JPH0214311B2 - - Google Patents

Info

Publication number
JPH0214311B2
JPH0214311B2 JP62004637A JP463787A JPH0214311B2 JP H0214311 B2 JPH0214311 B2 JP H0214311B2 JP 62004637 A JP62004637 A JP 62004637A JP 463787 A JP463787 A JP 463787A JP H0214311 B2 JPH0214311 B2 JP H0214311B2
Authority
JP
Japan
Prior art keywords
apatite
powder
cahpo
porous body
porosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62004637A
Other languages
Japanese (ja)
Other versions
JPS63176347A (en
Inventor
Hideki Kadoma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Original Assignee
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO filed Critical KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority to JP62004637A priority Critical patent/JPS63176347A/en
Publication of JPS63176347A publication Critical patent/JPS63176347A/en
Publication of JPH0214311B2 publication Critical patent/JPH0214311B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Dental Preparations (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明はアパタイト多孔体の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing a porous apatite body.

アパタイト多孔体及びその焼成物は生体内の
歯、骨の主成分に近似した化学組成を有し、歯、
骨修復材料として、また生体高分子や生体有害有
機物または無機質イオンの吸着剤として有用なも
のである。
Apatite porous bodies and fired products thereof have chemical compositions similar to the main components of teeth and bones in living organisms, and
It is useful as a bone repair material and as an adsorbent for biopolymers, biohazardous organic substances, or inorganic ions.

従来技術 従来の水硬性リン酸カルシウムには、リン酸四
カルシウムとリン酸三カルシウムとが知られてい
る。これらの水硬化性を利用して(硬化物はアパ
タイト多孔体)覆髄材、裏装材として歯科治療に
使用されている。
Prior Art Tetracalcium phosphate and tricalcium phosphate are known as conventional hydraulic calcium phosphates. Utilizing these water-curing properties (the cured product is a porous apatite), it is used in dental treatment as pulp capping material and lining material.

しかし、リン酸三カルシウム、リン酸四カルシ
ウムは、ピロリン酸カルシウム(Ca2P2O7)粉末
とカルシウム塩粉末との混合物を1200℃以上での
焼成による固相反応、その後急冷、粉砕して製造
されるので、非常に高価なものとなる欠点があつ
た。
However, tricalcium phosphate and tetracalcium phosphate are produced by solid phase reaction by firing a mixture of calcium pyrophosphate (Ca 2 P 2 O 7 ) powder and calcium salt powder at 1200°C or higher, followed by rapid cooling and pulverization. The drawback was that it was very expensive.

発明の目的 本発明は従来法のような高価なリン酸三カルシ
ウム、リン酸四カルシウムを使用することなく、
安価にアパタイト多孔体を得る方法を提供するに
ある。
Purpose of the invention The present invention does not use expensive tricalcium phosphate or tetracalcium phosphate as in conventional methods.
The object of the present invention is to provide a method for obtaining a porous apatite material at low cost.

発明の構成 本発明は前記目的を達成すべく鋭意研究の結
果、リン酸水素カルシウム2水和物またはその無
水物に炭酸カルシウム粉末を混和すると、炭酸カ
ルシウムがPH緩衝材として作用し、水硬化し得ら
れ、容易にアパタイト多孔体が得られる新しい知
見を得た。この知見に基づいて本発明を完成し
た。
Structure of the Invention The present invention has been made as a result of extensive research to achieve the above object. When calcium carbonate powder is mixed with calcium hydrogen phosphate dihydrate or its anhydride, the calcium carbonate acts as a PH buffering material, causing water hardening. We have obtained new knowledge that allows a porous apatite to be easily obtained. The present invention was completed based on this knowledge.

