JPH0336790B2 - - Google Patents

Info

Publication number
JPH0336790B2
JPH0336790B2 JP61252390A JP25239086A JPH0336790B2 JP H0336790 B2 JPH0336790 B2 JP H0336790B2 JP 61252390 A JP61252390 A JP 61252390A JP 25239086 A JP25239086 A JP 25239086A JP H0336790 B2 JPH0336790 B2 JP H0336790B2
Authority
JP
Japan
Prior art keywords
apatite
porous body
tcp
porosity
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61252390A
Other languages
Japanese (ja)
Other versions
JPS63107877A (en
Inventor
Hideki Kadoma
Takuji Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Original Assignee
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO filed Critical KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority to JP25239086A priority Critical patent/JPS63107877A/en
Publication of JPS63107877A publication Critical patent/JPS63107877A/en
Publication of JPH0336790B2 publication Critical patent/JPH0336790B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/447Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明はリン酸カルシウムセラミツク多孔体の
製造方法に関する。更に詳しくは生体硬組織であ
る歯、骨の主成分に近似した化学組成をもち、生
体親和性と新生骨誘導性に優れ、硬組織修復材料
として有用であり、また生体関連高分子や生体有
害有機物または無機イオンの吸着剤、、薬効成分、
酵素、微生物、香料の担体等として利用されるリ
ン酸カルシウムセラミツク多孔体の製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing a calcium phosphate ceramic porous body. More specifically, it has a chemical composition similar to the main components of biological hard tissues such as teeth and bones, has excellent biocompatibility and new bone induction, and is useful as a hard tissue repair material. Adsorbent for organic matter or inorganic ions, medicinal ingredients,
This invention relates to a method for producing a porous calcium phosphate ceramic body used as a carrier for enzymes, microorganisms, fragrances, etc.

従来技術 従来のリン酸カルシウムセラミツク多孔体の製
造方法としては、 (1) リン酸カルシウム(Ca3(PO42)(以下TCP
と記載する)またはアパタイト(Ca10
(PO46・(OH)2)粉末に水を添加してスラリ
ー状となし、これに起泡剤として過酸化水素、
ナフタリン、卵白などを加え、徐々に乾燥、焼
結する起泡剤添加法。
Prior Art Conventional methods for producing calcium phosphate ceramic porous materials include: (1) Calcium phosphate (Ca 3 (PO 4 ) 2 ) (hereinafter referred to as TCP)
) or apatite (Ca 10
(PO 4 ) 6・(OH) 2 ) Add water to the powder to make a slurry, and add hydrogen peroxide as a foaming agent to this slurry.
A foaming agent addition method in which naphthalene, egg white, etc. are added, gradually dried and sintered.

(2) TCPまたはアパタイト粉末に熱分解性の有
機物質粒子を加えた混合物を成型し、徐々に加
熱、分解、焼結する有機物混合法。
(2) An organic material mixing method in which a mixture of TCP or apatite powder with thermally decomposable organic material particles is molded and gradually heated, decomposed, and sintered.

(3) TCPまたはアパタイト粗粒を成型焼結する
粗粒焼結法。
(3) Coarse grain sintering method in which TCP or apatite coarse grains are molded and sintered.

が知られている。It has been known.

しかしながら、(1)、(2)の方法では原料粉末のほ
かに起泡剤または有機物を必要とするため、それ
らの選択及び起泡条件、加熱分解条件等に経験と
熟練を要し、また発生ガスの処理を行なわなけれ
ばならない。また(3)の方法は、粗粒の調整が煩雑
である等の欠点があつた。
However, methods (1) and (2) require foaming agents or organic substances in addition to the raw material powder, so experience and skill are required in selecting them, foaming conditions, thermal decomposition conditions, etc. Gas must be treated. In addition, method (3) had drawbacks such as complicated adjustment of coarse particles.

これらの欠点を改善すべく、本発明者らはさき
に、TCPの水和活性を利用し、水を加え加温し
て水和硬化させてアパタイト構造を持つセラミツ
ク多孔体を製造する水和硬化法を開発した。
In order to improve these drawbacks, the present inventors first developed a hydration-curing technique that utilizes the hydration activity of TCP to produce a ceramic porous body with an apatite structure by adding water and heating to hydrate-cure it. developed the law.

この方法によると、従来法の欠点をなくし得ら
れるが、得られる多孔体の気孔率が大きく、かつ
強度も満足すべき程度でない問題点があつた。
According to this method, the drawbacks of the conventional method can be eliminated, but there are problems in that the porosity of the resulting porous body is large and the strength is not satisfactory.

