JPH0453555Y2 - - Google Patents

Info

Publication number
JPH0453555Y2
JPH0453555Y2 JP17793584U JP17793584U JPH0453555Y2 JP H0453555 Y2 JPH0453555 Y2 JP H0453555Y2 JP 17793584 U JP17793584 U JP 17793584U JP 17793584 U JP17793584 U JP 17793584U JP H0453555 Y2 JPH0453555 Y2 JP H0453555Y2
Authority
JP
Japan
Prior art keywords
elastic body
force
string
main
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17793584U
Other languages
Japanese (ja)
Other versions
JPS6192844U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP17793584U priority Critical patent/JPH0453555Y2/ja
Publication of JPS6192844U publication Critical patent/JPS6192844U/ja
Application granted granted Critical
Publication of JPH0453555Y2 publication Critical patent/JPH0453555Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Measurement Of Force In General (AREA)

Description

【考案の詳細な説明】 〈産業上の利用分野〉 この力測定装置は、力や重量の測定に用いられ
るもので、特に使用環境の温度変化によつて零点
の変動が生じないようにしたものである。
[Detailed description of the invention] <Industrial field of application> This force measuring device is used to measure force and weight, and is designed to prevent fluctuations in the zero point due to temperature changes in the usage environment. It is.

〈従来の技術〉 この考案の出願人は先に、第4図及び第5図に
示すような力測定装置を出願した(特願昭57−
175456号)。これは、第4図に示すように主弾性
体1と副弾性体2とを有し、これら弾性体1,2
の一端部を部材3を介して固定台4上に固定し、
他端部間に弦5を設け、弦5の周囲に永久磁石6
を設け、弦5に第5図に示すように増幅器7を接
続したものである。
<Prior art> The applicant of this invention previously applied for a force measuring device as shown in Figs. 4 and 5 (Japanese Patent Application No. 1982-
No. 175456). As shown in FIG. 4, this has a main elastic body 1 and a secondary elastic body 2, and these elastic bodies 1, 2
One end of is fixed on the fixing base 4 via the member 3,
A string 5 is provided between the other ends, and a permanent magnet 6 is placed around the string 5.
An amplifier 7 is connected to the string 5 as shown in FIG.

この力測定装置では、主弾性体1の他端部に下
向きに荷重Wを印加すると、第4図に示すように
主弾性体1にはその荷重Wに比例した撓みΔl1が
発生し、弦5の下端を下方に引張る。弦5に加わ
る張力Pは、副弾性体2の他端部に作用し、その
他端部を下方にΔl2撓ませる。ここで、主弾性体
1の弾性係数をK1、副弾性体2の弾性係数をK2
とし、弦5の伸びを無視すると、 P=Δl2・K2 が成立し、かつΔl1=Δl2=Δlであるので、 W=Δl(K1+K2) P=W・K2/(K1+K2) となり、張力Pが荷重Wに比例しており、Pを測
定することにより荷重Wを測定できる。
In this force measuring device, when a load W is applied downward to the other end of the main elastic body 1, a deflection Δl1 proportional to the load W is generated in the main elastic body 1, as shown in FIG. Pull the bottom edge of the The tension P applied to the string 5 acts on the other end of the auxiliary elastic body 2, causing the other end to bend downward Δl2. Here, the elastic modulus of the main elastic body 1 is K1, and the elastic modulus of the secondary elastic body 2 is K2.
If we ignore the elongation of string 5, P=Δl2・K2 holds true, and Δl1=Δl2=Δl, so W=Δl(K1+K2) P=W・K2/(K1+K2), and the tension P is the load. It is proportional to W, and by measuring P, the load W can be measured.

