JPH0336902Y2 - - Google Patents

Info

Publication number
JPH0336902Y2
JPH0336902Y2 JP13973183U JP13973183U JPH0336902Y2 JP H0336902 Y2 JPH0336902 Y2 JP H0336902Y2 JP 13973183 U JP13973183 U JP 13973183U JP 13973183 U JP13973183 U JP 13973183U JP H0336902 Y2 JPH0336902 Y2 JP H0336902Y2
Authority
JP
Japan
Prior art keywords
elastic body
force
string
main elastic
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13973183U
Other languages
Japanese (ja)
Other versions
JPS6048135U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13973183U priority Critical patent/JPS6048135U/en
Publication of JPS6048135U publication Critical patent/JPS6048135U/en
Application granted granted Critical
Publication of JPH0336902Y2 publication Critical patent/JPH0336902Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Force In General (AREA)

Description

【考案の詳細な説明】 この考案は、力測定装置に関し、特に2つの起
歪弾性体を有し、これら弾性体間に力検出器を設
けたものに関する。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to a force measuring device, and particularly to one having two strain elastic bodies and a force detector provided between these elastic bodies.

先に、この考案の考案者は第1図及び第2図に
示すような力測定装置を提案した(特願昭57−
175456号参照)。これは、主弾性体1と副弾性体
2とを有する。これら両弾性体1,2の一端部
は、部材3を介して固定台4上にボルト5,5に
よつて固定されている。すなわち、両弾性体1,
2は、片持ち梁式に固定されている。なお、6は
両弾性体1,2を絶縁するための絶縁材である。
Previously, the creator of this idea proposed a force measuring device as shown in Figures 1 and 2 (Patent Application 1983-
(See No. 175456). This has a main elastic body 1 and a secondary elastic body 2. One ends of both of these elastic bodies 1 and 2 are fixed onto a fixed base 4 via a member 3 with bolts 5 and 5. That is, both elastic bodies 1,
2 is fixed in a cantilevered manner. Note that 6 is an insulating material for insulating both the elastic bodies 1 and 2.

これら両弾性体1,2の他端部間には弦7が張
設されており、この弦7の有効長lは、部材3の
長さlと等しくされている。この弦7の長さ方向
に対して直角に磁界発生体8によつて磁界が印加
されている。弦7は、第2図に示す増幅器9の入
力側にコンデンサ10を介して接続されている。
この増幅器9の出力の一部は抵抗器11を介して
弦7に帰還されている。
A string 7 is stretched between the other ends of both the elastic bodies 1 and 2, and the effective length l of this string 7 is made equal to the length l of the member 3. A magnetic field is applied by a magnetic field generator 8 perpendicularly to the length direction of the string 7. The string 7 is connected via a capacitor 10 to the input side of an amplifier 9 shown in FIG.
A portion of the output of this amplifier 9 is fed back to the string 7 via a resistor 11.

