、高周波溶接または他の同様の組立処理の
ことである。
FIG. 1 shows two plastic containers 1, by means of which a battery casing is formed by interconnecting the surfaces 2 by means of an instant process acting on the entire circumference at the same time. Instant processing here refers to, for example, ultrasonic welding, immersion gluing, high temperature welding, high frequency welding or other similar assembly processes.

第1図の下側の電池に二酸化マンガン−炭素圧
縮体からなる正極3と、2個の分離ダイアフラム
4と、アルカリ電解液内の粉末亜鉛から成る負極
5とを完全に取付ける。曲げた端縁を有する負の
端子板6を正極3の上方に配置し、端子板7を容
器の底の負極5の下に配置する。
The lower battery in FIG. 1 is completely fitted with a positive electrode 3 made of a compressed manganese dioxide-carbon body, two separation diaphragms 4, and a negative electrode 5 made of powdered zinc in an alkaline electrolyte. A negative terminal plate 6 with a bent edge is placed above the positive electrode 3 and a terminal plate 7 is placed below the negative electrode 5 at the bottom of the container.

プラスチツク容器1の底8の内外にある端子板
6と7とを底8の中央の孔を介して、相互に接続
する。エンボス加工、すなわち、型の間で押しつ
けて突出するノブ9を端子板7に設け、容器の底
の孔内にこのノブ9を突出し、更に端子板6の中
央にこのノブ9の先端を点溶接する。端子板6,
7が底8の材料を圧縮するようにこの点溶接を行
い、端子板6,7と底8との間を圧力封鎖する。
常温流れ、すなわち常温での長時間の負荷による
変形によつて接触圧力が減少するのを避けること
ができる。端子板が底の両側を圧縮するから、端
子板の金属と底のプラスチツク重合体との間の特
殊な封鎖圧力による二重封鎖が得られる。この封
鎖圧力は比較的小さな封鎖部間に非常に大きな圧
力を及ぼす。第1図に示す実施例では、端子板を
組立てている時、圧力を受けて変形する例えばゴ
ムの円環体のような封鎖環10によつて端子板7
のノブ9を包囲する。このようにして、金属とゴ
ムとの間に空気を介して2個の別個の封鎖部を形
成し、毛管現象を防止する。
The terminal plates 6 and 7 on the inside and outside of the bottom 8 of the plastic container 1 are interconnected through a hole in the center of the bottom 8. By embossing, in other words, a knob 9 that is pressed between molds to protrude is provided on the terminal plate 7, this knob 9 is protruded into a hole in the bottom of the container, and the tip of this knob 9 is spot-welded to the center of the terminal plate 6. do. terminal board 6,
This spot welding is carried out so that 7 compresses the material of the bottom 8, creating a pressure seal between the terminal plates 6, 7 and the bottom 8.
It is possible to avoid a decrease in contact pressure due to cold flow, ie deformation due to long-term loading at room temperature. Since the terminal plate compresses both sides of the bottom, a double seal is obtained due to the special sealing pressure between the metal of the terminal plate and the plastic polymer of the bottom. This sealing pressure exerts a very large pressure between relatively small seals. In the embodiment shown in FIG. 1, during assembly of the terminal board, the terminal board 7 is closed by a sealing ring 10, such as a rubber torus, which deforms under pressure.
surrounding the knob 9 of. In this way, two separate seals are formed between the metal and the rubber via the air, preventing capillary action.

二酸化マンガン−炭素圧縮体3は金属端子板6
と接触させる。二酸化マンガン−炭素圧縮体3と
金属端子板6との接触が短絡電流を定めるから、
かかる接触を満足させる必要がある。4個のすべ
ての端縁に沿つてラツプを設けた四角形状の端子
板の場合には、これらのラツプは外方に向かつて
彎曲し、電気的接属が不十分になる。本発明にお
いては、第2図に示すように、金属端子板6に
は、その2つの対向する端縁に沿つて下方に曲げ
たフラツプからなる金属曲げ部分を設ける。これ
らのフラツプは互いに内方に向け約1〜3゜傾け、
二酸化マンガン−炭素圧縮体3を十分に圧縮する
ようにする。勿論、端子板6はニツケル−鉄の如
き十分に弾性を有する材料にすることができる。
この結果として、3〜5Aの短絡回路が得られ
る。従来の丸型電池はこの問題によつて妨げられ
ない。なぜならば、かかる正極本体が必要な接触
を得る圧力下で導入でき、および円筒部材が接触
を害することなく圧力を受けるようにできるため
である。
The manganese dioxide-carbon compressed body 3 is a metal terminal plate 6
bring into contact with. Since the contact between the manganese dioxide-carbon compressed body 3 and the metal terminal plate 6 determines the short circuit current,
It is necessary to satisfy such contact. In the case of a rectangular terminal plate with wraps along all four edges, the wraps would curve outwardly, resulting in poor electrical connection. In the present invention, as shown in FIG. 2, the metal terminal plate 6 is provided with a metal bent portion consisting of a downwardly bent flap along its two opposing edges. These flaps are tilted inward toward each other by approximately 1 to 3 degrees,
The manganese dioxide-carbon compressed body 3 is sufficiently compressed. Of course, the terminal plate 6 can be made of a sufficiently elastic material such as nickel-iron.
This results in a short circuit of 3-5A. Conventional round batteries are not hampered by this problem. This is because such a cathode body can be introduced under pressure to obtain the necessary contact, and the cylindrical member can be subjected to pressure without impairing the contact.