張力Pは弦5、永久磁石6、増幅器7によつて
測定する。すなわち弦5には永久磁石6によつて
その長さ方向に対して直角に磁界が印加されてお
り、張力Pによつて弦5がわずかに磁界を切る方
向に撓むと、フレミングの右手の法則に従つて弦
5に電流が流れる。この電流はコンデンサ8を介
して増幅器7に供給されて増幅され、その増幅出
力は抵抗器9を介して弦5に供給される。この出
力は弦5をさらに同方向に撓ませる方向に流れ、
弦5はさらに磁界を切る方向に撓む。この弦5は
増幅器7から与えられるエネルギと弦5の曲げ応
力とが釣り合う位置まで撓み、逆方向に戻つてく
る。これによつて弦5にはいままでとは逆向きの
電流が流れ、その逆向き電流はコンデンサ8を介
して増幅器7に供給されて増幅され、弦5に増幅
された逆向き電流が供給され、いままでとは反対
向きに弦5を撓ませる。以後、これを繰返し、周
波数の振動をする。この周波数は、 で求められる。ただし、nは振動の高調波数、l
は弦5の有効長、gは重力加速度、rは弦5の単
位長さ当りの質量である。従つて、増幅器7の出
力の変化回数を測定することによつて周波数を
測定し、これによつて張力Pを測定でき、当然に
荷重Wを測定できる。
Tension P is measured by string 5, permanent magnet 6 and amplifier 7. In other words, a magnetic field is applied to the string 5 by a permanent magnet 6 perpendicular to its length direction, and when the string 5 bends slightly in a direction that cuts the magnetic field due to the tension P, Fleming's right-hand rule applies. A current flows through the string 5 according to . This current is supplied to an amplifier 7 via a capacitor 8 and amplified, and the amplified output is supplied to the string 5 via a resistor 9. This output flows in a direction that causes string 5 to further bend in the same direction,
The string 5 is further bent in the direction of cutting the magnetic field. The string 5 is bent to a position where the energy applied from the amplifier 7 and the bending stress of the string 5 are balanced, and then returns in the opposite direction. As a result, a current flows in the opposite direction to the string 5, and the reverse current is supplied to the amplifier 7 via the capacitor 8 and amplified, and the amplified reverse current is supplied to the string 5. , bend string 5 in the opposite direction. After that, repeat this to make the frequency oscillate. This frequency is is required. However, n is the harmonic number of vibration, l
is the effective length of the string 5, g is the gravitational acceleration, and r is the mass per unit length of the string 5. Therefore, by measuring the number of changes in the output of the amplifier 7, the frequency can be measured, thereby the tension P can be measured, and naturally the load W can be measured.

前記弦5は力検出器として作用するものである
が、このほかに水晶式センサ・音叉式センサ・半
導体センサ等を使用でき、張力に限らず圧縮力を
測定する使用形態もある。
The string 5 acts as a force detector, but in addition to these, a crystal sensor, a tuning fork sensor, a semiconductor sensor, etc. can be used, and there are also forms of use that measure not only tension but compressive force.

このような従来の力測定装置では、測定精度を
高めるため力検出器は初期荷重を与えられてい
る。例えば弦5には、副弾性体2を一定量撓ませ
て弦5を張設して初張力が与えられている(実願
昭58−139731号)。
In such conventional force measuring devices, the force detector is given an initial load to improve measurement accuracy. For example, an initial tension is applied to the string 5 by flexing the auxiliary elastic body 2 by a certain amount and stretching the string 5 (Utility Model Application No. 139731/1982).

〈考案が解決しようとする問題点〉 前記従来の力測定装置では、温度が変化すると
零点も変化するという問題点があつた。すなわち
荷重Wと弦5の張力Pとの間には、(1)式で示すよ
うな関係がある。
<Problems to be solved by the invention> The conventional force measuring device has a problem in that the zero point also changes when the temperature changes. That is, there is a relationship between the load W and the tension P of the string 5 as shown in equation (1).