本発明の要旨は、リン酸水素カルシウム2水和
物またはその無水水和物にCa/Pモル比で1.50〜
1.67になる割合で炭酸カルシウム粉末を配合し、
これに水を加えて水和反応させることを特徴とす
るアパタイト多孔体の製造方法にある。リン酸水
素カルシウム2水和物(CaHPO4・2H2O)およ
びその無水和物(CaHPO4)は、次のような水和
反応でアパタイトへ変化する。
The gist of the present invention is to provide calcium hydrogen phosphate dihydrate or its anhydrous hydrate with a Ca/P molar ratio of 1.50 to 1.50.
Contains calcium carbonate powder at a ratio of 1.67,
A method for producing a porous apatite is characterized by adding water to the porous apatite and causing a hydration reaction. Calcium hydrogen phosphate dihydrate (CaHPO 4 .2H 2 O) and its anhydrate (CaHPO 4 ) are transformed into apatite through the following hydration reaction.

CaHPO4・2H2OまたはCaHPO4水中 ――→ Ca10-z(HPO4z(PO46-z(OH)2-z・nH2O +(4−Z)H3PO4 (但し、0n2.5、0Z1を表わす) この水和反応は弱酸性から塩基性の範囲(6<
PH<9)でよく進行する。従つて、反応進行に伴
つて生ずるH3PO4によるPH降下を緩衝しなけれ
ば反応は進行しない。
CaHPO 4・2H 2 O or CaHPO 4 in water---→ Ca 10-z (HPO 4 ) z (PO 4 ) 6-z (OH) 2-z・nH 2 O + (4-Z)H 3 PO 4 ( However, this represents 0n2.5, 0Z1) This hydration reaction ranges from weak acidity to basicity (6<
It progresses well with pH<9). Therefore, the reaction will not proceed unless the PH drop due to H 3 PO 4 that occurs as the reaction progresses is buffered.

そのために、これまではPH緩衝液を予め反応系
に入れておくか、あるいは消石灰またはアンモニ
ア水等の塩基性物質を逐次添加してきた。このよ
うな方法では反応系を常に撹拌しなければならな
かつた。この撹拌のため得られるものは粉末状の
ものとなり、硬化したアパタイト多孔体を得るこ
とはできなかつた。
To this end, until now, a PH buffer solution has been added to the reaction system in advance, or a basic substance such as slaked lime or aqueous ammonia has been successively added. In such a method, the reaction system had to be constantly stirred. Due to this stirring, the product obtained was in the form of powder, and a hardened porous apatite material could not be obtained.

本発明のように、CaHPO4・2H2Oまたは
CaHPO4の粉末に固体PH緩衝材であるCaCO3粉末
を混合しておくと、水和反応に伴うPH降下を
CaCO3粉末により緩衝し得られ、撹拌を必要と
せず、静置状態で水和反応を進行し得られ、同時
に反応生成物は互いにからみ合つたアパタイト多
孔体として得られる。
As in the present invention, CaHPO4.2H2O or
By mixing CaHPO 4 powder with CaCO 3 powder, which is a solid PH buffer, the PH drop caused by the hydration reaction can be suppressed.
It is obtained by buffering with CaCO 3 powder, and the hydration reaction can proceed in a stationary state without stirring, and at the same time, the reaction product is obtained as a porous apatite body that is entangled with each other.

固体PH緩衝材としてはCaCO3以外にBaCO3
SrCO3などがあるが、これらの金属成分は生体異
物であるので、CaCO3であることが好ましい。
In addition to CaCO 3 , BaCO 3 ,
There are SrCO 3 and the like, but since these metal components are xenobiotics, CaCO 3 is preferable.

CaCO3粉末のCaHPO4・2H2OまたはCaHPO4
粉末への混合割合はCa/Pモル比で1.50〜1.67で
ある。Ca/Pモル比が1.50未満では未反応の、
CaHPO4・2H2OまたはCaHPO4が残留するので、
焼成するとCa3(PO42とピロリン酸カルシウム
(Ca2P2O7)との混合相からなるセラミツク多孔
体となる。また1.67を超えると遊離のCaCO3が混
合してき、これを焼成するとCaOとなり、高アル
カリ性となり、生体には使用し難くなる。
CaCO3 powder CaHPO42H2O or CaHPO4
The mixing ratio in the powder is a Ca/P molar ratio of 1.50 to 1.67. If the Ca/P molar ratio is less than 1.50, unreacted
Since CaHPO 4 2H 2 O or CaHPO 4 remains,
When fired, it becomes a ceramic porous body consisting of a mixed phase of Ca 3 (PO 4 ) 2 and calcium pyrophosphate (Ca 2 P 2 O 7 ). Moreover, when it exceeds 1.67, free CaCO 3 is mixed in, and when this is calcined, it becomes CaO, which becomes highly alkaline and difficult to use for living organisms.