ここで、主弾性体1の他端部に下向きに荷重W
を印加すると、主弾性体1には荷重Wに比例した
撓みΔl1が発生し、弦7を下向きに引張る。弦7
に加わる張力Pは、副弾性体2の他端部に作用
し、その他端部を下方にΔl2撓ませる。主弾性体
1のばね定数をK1、副弾性体2のばね定数をK2
とし、弦7の伸びを無視すると、 P=Δl2・K2 が成立し、Δl1=Δl2=Δlであるから、 W=Δl(K1+K2) P=W・K2/(K1+K2) となり、張力Pは荷重Wに比例している。よつ
て、張力Pを測定できれば印加荷重を得ることが
できる。そこで、張力Pの測定であるが、印加荷
重によつて弦7がわずかに磁界を切る方向に撓む
と、フレミングの右手の法則に従つて弦7に電流
が流れる。この電流は増幅器9で増幅され、その
増幅出力は抵抗器11を介して弦7に供給され
る。この出力は弦7をさらに同方向に撓ませる方
向に流れ、弦7はさらに磁界を切る方向に撓む。
この弦7は増幅器9から与えられたエネルギと弦
7の曲げ反力とが釣り合う位置まで撓み、逆方向
に戻つてくる。これによつて、弦7にはいままで
とは逆向きの電流が流れ、その逆向き電流はコン
デンサ10を介して増幅器9に供給されて増幅さ
れ、弦7に増幅逆向き電流が供給され、いままで
とは反対向きに弦7を撓ませる。以後、これを繰
返し周波数の振動をする。この周波数は、 で表わされる。ただし、nは振動の高調波数、l
は弦7の有効長、gは重力加速度、rは弦7の単
位長さ当りの質量である。従つて、周波数を測
定して、演算処理することによつてPが得られ、
これをさらに演算処理することによつて荷重Wが
得られる。
Here, a downward load W is applied to the other end of the main elastic body 1.
When this is applied, a deflection Δl1 proportional to the load W is generated in the main elastic body 1, and the string 7 is pulled downward. string 7
The tension P applied to the auxiliary elastic body 2 acts on the other end of the secondary elastic body 2, causing the other end to bend downward Δl2. The spring constant of the main elastic body 1 is K1, and the spring constant of the secondary elastic body 2 is K2
If we ignore the elongation of string 7, then P=∆l2・K2 holds true, and ∆l1=∆l2=∆l, so W=∆l(K1+K2) P=W・K2/(K1+K2), and the tension P is the load W. is proportional to. Therefore, if the tension P can be measured, the applied load can be obtained. Therefore, when measuring the tension P, when the string 7 is slightly bent in a direction that cuts the magnetic field due to the applied load, a current flows through the string 7 according to Fleming's right-hand rule. This current is amplified by an amplifier 9, and its amplified output is supplied to the string 7 via a resistor 11. This output flows in a direction that causes the string 7 to further bend in the same direction, and the string 7 further bends in a direction that cuts the magnetic field.
The string 7 is bent to a position where the energy applied from the amplifier 9 and the bending reaction force of the string 7 are balanced, and then returns in the opposite direction. As a result, a current flows in the opposite direction to the string 7, and the reverse current is supplied to the amplifier 9 via the capacitor 10 and amplified, and an amplified reverse current is supplied to the string 7. Flex string 7 in the opposite direction. After that, repeat this to vibrate at the same frequency. This frequency is It is expressed as However, n is the harmonic number of vibration, l
is the effective length of the string 7, g is the gravitational acceleration, and r is the mass per unit length of the string 7. Therefore, P can be obtained by measuring the frequency and performing arithmetic processing,
The load W can be obtained by further calculating this.

ところで、このような力測定装置では、計測範
囲において弦7にかかる張力の数倍の初張力をか
けたほうが、正確な測定ができることが判明して
いる。即ち、弦7に或る張力を印加すると、弦7
が外部機器と共振現象を生じ、弦7が第6図に示
すように不安定振動を生じる。このような不安定
振動を生じる領域は、上記の共振現象の周波数の
整数倍の周波数に第6図に示すように複数存在し
ており、計測範囲は、これら不安定振動領域を避
けて設定しないと、測定誤差を生じるので、計測
範囲の約数倍の初期張力を第6図に示すように印
加して、計測範囲を不安定領域外とすることが行
われている。そのため、主弾性体1の他端に荷重
Wをかける際に取付ける載皿等(図示せず)の重
量を重くし、主弾性体にかかる重量を重くするこ
とが行なわれていた。この場合、載皿等に物品を
載せることによつて力を印加すると、第6図に示
すように弦7に印加される張力がさらに大きくな
り、印加された力が測定される。しかし、このよ
うにすると、力測定装置の測定範囲においてかか
る張力が大きい場合、この力測定装置全体の重量
が重くなるという欠点があつた。
By the way, in such a force measuring device, it has been found that more accurate measurements can be made by applying an initial tension several times the tension applied to the string 7 in the measurement range. That is, when a certain tension is applied to the string 7, the string 7
causes a resonance phenomenon with the external equipment, and the string 7 causes unstable vibration as shown in FIG. There are multiple regions where such unstable vibrations occur, as shown in Figure 6, at frequencies that are integral multiples of the frequency of the resonance phenomenon described above, and the measurement range should not be set to avoid these unstable vibration regions. Since this causes a measurement error, an initial tension approximately several times the measurement range is applied as shown in FIG. 6 to bring the measurement range outside the unstable region. Therefore, when a load W is applied to the other end of the main elastic body 1, a mounting plate or the like (not shown) attached to the main elastic body 1 is made heavier, thereby increasing the weight applied to the main elastic body. In this case, when a force is applied by placing the article on a tray or the like, the tension applied to the string 7 further increases as shown in FIG. 6, and the applied force is measured. However, this method has the disadvantage that if the tension applied in the measurement range of the force measuring device is large, the weight of the entire force measuring device becomes heavy.