P=Δlо・K1・K2/K1+K2+WK2/K1+K2 ……(1) ただし、Δlоは、弦5に初張力を与えるため、
弦5の有効長さlと、それよりも長くした主弾性
体1と副弾性体2との距離の差である。(1)式の第
1項は副弾性体2をその先端でΔlоだけ撓めた
ときの張力すなわち初張力であり、第2項は荷重
Wが主弾性体1と副弾性体2との弾性係数の比に
よつて分担される張力であり、実用化されている
ものでは第2項を1とすると、初張力の値は4〜
6である。ここで、K1,K2の温度係数をα1,α2
とすると、張力Pは、 P=Δlо・K1(1+α1・T)・K2(1+α2・T)/K
1(1+α1・T)・K2(1+α2・T)+WK2(1+α2
・T)/K1(1+α1・T)+K2(1+α2・T)……(2
) で表わされる。主弾性体1と副弾性体2とを同一
材料で構成すると、α1=α2=αとなり、張力P
は、 P=ΔlоK1・K2(1+αT)2/(K
1+K2)(1+αT)+WK2(1+αT)/(K1+K2)(
1+αT) =ΔlоK1・K2(1+αT)
/K1+K2+WK2/K1+K2……(3) となる。(3)式より、弾性係数の温度変化が初張力
に影響をおよぼし、これによつて大きな零点変化
が生じる。例えば第8図に符号a,b,cで示す
のは、温度がT1,T2,T3のときの副弾性体2の
撓みと張力Pとの関係を示したもので、初張力を
与えるためにΔlоの撓みを副弾性体2に与えて
も、温度がT1,T2,T3と変化すると、初張力も
S1,S2,S3と変化する。このような初張力の変
化、即ち零点の変化を防止して、所定精度を維持
するためには、温度管理が必要であり、使用面で
不利である。
P=Δlо・K1・K2/K1+K2+WK2/K1+K2...(1) However, since Δlо gives the initial tension to string 5,
This is the difference between the effective length l of the string 5 and the distance between the main elastic body 1 and the auxiliary elastic body 2, which are longer than that. The first term in equation (1) is the tension when the secondary elastic body 2 is bent by Δlо at its tip, that is, the initial tension, and the second term is the load W which is the elasticity of the main elastic body 1 and the secondary elastic body 2. This is the tension that is shared by the ratio of the coefficients, and in the case of the one that is in practical use, if the second term is set to 1, the value of the initial tension is 4 to 1.
It is 6. Here, the temperature coefficients of K1 and K2 are α1 and α2
Then, the tension P is P=Δlо・K1(1+α1・T)・K2(1+α2・T)/K
1(1+α1・T)・K2(1+α2・T)+WK2(1+α2
・T)/K1(1+α1・T)+K2(1+α2・T)……(2
). If the main elastic body 1 and the secondary elastic body 2 are made of the same material, α1 = α2 = α, and the tension P
is, P=ΔlоK1・K2(1+αT) 2 /(K
1+K2)(1+αT)+WK2(1+αT)/(K1+K2)(
1+αT) =ΔlоK1・K2(1+αT)
/K1+K2+WK2/K1+K2...(3). From equation (3), temperature changes in the elastic modulus affect the initial tension, which causes a large zero point change. For example, the symbols a, b, and c in Fig. 8 show the relationship between the deflection of the secondary elastic body 2 and the tension P when the temperatures are T1, T2, and T3. Even if a deflection of Δlо is applied to the secondary elastic body 2, when the temperature changes from T1, T2, T3, the initial tension also decreases.
It changes from S1, S2, S3. In order to prevent such a change in the initial tension, that is, a change in the zero point, and maintain a predetermined accuracy, temperature control is required, which is disadvantageous in terms of use.

〈問題点を解決するための手段〉 上記の問題点を解決するために、本考案は、基
部を固定され、着力点を有し、その着力点に所定
方向の力を受けて作用点がその力方向に比例した
弾性変位を生じる主弾性体と、上記主弾性体の作
用点の変位と同じ方向の変位を自身の作用点に与
えられて、その変位に応じた上記力よりも小さい
反力を生じる、上記主弾性体の同一材質の副弾性
体と、上記弾性体及び副弾性体の各々の作用点間
の距離に等しい長さ寸法を有し、上記両弾性体間
に取り付けられており、上記主弾性体及び副弾性
体の変位による伸びを無視できる力検出器を備え
る力測定装置において、上記力検出器の近傍にお
ける上記両弾性体間に、温度変化があつてもほぼ
一定の弾性係数を有する恒弾性係数ばねを、上記
力検出器に初期張力を印加する状態に変歪させて
設置してある。
<Means for Solving the Problems> In order to solve the above problems, the present invention has a fixed base and a force application point, and receives a force in a predetermined direction at the force application point so that the application point is A main elastic body that produces an elastic displacement proportional to the direction of the force, and a reaction force that is smaller than the above force corresponding to that displacement when a displacement is applied to its own point of action in the same direction as the displacement of the point of action of the main elastic body. a secondary elastic body made of the same material as the main elastic body, and having a length dimension equal to the distance between the points of action of each of the elastic body and the secondary elastic body, and is attached between both the elastic bodies. , in a force measuring device equipped with a force detector in which elongation due to displacement of the main elastic body and the secondary elastic body can be ignored, the elasticity between the two elastic bodies in the vicinity of the force detector is almost constant even when there is a temperature change. A constant modulus spring having a constant modulus of elasticity is placed in a state where it is strained to apply an initial tension to the force detector.