発明の目的 本発明は前記水和硬化法の問題点を改善すべく
なされたもので、その目的は気孔率をより低く、
高強度でかつ生体親和性の優れたリン酸カルシウ
ムセラミツク多孔体の製造方法を提供するにあ
る。
Purpose of the Invention The present invention was made to improve the problems of the hydration curing method, and its purpose is to lower the porosity,
It is an object of the present invention to provide a method for producing a calcium phosphate ceramic porous body having high strength and excellent biocompatibility.

発明の構成 本発明者は前記目的を達成すべく鋭意研究の結
果、TCPの水和硬化法により得られるアパタイ
ト構造を持つセラミツク多孔体のCa/Pモル比
は1.50〜1.53で、このモル比を高めるために、こ
の多孔体をカルシウム水溶液で繰返し処理する等
の工夫をしても1.64が限度である。その気孔率は
55%以下に下げることは困難で、そのため圧縮強
度は240Kg/cm2以下、ダイアメトラル引張り強さ
は35Kg/cm2以下の低い強度のものであつた。
Structure of the Invention As a result of intensive research to achieve the above object, the present inventor found that the Ca/P molar ratio of a ceramic porous body having an apatite structure obtained by the hydration hardening method of TCP is 1.50 to 1.53. Even if measures such as repeatedly treating this porous body with an aqueous calcium solution were taken to increase the value, the maximum value was 1.64. Its porosity is
It was difficult to reduce the strength to 55% or less, and therefore the compressive strength was low, 240 Kg/cm 2 or less, and the diametral tensile strength was 35 Kg/cm 2 or less.

しかし、これを1000〜1350℃で焼結すると気孔
率を低下させ、強度を高め得られること、また
TCPにカルシウム塩を共存させて水硬化体とな
し、これを前記と同じように焼結すると、多孔体
のCa/P比を1.67まで高め得られることを究明し
得た。この知見に基づいて本発明を完成した。
However, sintering this at 1000-1350℃ lowers the porosity and increases the strength.
It has been found that by coexisting TCP with a calcium salt to form a hydraulic body and sintering this in the same manner as described above, the Ca/P ratio of the porous body can be increased to 1.67. The present invention was completed based on this knowledge.

本発明の要旨は、非多孔質のリン酸三カルシウ
ム粉末またはこれにCa/Pモル比が1.67以下にな
る量のCaを配合し、水を加え100℃未満で加温し
つつ蒸発させることなく放置して硬化させる水和
硬化処理してアパタイト構造を持つセラミツク多
孔体を形成し、これを1000〜1350℃で焼成するこ
とを特徴とするリン酸カルシウムセラミツク多孔
体の製造方法にある。
The gist of the present invention is to mix non-porous tricalcium phosphate powder or Ca in an amount such that the Ca/P molar ratio is 1.67 or less, add water, and heat it at less than 100°C without evaporating. A method for producing a calcium phosphate ceramic porous body, which is characterized in that a ceramic porous body having an apatite structure is formed by a hydration hardening treatment in which the body is allowed to stand and harden, and the ceramic porous body is fired at 1000 to 1350°C.

TCP粉末を水でスラリー化し、これを型に流
し込み、これを100℃未満で加温しつつ蒸発させ
ることなく放置すると、次のような反応でアパタ
イト構造を持つセラミツク多孔体が得られる。
When TCP powder is made into a slurry with water, poured into a mold, and left to stand without evaporating while heating at less than 100°C, a porous ceramic body with an apatite structure is obtained through the following reaction.

(10−Z)Ca3(PO42+{3(2−Z)+3n}H2O→
3Ca10-Z(HPO4Z(PO46-Z(OH)2-Z・nH2O+2
(1−Z)H3PO4 (但し、0n2.5)、0Z<1を表わす) これを1000〜1350℃で焼成すると、次のような
熱分解反応で、TCP単独またはZの値に応じて
TCPとアパタイトの混合物が得られる。
(10−Z)Ca 3 (PO 4 ) 2 +{3(2−Z)+3n}H 2 O→
3Ca 10-Z (HPO 4 ) Z (PO 4 ) 6-Z (OH) 2-Z・nH 2 O+2
(1-Z)H 3 PO 4 (0n2.5, 0Z<1) When this is fired at 1000 to 1350°C, the following thermal decomposition reaction occurs, with TCP alone or depending on the value of Z. hand
A mixture of TCP and apatite is obtained.