この考案は、上記の欠点を解消した力測定装置
を提供することを目的とする。
The object of this invention is to provide a force measuring device that eliminates the above-mentioned drawbacks.

そのため、この考案では、主弾性体と副弾性体
との間の間隔を、弦等の力検出器の長さ寸法lよ
りも長くl+Δl0とするように構成している。
Therefore, in this invention, the distance between the main elastic body and the auxiliary elastic body is configured to be longer than the length l of a force detector such as a string and set to l+Δl 0 .

主弾性体と副弾性体を長さlの力検出器で連結
したことにより、主弾性体のばね定数をK1、副
弾性体のばね定数をK2とすると、副弾性体の他
端(力検出器の取付けられている部分)は、下方
向にΔl0・K1/(K1+K2)だけ撓み、主弾性体
の他端(力検出器の取付けられている部分)は上
方向にΔl0・K2/(K1+K2)でけ撓む。よつて、
力検出器には主弾性体と副弾性体とがそれぞれ元
に戻ろうとして初張力がかかる。その初張力の大
きさSは、 S=Δl0K1・K2/K1+K2 となる。よつて、Δl0を適当に選ぶことによつて
所定の初張力Sを得ることができる。従つて測定
範囲においてかかる張力が大きい場合にも、すな
わち印加荷重が大きい場合にも、載皿等を重くし
なくても正確な測定ができ、力測定装置全体の重
量を軽減できる。
By connecting the main elastic body and the secondary elastic body with a force detector with length l, if the spring constant of the main elastic body is K1 and the spring constant of the secondary elastic body is K2, then the other end of the secondary elastic body (force detection The other end of the main elastic body (the part where the force detector is attached) bends downward by Δl 0 ·K1/(K1+K2), and the other end of the main elastic body (the part where the force detector is attached) bends upward by Δl 0 ·K2/. (K1+K2) is bent. Then,
An initial tension is applied to the force detector as the main elastic body and the secondary elastic body try to return to their original positions. The magnitude of the initial tension S is S=Δl 0 K1·K2/K1+K2. Therefore, a predetermined initial tension S can be obtained by appropriately selecting Δl 0 . Therefore, even when the tension applied in the measurement range is large, that is, even when the applied load is large, accurate measurement can be performed without making the mounting plate or the like heavy, and the weight of the entire force measuring device can be reduced.