〈作用〉 本考案によれば、初期張力を弾性係数が殆ど変
化しないばねによつて与えているので、張力P
は、 P=Δl・K+W・K2/(K1+K2) ……(4) となる。但し、Δlは、ばねを両弾性体間に設け
るために撓ませた量(変位)、Kは、ばねのばね
定数である。
<Operation> According to the present invention, since the initial tension is applied by a spring whose elastic modulus hardly changes, the tension P
is P=Δl・K+W・K2/(K1+K2)...(4). However, Δl is the amount (displacement) by which the spring is bent in order to provide it between both elastic bodies, and K is the spring constant of the spring.

力検出器の伸びは無視することができるので、
主弾性体に力が印加された場合の主弾性体の撓み
量と、副弾性体の撓み量とは等しく、両弾性体間
の距離は変化しない。その結果、Δlも変化せず、
力が主弾性体に印加されても、初張力には影響は
ない。
Since the elongation of the force detector can be ignored,
When a force is applied to the main elastic body, the amount of deflection of the main elastic body and the amount of deflection of the secondary elastic body are equal, and the distance between both elastic bodies does not change. As a result, Δl does not change,
Even if a force is applied to the principal elastic body, the initial tension is not affected.

また、力検出器の伸びは無視することができる
ので、ばねを両弾性体間に設けることによつて、
力検出器に初期張力を印加しても、両弾性体には
撓みは発生せず、温度変化があつても、初期張力
には温度変化の影響はない。即ち、初期張力は常
にΔl・Kである。従つて、張力Pと副弾性体の
撓みとの関係は、温度がT1,T2,T3と変化する
と、第8図に符号A,B,Cで示すように変化す
るが、初期張力Sо(=Δl・K)は常に一定であ
り、零点の変動は生じない。
Also, since the elongation of the force detector can be ignored, by providing a spring between both elastic bodies,
Even if an initial tension is applied to the force detector, no deflection occurs in either elastic body, and even if there is a temperature change, the initial tension is not affected by the temperature change. That is, the initial tension is always Δl·K. Therefore, the relationship between the tension P and the deflection of the secondary elastic body changes as the temperature changes from T1, T2, and T3, as shown by symbols A, B, and C in FIG. 8, but the initial tension Sо (= Δl·K) is always constant and the zero point does not fluctuate.

〈実施例〉 第1の実施例は、第1図に示すように主弾性体
12及び副弾性体14を有する。この主弾性体1
2はロバーバル機構を応用した構造で、側面形状
が平行四辺形の枠状となるように空胴12aが形
成され、その空胴12aの四隅が起歪部12bに
形成されている。これら主弾性体12及び副弾性
体14は、特願昭58−201543号に開示されている
ものと同様に同一の材料から一体に削り出し加工
によつて製造されている。これら一体の主弾性体
12及び副弾性体14の基部16は、固定台18
に固定されている。主弾性体12の着力点には、
副弾性体14を跨いで載台19が結合されてお
り、載台19上に物品を載置することによつて、
主弾性体12に下向きの荷重が印加される。な
お、主弾性体12の弾性係数は、副弾性体の弾性
係数よりも大きく設定されている。
<Example> The first example has a main elastic body 12 and a sub elastic body 14, as shown in FIG. This main elastic body 1
Reference numeral 2 has a structure applying a Roberval mechanism, in which a cavity 12a is formed so that the side surface shape is a parallelogram frame, and the four corners of the cavity 12a are formed as strain-generating parts 12b. The main elastic body 12 and the auxiliary elastic body 14 are manufactured by machining the same material as one body, similar to that disclosed in Japanese Patent Application No. 58-201543. The base portion 16 of the main elastic body 12 and the secondary elastic body 14 that are integrated is connected to a fixed base 18
is fixed. At the force application point of the main elastic body 12,
A platform 19 is connected across the secondary elastic body 14, and by placing an article on the platform 19,
A downward load is applied to the main elastic body 12. Note that the elastic modulus of the main elastic body 12 is set larger than that of the secondary elastic body.