更に、本発明の方法では、端子板本体が対称
で、かつ二酸化マンガン−炭素圧縮体のコーナー
を丸くする場合にはこの圧縮体を側部から導入で
きるから、大量生産に適当である。
Further, the method of the present invention is suitable for mass production because if the terminal board body is symmetrical and the corners of the compressed manganese dioxide-carbon body are rounded, the compressed body can be introduced from the side.

必要に応じて、金属端子板6には内曲げフラツ
プ11を設けることができ、これによつて底面に
予定接触を設けることができる。張力が電解液の
添加により開放される場合にブリケツトが僅かに
伸びることを考慮して、圧縮体の幅は端子板より
約0.06〜0.08mm小さくする。1例においては、端
子は2.7mm高さ、17.5mm長さおよび13.08mm幅にす
ることができる。材料の厚さは約0.1〜0.3mmにす
る。
If desired, the metal terminal plate 6 can be provided with an inwardly bent flap 11, by means of which a predetermined contact can be provided on the bottom surface. The width of the compact is approximately 0.06-0.08 mm smaller than the terminal plate, taking into account that the briquette will stretch slightly when the tension is released by adding electrolyte. In one example, the terminal can be 2.7 mm high, 17.5 mm long, and 13.08 mm wide. The thickness of the material should be approximately 0.1-0.3 mm.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は金属端子板への引込を示し、かつこの
端子板を二酸化マンガン−炭素圧縮体と接触させ
た状態を示す電池の1部の説明用線図および第2
図は第1図に示す電池の金属端子板の斜視図であ
る。 1……容器、2……表面、3……二酸化マンガ
ン−炭素圧縮体からなる正極、4……分離ダイヤ
フラム、5……アルカリ電解液内の粉末亜鉛から
なる負極、6,7……金属端子板、8……容器1
の底、9……ノブ、10……封鎖環、11……内
曲げフラツプ。
FIG. 1 is an illustrative diagram of a portion of a battery showing its withdrawal into a metal terminal plate and its contact with a manganese dioxide-carbon compact; FIG.
The figure is a perspective view of the metal terminal plate of the battery shown in FIG. 1. 1... Container, 2... Surface, 3... Positive electrode made of manganese dioxide-carbon compressed body, 4... Separation diaphragm, 5... Negative electrode made of powdered zinc in alkaline electrolyte, 6, 7... Metal terminal. Board, 8...Container 1
bottom, 9...knob, 10...blocking ring, 11...inward bending flap.

Claims (1)

【特許請求の範囲】 1 容器1と、この容器1内に収容したアルカリ
電解液と、このアルカリ電解液中に亜鉛で構成し
た負極5と、この負極5の上方に設けた二酸化マ
ンガン−炭素圧縮体からなる正極3と、前記容器
1の底8の内側および外側にそれぞれ配置され、
接続された金属端子板6,7から構成した単一の
電池を複数個重ねて前記容器1の周縁に沿つて一
体に連結した電池において、前記二酸化マンガン
−炭素圧縮体からなる正極3を金属端子板6の端
縁に沿つて下方へ曲げたフラツプによつて圧締し
て固定するように構成したことを特徴とする電
池。 2 前記金属端子板6の2つの対向する両端縁
に、これに沿つて90゜より僅かに内方に曲げたフ
ラツプを設けた特許請求の範囲第1項記載の電
池。 3 前記金属端子板6の2つの対向する両端縁
に、これに沿つて90゜より1〜3゜内方に曲げたフ
ラツプを設けた特許請求の範囲第2項記載の電
池。 4 前記フラツプの下端に、約90゜内方に曲げた
内曲げフラツプ11を設けた特許請求の範囲1,
2および3項のいずれか一つの項記載の電池。 5 前記二酸化マンガン−炭素圧縮体3を前記金
属端子板6より僅かに小さくし、かつコーナーを
丸くした特許請求の範囲第1項記載の電池。 6 前記二酸化マンガン−炭素圧縮体3を前記金
属端子板6より0.06〜0.08mm小さくした特許請求
の範囲第5項記載の電池。
[Claims] 1. A container 1, an alkaline electrolyte contained in the container 1, a negative electrode 5 made of zinc in the alkaline electrolyte, and a compressed manganese dioxide-carbon provided above the negative electrode 5. a positive electrode 3 consisting of a body, arranged inside and outside the bottom 8 of the container 1, respectively;
In a battery in which a plurality of single batteries made up of connected metal terminal plates 6 and 7 are stacked and connected together along the periphery of the container 1, the positive electrode 3 made of the compressed manganese dioxide-carbon body is connected to the metal terminal. A battery characterized in that it is configured to be fixed by being clamped by a flap bent downward along the edge of the plate 6. 2. The battery according to claim 1, wherein the metal terminal plate 6 is provided with flaps bent inwardly by slightly more than 90 degrees along the two opposing edges thereof. 3. The battery according to claim 2, wherein two opposing edges of the metal terminal plate 6 are provided with flaps bent inward by 1 to 3 degrees from 90 degrees along these edges. 4. Claim 1, wherein the lower end of the flap is provided with an inwardly bent flap 11 bent inwardly by about 90 degrees.
The battery according to any one of items 2 and 3. 5. The battery according to claim 1, wherein the manganese dioxide-carbon compressed body 3 is slightly smaller than the metal terminal plate 6 and has rounded corners. 6. The battery according to claim 5, wherein the compressed manganese dioxide-carbon body 3 is 0.06 to 0.08 mm smaller than the metal terminal plate 6.
JP57102366A 1981-06-17 1982-06-16 Method of producing battery Granted JPS5816466A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DK266081A DK163546C (en) 1981-06-17 1981-06-17 PROCEDURE FOR MAKING A BATTERY
DK2660/81 1981-06-17