以下、この考案を第3図乃至第5図に示す2つ
の実施例に基づいて説明する。第3図及び第4図
に第1の実施例を示す。第3図において、11は
主弾性体、12は副弾性体、13はライナであ
る。これら両弾性体11,12及びライナ13は
一体に形成されており、固定台14上に取付けら
れている。そして、両弾性体11,12の他端部
における弦17の取付位置間の距離は、弦17の
長さ寸法lよりも長くl+l0とされている。従つ
て弦17を取付けると、第4図に示すように副弾
性体12は下方に向つてΔl0・K1/(K1+K2)
だけ撓み、主弾性体11は上方に向つてΔl0
K2/(K1+K2)だけ撓し、弦17には初張力S
として S=Δl0K1・K2/K1+K2 がかかる。なお、図では省略したが、主弾性体1
1には磁界発生体が当然設けられており、主弾性
体11に荷重が印加される。
This invention will be explained below based on two embodiments shown in FIGS. 3 to 5. A first embodiment is shown in FIGS. 3 and 4. In FIG. 3, 11 is a main elastic body, 12 is a secondary elastic body, and 13 is a liner. Both elastic bodies 11, 12 and liner 13 are integrally formed and mounted on a fixed base 14. The distance between the attachment positions of the string 17 at the other ends of both the elastic bodies 11 and 12 is longer than the length l of the string 17 and is l+l 0 . Therefore, when the string 17 is attached, the secondary elastic body 12 moves downward as shown in FIG .
The main elastic body 11 bends upward by Δl 0
Bending by K2/(K1+K2), initial tension S on string 17
It takes S=Δl 0 K1・K2/K1+K2. Although omitted in the figure, the main elastic body 1
1 is naturally provided with a magnetic field generator, and a load is applied to the main elastic body 11.

第2の実施例は、主弾性体21がロバーバル機
構とされ、その内部の空間部に副弾性体22、ラ
イナ23、絶縁体26、弦27、磁界発生体28
が設けられており、載台30が主弾性体21の側
部に設けられている点が第1の実施例と異なる。
この実施例では、主弾性体21の弦取付部29と
副弾性体22との間隔が、弦27の長さlよりも
長くl+Δl0とされている。
In the second embodiment, the main elastic body 21 is a Roberval mechanism, and the internal space includes a secondary elastic body 22, a liner 23, an insulator 26, a string 27, and a magnetic field generator 28.
This embodiment differs from the first embodiment in that the stage 30 is provided on the side of the main elastic body 21.
In this embodiment, the distance between the string attaching portion 29 of the main elastic body 21 and the auxiliary elastic body 22 is longer than the length l of the string 27 and is l+Δl 0 .