主弾性体12の先端部の作用点と、副弾性体1
4の作用点との間には、弦20が張設されてい
る。この弦20の有効長Lは、主弾性体12及び
副弾性体14の中心軸線間の距離に等しく選択値
されており、従来のものと同様に伸びを無視でき
るものである。従つて従来のものとは異なり、弦
20の有効長を主弾性体12及び副弾性体14中
心軸線間の長さより短かくして、副弾性体14一
定量下方へ撓ませて初張力を弦20にかけること
は行なつていない。なお、同図には示していない
が、弦20の周囲には、従来のものと同様に磁界
発生体が設けられており、弦20は第5図に示し
たような回路に接続されている。
The point of action at the tip of the main elastic body 12 and the secondary elastic body 1
A string 20 is stretched between the point of action of 4 and the point of action of 4. The effective length L of this string 20 is selected to be equal to the distance between the central axes of the main elastic body 12 and the auxiliary elastic body 14, and the elongation can be ignored as in the conventional one. Therefore, unlike conventional ones, the effective length of the string 20 is made shorter than the length between the center axes of the main elastic body 12 and the secondary elastic body 14, and the secondary elastic body 14 is bent downward by a certain amount to apply initial tension to the string 20. I haven't put any money on it. Although not shown in the figure, a magnetic field generator is provided around the string 20, similar to the conventional one, and the string 20 is connected to a circuit as shown in FIG. .

副弾性体14の下面には、これと一点で接する
ように受皿22が結合されている。また、この受
皿22と対向するように主弾性体12の上面には
受皿24が結合されている。この受皿24も主弾
性体12の上面と一点で接している。これら受皿
22,24に、温度によつて弾性係数が変化しに
くい恒弾性ばね26が嵌込みまたは接着されてい
る。この恒弾性ばね26は、例えばニツケル、ク
ロム、鉄、チタン合金で、熱処理により高度の機
械的性質が得られ、−45℃乃至+65℃の温度範囲
で、一定の弾性係数を有する市販のものである。
この恒弾性ばね26は、円筒形の圧縮コイルばね
状に形成されており、本来その長さが受皿22,
24間の距離よりも長いものを、押圧して縮めて
受皿22,24間に嵌込みまたは接着されてい
る。従つて、恒弾性ばね26は、その作用力を副
弾性体14の下面に与えており、この作用力によ
つて弦20に初張力が与えられている。
A saucer 22 is coupled to the lower surface of the auxiliary elastic body 14 so as to be in contact with it at one point. Further, a saucer 24 is coupled to the upper surface of the main elastic body 12 so as to face the saucer 22 . This tray 24 also contacts the upper surface of the main elastic body 12 at one point. A constant-elasticity spring 26 whose elastic modulus is not easily changed by temperature is fitted into or bonded to these trays 22 and 24. The constant elasticity spring 26 is a commercially available product made of, for example, nickel, chromium, iron, or titanium alloy, which has been heat-treated to obtain high mechanical properties and has a constant elastic modulus in the temperature range of -45°C to +65°C. be.
This constant elasticity spring 26 is formed in the shape of a cylindrical compression coil spring, and its length is originally the same as that of the saucer 22.
A piece longer than the distance between the trays 24 is compressed by pressing and is fitted or bonded between the saucers 22 and 24. Therefore, the constant elasticity spring 26 applies its acting force to the lower surface of the auxiliary elastic body 14, and the initial tension is applied to the string 20 by this acting force.

この力測定装置では、主弾性体12に力が印加
されたとき、弦20の伸びは無視できるので、主
弾性体12と副弾性体14との撓み量は同一であ
る。従つて、ばね26は主弾性体12と副弾性体
14との間に設けられているので、ばね26の変
位量は変化せず、初張力は、主弾性体12、副弾
性体14の撓みによつて変化することはない。
In this force measuring device, when a force is applied to the main elastic body 12, the elongation of the string 20 can be ignored, so the amount of deflection of the main elastic body 12 and the secondary elastic body 14 is the same. Therefore, since the spring 26 is provided between the main elastic body 12 and the auxiliary elastic body 14, the amount of displacement of the spring 26 does not change, and the initial tension depends on the deflection of the main elastic body 12 and the auxiliary elastic body 14. It does not change depending on.