Ca10-Z(HPO4Z(PO46-Z(OH)2-Z・nH2O→3ZCa3
(PO42(1−Z)Ca10(PO46(OH)2+(Z+n)
H2O 前記水和硬化反応に際し、カルシウム塩、例え
ば、CaCO3、CaCl2・2H2O、CaC2C4・2H2O、
CaF2等に添加した場合も、硬化反応は前記式と
同様にして行われる。共存させたカルシウム塩は
アパタイト構造の多孔体中に取り込まれてCa/
Pモル比を増大させる。
Ca 10-Z (HPO 4 ) Z (PO 4 ) 6-Z (OH) 2-Z・nH 2 O→3ZCa 3
(PO 4 ) 2 (1-Z) Ca 10 (PO 4 ) 6 (OH) 2 + (Z+n)
H 2 O In the hydration curing reaction, calcium salts, such as CaCO 3 , CaCl 2 .2H 2 O, CaC 2 C 4 .2H 2 O,
Even when it is added to CaF 2 etc., the curing reaction is carried out in the same manner as in the above formula. The coexisting calcium salt is incorporated into the porous apatite structure and becomes Ca/
Increase P molar ratio.

勿論、原料粉末が非多孔質のものであることは
云うまでもない。
Of course, it goes without saying that the raw material powder is non-porous.

得られた多孔体を1000〜1350℃に加熱すると、
次のような熱分解と固相反応によつてCa/Pモ
ル比が1.67のアパタイト多孔体となる。
When the obtained porous body is heated to 1000-1350℃,
A porous apatite with a Ca/P molar ratio of 1.67 is formed through the following thermal decomposition and solid phase reaction.

Ca10-Z(HPO4Z(PO46-Z(OH)2-Z・nH2O+ZCaO→
Ca10(PO46(OH)2+nH2O (なお、CaOはCaCO3、有機カルシウム塩の熱
分解により生じ、カルシウム塩としてCaCl2
2H2O、CaF2を用いると、それぞれCa10
(PO46Cl2、Ca10(PO46F2となる。) 添加するカルシウム塩の量を減らすと、アパタ
イトとTCPの混合相からなる多孔体となる。
Ca 10-Z (HPO 4 ) Z (PO 4 ) 6-Z (OH) 2-Z・nH 2 O+ZCaO→
Ca 10 (PO 4 ) 6 (OH) 2 + nH 2 O (CaO is produced by thermal decomposition of CaCO 3 , an organic calcium salt, and CaCl 2
When using 2H 2 O and CaF 2 , Ca 10
(PO 4 ) 6 Cl 2 , Ca 10 (PO 4 ) 6 F 2 . ) When the amount of calcium salt added is reduced, a porous body consisting of a mixed phase of apatite and TCP becomes available.

焼成温度は1000℃未満では焼結し難く、1350℃
を超えるとアパタイトが分解し始めるので、1000
〜1350℃の範囲であることが必要である。
It is difficult to sinter at a firing temperature of less than 1000°C, and 1350°C.
1000, as apatite begins to decompose when it exceeds
It is necessary to be in the range of ~1350°C.

実施例 1 α−TCP粉末を蒸溜水でスラリー化し、これ
をパイレツクス管に流し込み、ふたをして80℃で
20時間加温して硬化させた。得られたアパタイト
構造を持つセラミツク多孔体は気孔率65〜68%、
圧縮強さ120〜90Kg/cm2であつた。
Example 1 α-TCP powder was made into a slurry with distilled water, poured into a Pyrex tube, covered with a lid, and heated at 80℃.
It was cured by heating for 20 hours. The resulting porous ceramic material with an apatite structure has a porosity of 65 to 68%.
The compressive strength was 120 to 90 Kg/cm 2 .

これを1300℃で3時間焼成した。気孔率は40〜
44%に減少し、圧縮強さは340〜220Kg/cm2に増大
したTCPセラミツク多孔体が得られた。
This was baked at 1300°C for 3 hours. Porosity is 40~
A TCP ceramic porous body with compressive strength increased to 340-220 Kg/cm 2 was obtained.

実施例 2 実施例1において、パイレツクス管に流し込ん
だスラリーに超音波を10分間照射してから同様に
硬化させた。
Example 2 In Example 1, the slurry poured into the Pyrex tube was irradiated with ultrasonic waves for 10 minutes and then cured in the same manner.