両実施例では、力検出器として弦7と磁界発生
体28とを用いたが、水晶式や音叉式の力検出器
を用いることもできる。上記両実施例では力検出
器を設けていない状態で主弾性体と副弾性体とを
その両者が平行になるように形成したが、力検出
器を取付けた状態で両者が平行になるように構成
してもよい。第1の実施例では主弾性体11、副
弾性体12及びライナ13を一体としたが、第1
図に示した従来のものと同様にそれぞれ別個に形
成してもよい。逆に第2の実施例では主弾性体2
1、副弾性体22及びライナ23を一体に形成し
てもよい。また、第1の実施例では副弾性体2を
主弾性体の上方に設けたが、下方に設けて、弦7
等の力検出器に圧縮力がかかるようにしてもよ
い。この場合、本考案によれば、圧縮力を測定す
る力検出器に初期張力がかかるが、物品等を載皿
に載せることによつて力をかけると、第6図に示
すように初期張力を減少させる方向に圧縮力が力
検出器にかかり、力の測定が行われるので、この
力の測定には初期張力をかけていても何ら支障は
ない。さらに、第2の実施例では副弾性体22を
主弾性体21の内部に設けたが、主弾性体21の
上方または下方に設けてもよい。
In both embodiments, the string 7 and the magnetic field generator 28 are used as force detectors, but a crystal type or tuning fork type force detector can also be used. In both of the above embodiments, the main elastic body and the secondary elastic body were formed so that they were parallel to each other without a force detector, but with the force detector attached, the main elastic body and the secondary elastic body were formed so that they were parallel to each other. may be configured. In the first embodiment, the main elastic body 11, the secondary elastic body 12, and the liner 13 were integrated;
They may be formed separately as in the conventional structure shown in the figure. Conversely, in the second embodiment, the main elastic body 2
1. The secondary elastic body 22 and the liner 23 may be formed integrally. Further, in the first embodiment, the secondary elastic body 2 was provided above the main elastic body, but it was provided below and the string 7
A compressive force may be applied to a force detector such as the above. In this case, according to the present invention, an initial tension is applied to the force detector that measures the compressive force, but when a force is applied by placing an article etc. on a tray, the initial tension is reduced as shown in FIG. Since the compressive force is applied to the force detector in the direction of decrease and the force is measured, there is no problem in measuring this force even if the initial tension is applied. Furthermore, although the secondary elastic body 22 is provided inside the main elastic body 21 in the second embodiment, it may be provided above or below the main elastic body 21.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の力測定装置の側面図、第2図は
同力測定装置に用いる電気回路の一部を示す回路
図、第3図はこの考案による力測定装置の第1の
実施例に用いる弾性体の側面図、第4図は同第1
の実施例の側面図、第5図は同第2の実施例の側
面図、第6図は弦における圧縮力及び張力と不安
定振動との関係を示す図である。 11,21……主弾性体、12,22……副弾
性体、17,18,27,28……力検出器。
Figure 1 is a side view of a conventional force measuring device, Figure 2 is a circuit diagram showing part of the electric circuit used in the force measuring device, and Figure 3 is a first embodiment of the force measuring device according to this invention. A side view of the elastic body used, Figure 4 is the same as Figure 1.
FIG. 5 is a side view of the second embodiment, and FIG. 6 is a diagram showing the relationship between compressive force and tension in the string and unstable vibration. 11, 21... Main elastic body, 12, 22... Sub-elastic body, 17, 18, 27, 28... Force detector.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 力を受けたとき変形する状態に上下方向に間隔
を隔てて設けられた主弾性体と副弾性体と、上記
主弾性体が力を受けて変形したとき上記副弾性体
も上記力を分担するように上記両弾性体間に設け
られ上記両弾性体の合成復元力を上記力と均衡さ
せ上記副弾性体にかかる力を検出する力検出器と
を、備え、上記両弾性体の上記力検出器取り付け
前の間隔を、上記力検出器の長さ寸法よりも大き
く選択したことを特徴とする力測定装置。
A main elastic body and a secondary elastic body are provided at intervals in the vertical direction so as to deform when receiving a force, and when the main elastic body deforms due to the force, the secondary elastic body also shares the force. a force detector provided between the two elastic bodies to balance the combined restoring force of the two elastic bodies with the force and detect the force applied to the secondary elastic body; A force measuring device characterized in that an interval before the force detector is attached is selected to be larger than a length dimension of the force detector.
JP13973183U 1983-09-08 1983-09-08 force measuring device Granted JPS6048135U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13973183U JPS6048135U (en) 1983-09-08 1983-09-08 force measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13973183U JPS6048135U (en) 1983-09-08 1983-09-08 force measuring device

Publications (2)

Publication Number Publication Date
JPS6048135U JPS6048135U (en) 1985-04-04
JPH0336902Y2 true JPH0336902Y2 (en) 1991-08-05

Family

ID=30313090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13973183U Granted JPS6048135U (en) 1983-09-08 1983-09-08 force measuring device

Country Status (1)

Country Link
JP (1) JPS6048135U (en)

Also Published As

Publication number Publication date
JPS6048135U (en) 1985-04-04

Similar Documents

Publication Publication Date Title
US4838369A (en) Load cell having digital output
JP2825664B2 (en) Sensor structure having L-shaped spring legs
JPH07505472A (en) load cell
KR900008328B1 (en) Checking apparatus of power
EP0150584B1 (en) Vibration type force detector
JPH0336902Y2 (en)
JP2732287B2 (en) Acceleration sensor
JPS6122251B2 (en)
JPH0334829B2 (en)
JPH0228413Y2 (en)
JPH0353144Y2 (en)
JP3117410B2 (en) Strain body
JPS6342731B2 (en)
JPS6123773Y2 (en)
JPH0131938Y2 (en)
JPH0131937Y2 (en)
JPH0453555Y2 (en)
JPH0452662Y2 (en)
JPH0226045Y2 (en)
JP2575747Y2 (en) String vibrating force detector
JPH0749406Y2 (en) Elastic modulus measuring device
JP3581179B2 (en) Mass or weight measuring device
JPS59135328A (en) Vibration detection sensor
RU2121694C1 (en) Compensation accelerometer
JPH05322670A (en) Load detector