Publications (2)

Publication Number Publication Date
JPS5816466A JPS5816466A (en) 1983-01-31
JPH0337264B2 true JPH0337264B2 (en) 1991-06-05

Family

ID=8114336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57102366A Granted JPS5816466A (en) 1981-06-17 1982-06-16 Method of producing battery

Country Status (9)

Country Link
JP (1) JPS5816466A (en)
CA (1) CA1180381A (en)
DE (1) DE3220727A1 (en)
DK (1) DK163546C (en)
ES (1) ES513157A0 (en)
FI (1) FI75238C (en)
IT (1) IT1153536B (en)
NO (1) NO159827C (en)
SE (1) SE457180B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718831B2 (en) * 1987-07-17 1995-03-06 財団法人電力中央研究所 Method for controlling circulating liquid in liquid circulation plant, especially method and device for controlling primary cooling water in pressurized water reactor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK144449C (en) * 1978-11-28 1982-08-16 Hellesens As BATTERY CONSISTING OF OVEN STANDING CELLS

Also Published As

Publication number Publication date
SE457180B (en) 1988-12-05
FI75238B (en) 1988-01-29
ES8304713A1 (en) 1983-03-16
SE8203730L (en) 1982-12-18
FI822184L (en) 1982-12-18
DK163546C (en) 1992-08-10
NO159827C (en) 1989-02-08
NO159827B (en) 1988-10-31
DE3220727C2 (en) 1990-08-02
DK163546B (en) 1992-03-09
DK266081A (en) 1982-12-18
NO822006L (en) 1982-12-20
DE3220727A1 (en) 1983-02-10
IT1153536B (en) 1987-01-14
FI822184A0 (en) 1982-06-17
ES513157A0 (en) 1983-03-16
IT8221886A0 (en) 1982-06-16
CA1180381A (en) 1985-01-02
JPS5816466A (en) 1983-01-31
FI75238C (en) 1988-05-09

Similar Documents

Publication Publication Date Title
US4121021A (en) Silver oxide primary cell
JPH1013U (en) High pressure seal for electrochemical cell
US4822377A (en) Method for sealing an electrochemical cell employing an improved reinforced cover assembly
JPS63175345A (en) Organic electrolyte battery
JPS6193550A (en) Electrochemical battery
JPH0337264B2 (en)
JP4070136B2 (en) Coin battery
JPS63294672A (en) Button type air-zinc cell
JPH10255733A (en) Small-sized battery
JP3744717B2 (en) Sealed storage battery
US2547262A (en) Multiple dry cell battery
JP2000251949A (en) Sealed storage battery
JP2501773Y2 (en) Thin lead acid battery
JPS62143369A (en) Manufacture of battery lead through terminal
JPS5931004Y2 (en) thin alkaline battery
JPH046121Y2 (en)
GB2038077A (en) Terminals for an alkaline battery
JPH05242907A (en) Method for manufacturing storage battery and storage battery manufactured thereby
JP4303938B2 (en) Cylindrical battery
US3785874A (en) Gas-tightly closed galvanic element
JP3163283B2 (en) Flat battery
JP2995431B2 (en) Organic electrolyte battery
JPH062215Y2 (en) Bobbin type lithium battery
JPS58133756A (en) Sealed battery
JPS628472A (en) Air button cell