また、同じく弦20の伸びは無視できるので、
主弾性体12、副弾性体14の作用点の近傍間に
ばね20を設けて、弦20に初張力を印加して
も、主弾性体12、副弾性体14は撓んでいな
い。従つて、初張力には、主弾性体12、副弾性
体14の弾性係数は関係してなく、温度が変化し
ても、初張力は変動しない。
Also, since the elongation of string 20 can be ignored,
Even if an initial tension is applied to the string 20 by providing a spring 20 between the main elastic body 12 and the auxiliary elastic body 14 in the vicinity of their points of action, the main elastic body 12 and the auxiliary elastic body 14 do not bend. Therefore, the elastic coefficients of the main elastic body 12 and the secondary elastic body 14 are not related to the initial tension, and the initial tension does not change even if the temperature changes.

第2の実施例は、第2図に示すように、主弾性
体12に上下方向に貫通したねじ孔28を削設
し、これに雄ねじ体30を螺合させ、この雄ねじ
体30の上面に受皿24を第1の実施例と同様に
設け、下面に操作部32を設けたものである。他
は第1の実施例と同様に構成されている。
In the second embodiment, as shown in FIG. 2, a screw hole 28 is cut through the main elastic body 12 in the vertical direction, and a male screw body 30 is screwed into the screw hole 28. A saucer 24 is provided in the same manner as in the first embodiment, and an operating section 32 is provided on the lower surface. The rest of the structure is the same as that of the first embodiment.

このように構成すると、操作部32にドライバ
等を差込み、雄ねじ体30のねじ孔28に対する
螺合位置を変化させることによつて、弦20に与
える初張力を調整できる。
With this configuration, the initial tension applied to the string 20 can be adjusted by inserting a driver or the like into the operating section 32 and changing the screwing position of the male threaded body 30 with respect to the screw hole 28.

第3の実施例は、第3図に示すように、主弾性
体12及び副弾性体14にそれぞれ挿通孔34,
36を穿設し、これに恒弾性ばね26の先端部を
挿通し、これら挿通孔34,36に連通するよう
に側方から穿設した通路38,40内に設けたセ
ツトねじ42,44によつて恒弾性ばね26を固
定したものである。他は第1の実施例と同様に構
成されている。
In the third embodiment, as shown in FIG. 3, the main elastic body 12 and the secondary elastic body 14 have insertion holes 34,
36, and insert the tip of the constant elastic spring 26 into the set screws 42, 44 provided in passages 38, 40 bored from the side so as to communicate with these insertion holes 34, 36. Therefore, the constant elastic spring 26 is fixed. The rest of the structure is the same as that of the first embodiment.

第4の実施例は、第6図に示すように、副弾性
体14を主弾性体12の空胴12a内に配置し、
この副弾性体14の基部を主弾性体12の基部に
固定してある。そして、副弾性体14の作用点の
近傍と、主弾性体12の作用点の近傍とを、引つ
張りばねとした恒弾性ばね26aによつて上方に
引つ張ることによつて弦20に初張力を印加して
いる。
In the fourth embodiment, as shown in FIG. 6, the secondary elastic body 14 is arranged in the cavity 12a of the main elastic body 12,
The base of this secondary elastic body 14 is fixed to the base of the main elastic body 12. Then, the vicinity of the point of action of the auxiliary elastic body 14 and the vicinity of the point of action of the main elastic body 12 are pulled upward by a constant elastic spring 26a serving as a tension spring, so that the string 20 is Initial tension is applied.

この実施例でも、引つ張りばね24aを用いて
いるが、主弾性体12に力が印加されたとき、弦
20の伸びを無視できるので、主弾性体12,副
弾性体14の撓みは等しく、引つ張りばね24a
の変位量は変化せず、初張力が力の印加によつて
変化することはない。また、弦20の伸びを無視
できるので、弦20に初張力を印加するのに、主
弾性体12、副弾性体14のいずれも撓ませてい
ない。その結果、初張力に主弾性体12、副弾性
体14の弾性係数は関係せず、温度の変化があつ
ても、初張力は変化しない。
This embodiment also uses a tension spring 24a, but when force is applied to the main elastic body 12, the elongation of the string 20 can be ignored, so the deflection of the main elastic body 12 and the secondary elastic body 14 are equal. , tension spring 24a
The amount of displacement does not change, and the initial tension does not change due to the application of force. Further, since the elongation of the string 20 can be ignored, neither the main elastic body 12 nor the sub elastic body 14 is bent when applying the initial tension to the string 20. As a result, the elastic coefficients of the main elastic body 12 and the secondary elastic body 14 are not related to the initial tension, and the initial tension does not change even if the temperature changes.