この混合物に水を加えてスラリー化してから型
に流し込み、これを100℃未満で加温するとアパ
タイトが生じて硬化する。その基本反応を示すと
次の通りである。
Add water to this mixture to form a slurry, pour it into a mold, and heat it below 100°C to form apatite and harden. The basic reaction is shown below.

CaHPO4・2H2OまたはCaHPO4水中 ――→ Ca10-z(HPO4z(PO46-z(OH)2-z・nH2O +(4−Z)H3PO4 生じたH3PO4はCaCO3によつて次のように中
和されてアパタイトに転化する。
CaHPO 4・2H 2 O or CaHPO 4 in water---→ Ca 10-z (HPO 4 ) z (PO 4 ) 6-z (OH) 2-z・nH 2 O + (4-Z)H 3 PO 4 produced The H 3 PO 4 is neutralized by CaCO 3 and converted into apatite as follows.

6H3PO4+(10−Z)CaCO3水中 ――→ ――→ Ca10-z(HPO4z(PO46-z(OH)2-z・nH2O+8H2O+
H2CO3 +(9−Z)CO3 (但し、0n2.5、0Z1を表わす) 得られたアパタイト水硬多孔体を1000〜1350℃
で焼成すると気孔率が低下し、強度の高まつたリ
ン酸カルシウムセラミツク多孔体が得られる。
6H 3 PO 4 + (10−Z) CaCO 3 in water --→ --→ Ca 10-z (HPO 4 ) z (PO 4 ) 6-z (OH) 2-z・nH 2 O+8H 2 O+
H 2 CO 3 + (9-Z) CO 3 (represents 0n2.5, 0Z1) The obtained apatite hydraulic porous body was heated to 1000-1350°C.
When fired, a calcium phosphate ceramic porous body with reduced porosity and increased strength can be obtained.

該多孔体はアパタイト単一相(Z=0の場合)、
あるいはアパタイトとCa3(PO42(0<Z1の
場合)の種々割合の混合相のものとなる。
The porous body is apatite single phase (when Z=0),
Alternatively, it is a mixed phase of apatite and Ca 3 (PO 4 ) 2 (in the case of 0<Z1) in various proportions.

この焼成温度が1000℃未満では焼結し難く、
1350℃を超えるとアパタイトが分解し初めるの
で、焼成に際しては前記の温度であることが必要
である。焼成の反応式を示すと次の通りである。
If the firing temperature is less than 1000℃, it will be difficult to sinter.
If the temperature exceeds 1350°C, the apatite will begin to decompose, so it is necessary to maintain the above-mentioned temperature during firing. The reaction formula for calcination is as follows.

Ca10-z(HPO4z(PO46-z(OH)2-z・nH2O →(1−Z)Ca10(PO46(OH)2+3ZCa3(PO42
(Z+n)H2O 但し、0<Z1を表わす。
Ca 10-z (HPO 4 ) z (PO 4 ) 6-z (OH) 2-z・nH 2 O → (1-Z) Ca 10 (PO 4 ) 6 (OH) 2 +3ZCa 3 (PO 4 ) 2 +
(Z+n)H 2 O However, 0<Z1.