得られた多孔体の気孔率は55〜59%、ダイアメ
トラル引張り強さは40〜25Kg/cm2であつた。
The resulting porous body had a porosity of 55 to 59% and a diametral tensile strength of 40 to 25 Kg/cm 2 .

これを1300℃で焼成すると、気孔率は30〜34%
に減少し、ダイアメトラル引張り強さは47〜30
Kg/cm2に増大したTCPセラミツク多孔体が得ら
れた。
When this is fired at 1300℃, the porosity is 30-34%.
The diametral tensile strength decreased to 47-30
A TCP ceramic porous body with an increase in kg/cm 2 was obtained.

実施例 3 α−TCP粉末にCaCl2水溶液をCa/Pモル比
で1.60相当になるように加えてスラリー化し、こ
れをパイレツクス管に流し込み、ふたをして80℃
で20時間加温して硬化させた。得られたものは気
孔率59〜60%のアパタイト構造のセラミツク多孔
体であつた。
Example 3 Add an aqueous CaCl 2 solution to α-TCP powder so that the Ca/P molar ratio is equivalent to 1.60 to form a slurry, pour this into a Pyrex tube, cover it, and heat it at 80°C.
It was heated and cured for 20 hours. What was obtained was a ceramic porous body with an apatite structure and a porosity of 59 to 60%.

これを1100℃で3時間焼成した。得られた多孔
体は気孔44〜46%、圧縮強さ160〜130Kg/cm2、ダ
イアメトラル引張り強さ63〜36Kg/cm2アパタイト
(47重量%)とTCPセラミツクス(53重量%)の
混合多孔体であつた。
This was baked at 1100°C for 3 hours. The obtained porous body has 44 to 46% porosity, a compressive strength of 160 to 130 Kg/cm 2 , and a diametral tensile strength of 63 to 36 Kg/cm 2 It is a mixed porous body of apatite (47% by weight) and TCP ceramics (53% by weight). It was hot.

実施例 4 α−TCP粉末にCaCO3粉末をCa/Pモル比が
1.64になるように混合し、これを蒸留水でスラリ
ー化してパイレツクス管に流し込み、ふたをして
80℃で40時間加温して硬化させた。これを1200℃
で3時間焼成した。得られた焼結体は気孔率38〜
42%、ダイアメトラル引張り強さ80〜36Kg/cm2
アパタイト(80重量%)とTCP(20重量%)の混
合相からなるセラミツク多孔体であつた。
Example 4 Adding CaCO 3 powder to α-TCP powder at a Ca/P molar ratio
1.64, slurry this with distilled water, pour it into a Pyrex tube, and cover it with a lid.
It was cured by heating at 80°C for 40 hours. This at 1200℃
It was baked for 3 hours. The obtained sintered body has a porosity of 38~
It was a ceramic porous body consisting of a mixed phase of apatite (80% by weight) and TCP (20% by weight) with a diametral tensile strength of 80 to 36 kg/cm 2 .

実施例 5 α−TCP粉末にCaC2O4・H2O粉末をCa/Pモ
ル比で1.67になるように混合し、これを蒸留水で
スラリー化し、実施例3と同様にして気孔率60〜
69%、ダイアメトラル引張り強さ18〜6Kg/cm2
アパタイト多孔体を作つた。
Example 5 CaC 2 O 4 H 2 O powder was mixed with α-TCP powder so that the Ca/P molar ratio was 1.67, this was slurried with distilled water, and the porosity was adjusted to 60 in the same manner as in Example 3. ~
An apatite porous body having a diametral tensile strength of 69% and a diametral tensile strength of 18 to 6 Kg/cm 2 was produced.

これを1200℃で3時間焼成した。得られた焼結
体は気孔率42〜48%、ダイアメトラル引張り強さ
160〜115Kg/cm2のアパタイト(93重量%)セラミ
ツク多孔体であつた。
This was baked at 1200°C for 3 hours. The obtained sintered body has a porosity of 42-48% and a diametral tensile strength.
It was an apatite (93% by weight) ceramic porous body with a weight of 160 to 115 kg/cm 2 .

実施例 6 実施例5におけるCaC2O4・H2Oに代えて
CaCO3を用いて気孔率66〜70%のアパタイト多
孔体を作つた。
Example 6 Instead of CaC 2 O 4 · H 2 O in Example 5
An apatite porous body with a porosity of 66-70% was made using CaCO 3 .