第5の実施例は、第7図に示すように、第4の
実施例と同様に主弾性体12の空胴12a内に副
弾性体14を設けているが、副弾性体14の図に
おける右端部が主弾性体12の先端部側、即ち作
用点側に固定されている。そして、副弾性体14
の図における左端部と主弾性体12の基部側との
間に弦20が設けられ、この弦20は、引つ張り
ばね26aによつて下方に引つ張られている。
The fifth embodiment, as shown in FIG. The right end portion is fixed to the tip end side of the main elastic body 12, that is, to the point of action side. And the secondary elastic body 14
A string 20 is provided between the left end in the figure and the base side of the main elastic body 12, and this string 20 is pulled downward by a tension spring 26a.

この力測定装置でも、主弾性体12に力が印加
されたとき、主弾性体12が撓み、これに伴つて
副弾性体14の図における右側部分が撓む。この
とき、弦20の伸びは無視できるので、副弾性体
14の左端部の位置は変動せず、引つ張りばね2
6aは変位しない。従つて、初張力は、主弾性体
12に力が印加されたことによつて変化しない。
また、弦20の伸びを無視できるので、弦20に
引つ張りばね26aによつて初張力を印加する際
に、主弾性体12、副弾性体14のいずれも撓ま
せていない。従つて、主弾性体12、副弾性体1
4の弾性係数が初張力に影響せず、温度変化があ
つても、初張力は変動しない。
Also in this force measuring device, when a force is applied to the main elastic body 12, the main elastic body 12 bends, and the right side portion of the secondary elastic body 14 in the figure bends accordingly. At this time, since the elongation of the string 20 can be ignored, the position of the left end of the auxiliary elastic body 14 does not change, and the tension spring 2
6a is not displaced. Therefore, the initial tension does not change due to the force being applied to the main elastic body 12.
Further, since the elongation of the string 20 can be ignored, neither the main elastic body 12 nor the sub elastic body 14 is bent when applying the initial tension to the string 20 by the tension spring 26a. Therefore, the main elastic body 12, the secondary elastic body 1
The elastic modulus of 4 does not affect the initial tension, and the initial tension does not change even if the temperature changes.

第1及び第2の実施例では、受皿22,24を
設け、これらの間に恒弾性ばね26を設け、作用
力が一点に加わるようにしたが、受皿22,24
のいずれか一方を省略してもよいし、場合によつ
ては双方共に省略してもよい。各実施例では恒弾
性ばね26,26aには、円筒形のコイルばね状
に形成したものを用いたが、円すい形、つづみ形
またはたる形のコイルばねを用いてもよい。
In the first and second embodiments, the saucers 22 and 24 are provided, and the constant elastic spring 26 is provided between them so that the acting force is applied to one point.
Either one of these may be omitted, or in some cases both may be omitted. In each embodiment, the constant elasticity springs 26 and 26a are formed into cylindrical coil springs, but conical, claw-shaped, or barrel-shaped coil springs may also be used.