実施例 1 CaHPO4・2H2O粉末にCaCO3をCa/Pモル比
が1.67になるように配合し、この混合物を水でス
ラリー化してパイレツクス管に流し込み、ふたを
して50℃で16時間加温して硬化させた。得られた
未反応原料粉末を含むアパタイト水硬多孔体は気
孔率71〜74%、ダイアメトラル引張り強さ15〜12
Kg/cm2であつた。
Example 1 CaCO 3 was blended with CaHPO 4 2H 2 O powder so that the Ca/P molar ratio was 1.67, this mixture was made into a slurry with water, poured into a Pyrex tube, covered and heated at 50°C for 16 hours. It was heated and hardened. The resulting apatite hydraulic porous body containing unreacted raw material powder has a porosity of 71-74% and a diametral tensile strength of 15-12.
It was Kg/ cm2 .

実施例 2 実施例1において、50℃で16時間を80℃で22時
間に変えて行つたところ、気孔率71〜76%、ダイ
アメトラル引張り強さ17〜8Kg/cm2の未反応原料
粉末を含むアパタイト水硬多孔体が得られた。
Example 2 In Example 1, 16 hours at 50°C was changed to 22 hours at 80°C, and the result was that the powder contained unreacted raw material powder with a porosity of 71-76% and a diametral tensile strength of 17-8 Kg/ cm2. An apatite hydraulic porous body was obtained.

これを1250℃で3時間焼成した。気孔率は45〜
50%に減少し、ダイアメトラル引張り強さは48〜
19Kg/cm2に増大したアパタイト単一相のセラミツ
ク多孔体が得られた。
This was baked at 1250°C for 3 hours. Porosity is 45~
Reduced to 50%, diametral tensile strength is 48 ~
A ceramic porous body with a single apatite phase increased in weight to 19 kg/cm 2 was obtained.

実施例 3 実施例1において、CaHPO4・2H2Oに変えて
CaHPO4を用いて、80℃で40時間加温して硬化さ
せると、気孔率79〜81%、ダイアメトラル引張り
強さ4〜2Kg/cm2のアパタイト単一相の水硬多孔
体が得られた。
Example 3 In Example 1, instead of CaHPO 4 2H 2 O
When CaHPO 4 was used and cured by heating at 80°C for 40 hours, an apatite single-phase hydraulic porous body with a porosity of 79-81% and a diametral tensile strength of 4-2 Kg/cm 2 was obtained. .

実施例 4 CaHPO4・2H2O粉末にCaCO3粉末をCa/Pモ
ル比が1.57になるよう混合し、この混合物を水で
スラリー化してからパイレツクス管に流し込み、
ふたをして80℃で16時間加温して硬化させた。得
られたアパタイト単一相からなる水硬多孔体の気
孔率は72〜80%、ダイアメトラル引張り強さは2
〜1Kg/cm2であつた。
Example 4 CaHPO 4 2H 2 O powder was mixed with CaCO 3 powder so that the Ca/P molar ratio was 1.57, this mixture was slurried with water and then poured into a Pyrex tube.
The mixture was covered with a lid and heated at 80°C for 16 hours to cure. The resulting hydraulic porous body consisting of a single phase of apatite has a porosity of 72 to 80% and a diametral tensile strength of 2.
It was ~1Kg/ cm2 .

これを1250℃で3時間焼成すると、気孔率は46
〜47%に減少し、ダイアメトラル引張り強さは5
〜4Kg/cm2に増大したアパタイトとリン酸三カル
シウムとの混合相からなるセラミツク多孔体が得
られた。
When this is fired at 1250℃ for 3 hours, the porosity is 46
~47% and the diametral tensile strength is 5
A ceramic porous body consisting of a mixed phase of apatite and tricalcium phosphate, which increased to ~4 kg/cm 2 , was obtained.

比較例 実施例4において、Ca/Pモル比が1.33になる
ようにして硬化させた。得られた未反応原料を含
むアパタイト水硬多孔体の気孔率は77〜80%、ダ
イアメトラル引張り強さは8〜3Kg/cm2であつ
た。
Comparative Example In Example 4, curing was performed such that the Ca/P molar ratio was 1.33. The resulting apatite hydraulic porous body containing unreacted raw materials had a porosity of 77 to 80% and a diametral tensile strength of 8 to 3 Kg/cm 2 .