これを1200℃で3時間焼成した。得られた焼結
体は気孔率43〜56%、ダイアメトラル引張り強さ
45〜20Kg/cm2のアパタイト(100重量%)セラミ
ツク多孔体であつた。
This was baked at 1200°C for 3 hours. The obtained sintered body has a porosity of 43-56% and a diametral tensile strength.
It was an apatite (100% by weight) ceramic porous body with a weight of 45 to 20 kg/cm 2 .

発明の効果 本発明の方法によると、優れた生体親和性を持
つCa/Pモル比が1.67のアパタイト、TCPセラ
ミツク多孔体及び前記両者が種々の割合で混合さ
れたセラミツク多孔体に改質でき、その気孔率も
小さく、かつ高強度のものとなし得る優れた効果
を奏し得られる。
Effects of the Invention According to the method of the present invention, apatite and TCP ceramic porous bodies having an excellent biocompatibility with a Ca/P molar ratio of 1.67, and ceramic porous bodies in which the two are mixed in various proportions can be modified. The porosity is also small, and the excellent effect of high strength can be achieved.

Claims (1)

【特許請求の範囲】[Claims] 1 非多孔質のリン酸三カルシウム粉末またはこ
れにCa/Pモル比が1.67以下になる量のCaを配
合し、水を加え100℃未満で加温しつつ蒸発させ
ることなく放置して硬化させる水和硬化処理を施
してアパタイト構造を持つセラミツク多孔体を形
成し、これを1000〜1350℃で焼成することを特徴
とするリン酸カルシウムセラミツク多孔体の製造
方法。
1 Blend non-porous tricalcium phosphate powder or Ca in an amount such that the Ca/P molar ratio is 1.67 or less, add water and leave to harden without evaporating while heating at less than 100 ° C. A method for producing a calcium phosphate ceramic porous body, which comprises forming a porous ceramic body having an apatite structure by subjecting it to hydration hardening treatment, and firing the same at 1000 to 1350°C.
JP25239086A 1986-10-23 1986-10-23 Manufacture of calcium phosphate ceramic porous body Granted JPS63107877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25239086A JPS63107877A (en) 1986-10-23 1986-10-23 Manufacture of calcium phosphate ceramic porous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25239086A JPS63107877A (en) 1986-10-23 1986-10-23 Manufacture of calcium phosphate ceramic porous body

Publications (2)

Publication Number Publication Date
JPS63107877A JPS63107877A (en) 1988-05-12
JPH0336790B2 true JPH0336790B2 (en) 1991-06-03

Family

ID=17236657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25239086A Granted JPS63107877A (en) 1986-10-23 1986-10-23 Manufacture of calcium phosphate ceramic porous body

Country Status (1)

Country Link
JP (1) JPS63107877A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61122150A (en) * 1984-11-15 1986-06-10 工業技術院長 Manufacture of porous calcium phosphate compound ceramics

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61122150A (en) * 1984-11-15 1986-06-10 工業技術院長 Manufacture of porous calcium phosphate compound ceramics

Also Published As

Publication number Publication date
JPS63107877A (en) 1988-05-12

Similar Documents

Publication Publication Date Title
US5017518A (en) Process for producing calcium phosphate ceramics having porous surface
JP2567888B2 (en) Solid calcium phosphate material
US5679294A (en) α-tricalcium phosphate ceramic and production method thereof
JPH0333670B2 (en)
JP2563187B2 (en) Method for producing calcium phosphate-based cured product
JPS6081051A (en) Manufacture of coal ash solidified body
JPH0336790B2 (en)
JPS6158422B2 (en)
JP2000169200A (en) Quick-hardening calcium phosphate cement
JPH01100048A (en) Production of calcium phosphate-based set material
JPH0665635B2 (en) Molding material
JPS6330361A (en) Manufacture of calcium phosphate base ceramics
JPH02102165A (en) Production of calcium phosphate-based ceramic
JPH0526503B2 (en)
JPH0753204A (en) Calcium phosphate-based self-hardenable composition
JPH0460069B2 (en)
JPS6366790B2 (en)
JPH05329201A (en) Production of porous sintered body of calcium apatite
JPH0214311B2 (en)
JP3231825B2 (en) Microcapsules for concrete and concrete containing microcapsules
JP2000169199A (en) Quick-hardening calcium phosphate cement
JP3854408B2 (en) Calcium phosphate cement powder
JPH0549618B2 (en)
JP2001198554A5 (en) Okara // Food residue treatment method and Okara // Food residue feed / fertilizer
KR100445720B1 (en) α-TCP/HAP biphasic cement and its preparing process

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term