〈効果〉 以上述べたように、この考案では、初張力を恒
弾性ばねを用いて与えているので、温度変化があ
つても零点の変動はほとんど生じない。
<Effects> As described above, in this invention, the initial tension is applied using a constant elastic spring, so even if there is a temperature change, the zero point hardly fluctuates.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの考案による力測定装置の第1の実
施例の部分破断側面図、第2図は同第2の実施例
の部分省略側面図、第3図は同第3の実施例の部
分省略側面図、第4図は従来の力測定装置の側面
図、第5図は同装置の回路図、第6図は第4の実
施例の側面図、第7図は第5の実施例の側面図、
第8図は従来の力測定装置及び本考案による力測
定装置における副弾性体の撓みと弦の張力との関
係を示す図である。 12……主弾性体、14……副弾性体、20…
…弦(力検出器)、26,26a……ばね。
Fig. 1 is a partially cutaway side view of the first embodiment of the force measuring device according to this invention, Fig. 2 is a partially omitted side view of the second embodiment, and Fig. 3 is a portion of the third embodiment. 4 is a side view of a conventional force measuring device, FIG. 5 is a circuit diagram of the same device, FIG. 6 is a side view of the fourth embodiment, and FIG. 7 is a side view of the fifth embodiment. Side view,
FIG. 8 is a diagram showing the relationship between the deflection of the auxiliary elastic body and the tension of the string in the conventional force measuring device and the force measuring device according to the present invention. 12... Main elastic body, 14... Secondary elastic body, 20...
... String (force detector), 26, 26a... Spring.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 基部を固定され、着力点を有し、その着力点に
所定方向の力を受けて作用点がその力方向に比例
した弾性変位を生じる主弾性体と、上記主弾性体
の作用点の変位と同じ方向の変位を自身の作用点
に与えられて、その変位に応じた上記力よりも小
さい反力を生じる、上記主弾性体と同一材質の副
弾性体と、上記主弾性体及び副弾性体の各々の作
用点間の距離に等しい長さ寸法を有し、上記両弾
性体間に取り付けられており、上記主弾性体及び
副弾性体の変位による伸びを無視できる力検出器
を備える力測定装置において、上記力検出器の近
傍における上記両弾性体間に、温度変化があつて
もほぼ一定の弾性係数を有する恒弾性係数ばね
を、上記力検出器に初期張力を印加する状態に変
歪させて設置したことを特徴とする力測定装置。
A main elastic body whose base is fixed, has a force application point, receives a force in a predetermined direction at the force application point, and the point of application causes an elastic displacement proportional to the direction of the force; and the displacement of the application point of the main elastic body. A secondary elastic body made of the same material as the main elastic body, which produces a reaction force smaller than the force corresponding to the displacement when a displacement in the same direction is applied to its point of action, and the main elastic body and the secondary elastic body. a force detector having a length dimension equal to the distance between the points of application of each of the two elastic bodies, the force detector being installed between the two elastic bodies, and capable of ignoring elongation due to displacement of the main elastic body and the secondary elastic body; In the device, a constant elastic modulus spring having a substantially constant elastic modulus even when temperature changes is placed between the two elastic bodies in the vicinity of the force detector, and is strained to a state that applies an initial tension to the force detector. A force measuring device characterized in that it is installed with the
JP17793584U 1984-11-22 1984-11-22 Expired JPH0453555Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17793584U JPH0453555Y2 (en) 1984-11-22 1984-11-22

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17793584U JPH0453555Y2 (en) 1984-11-22 1984-11-22

Publications (2)

Publication Number Publication Date
JPS6192844U JPS6192844U (en) 1986-06-16
JPH0453555Y2 true JPH0453555Y2 (en) 1992-12-16

Family

ID=30735505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17793584U Expired JPH0453555Y2 (en) 1984-11-22 1984-11-22

Country Status (1)

Country Link
JP (1) JPH0453555Y2 (en)

Also Published As

Publication number Publication date
JPS6192844U (en) 1986-06-16

Similar Documents

Publication Publication Date Title
KR100235129B1 (en) Load cell
US4838369A (en) Load cell having digital output
US10788358B2 (en) Surface acoustic wave scale that automatically updates calibration information
US5095764A (en) Force transducer and method of manufacturing same
JPH0453555Y2 (en)
US6269696B1 (en) Temperature compensated oscillating accelerometer with force multiplier
JPH0124583Y2 (en)
JP2008170203A (en) Acceleration detection unit and acceleration sensor
US4221133A (en) Vibratory-wire pressure sensor
JPH0452662Y2 (en)
JP3570589B2 (en) Tuning fork type load cell and weighing device using the same
JPS6342731B2 (en)
JPH0228413Y2 (en)
JP3355341B2 (en) Semiconductor pressure sensor
JP2575747Y2 (en) String vibrating force detector
JP2960112B2 (en) Micro displacement device
JPH0226045Y2 (en)
JPH0336902Y2 (en)
JP3570588B2 (en) Tuning fork type load cell and weighing device using the same
JPH0211094B2 (en)
JPH026334Y2 (en)
JP3090355B2 (en) Accelerometer
JP2674839B2 (en) Low frequency acceleration sensor
JPS6033057A (en) Acceleration sensor
JPH0353144Y2 (en)