これを実施例4と同様に焼成すると、気孔率は
60〜61%に減少し、ダイアメトラル引張り強さは
14〜11Kg/cm2に増大したリン酸三カルシウムとピ
ロリン酸カルシウムとの混合相からなるセラミツ
ク多孔体が得られた。
When this was fired in the same manner as in Example 4, the porosity was
The diametral tensile strength decreased to 60-61%
A ceramic porous body consisting of a mixed phase of tricalcium phosphate and calcium pyrophosphate with an increased weight of 14 to 11 kg/cm 2 was obtained.

発明の効果 本発明の方法によると、従来法におけるような
高価なリン酸三カルシウム、リン酸四カルシウム
を使用することなく、安価に得られるリン酸水素
カルシウム・2水和物またはその無水物から容易
にアパタイト多孔体が得られ、その気孔率も高範
囲に制御し得られる優れた効果を奏し得られる。
Effects of the Invention According to the method of the present invention, calcium hydrogen phosphate dihydrate or its anhydride, which can be obtained at low cost, is used without using expensive tricalcium phosphate or tetracalcium phosphate as in conventional methods. An apatite porous body can be easily obtained, and its porosity can be controlled within a high range, resulting in excellent effects.

Claims (1)

【特許請求の範囲】[Claims] 1 リン酸水素カルシウム2水和物またはその無
水和物にCa/Pモル比で1.50〜1.67になる割合で
炭酸カルシウム粉末を配合し、これを水を加えて
水和反応させることを特徴とするアパタイト多孔
体の製造方法。
1. Calcium carbonate powder is blended with calcium hydrogen phosphate dihydrate or its anhydrate at a Ca/P molar ratio of 1.50 to 1.67, and water is added to cause a hydration reaction. A method for producing an apatite porous body.
JP62004637A 1987-01-12 1987-01-12 Manufacture of apatite porous body Granted JPS63176347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62004637A JPS63176347A (en) 1987-01-12 1987-01-12 Manufacture of apatite porous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62004637A JPS63176347A (en) 1987-01-12 1987-01-12 Manufacture of apatite porous body

Publications (2)

Publication Number Publication Date
JPS63176347A JPS63176347A (en) 1988-07-20
JPH0214311B2 true JPH0214311B2 (en) 1990-04-06

Family

ID=11589514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62004637A Granted JPS63176347A (en) 1987-01-12 1987-01-12 Manufacture of apatite porous body

Country Status (1)

Country Link
JP (1) JPS63176347A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010140634A1 (en) * 2009-06-02 2010-12-09 日鉄鉱業株式会社 Tube-shaped calcium phosphate and process for production thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2869893B1 (en) * 2004-05-06 2006-07-28 Rhodia Chimie Sa NOVEL CALCIUM PHOSPHATE GRANULES OF THE HYDROXYAPATITE TYPE, PROCESS FOR THEIR PREPARATION AND THEIR APPLICATIONS

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010140634A1 (en) * 2009-06-02 2010-12-09 日鉄鉱業株式会社 Tube-shaped calcium phosphate and process for production thereof

Also Published As

Publication number Publication date
JPS63176347A (en) 1988-07-20

Similar Documents

Publication Publication Date Title
US6518212B1 (en) Chemically bonded phospho-silicate ceramics
WO2005071041A1 (en) Soil solidifying agent
JPH0333670B2 (en)
Massit et al. XRD and FTIR analysis of magnesium substituted tricalcium calcium phosphate using a wet precipitation method
US20030235622A1 (en) Method of preparing alpha-and-beta-tricalcium phosphate powders
JP5481471B2 (en) Calcium phosphate particles and hydraulic cement based thereon
TW201233660A (en) Dicalcium phosphate ceramics, dicalcium phosphate/hydroxyapatite biphasic ceramics and method of manufacturing the same
JPH0214311B2 (en)
JPH0520376B2 (en)
Sturgeon et al. Effects of carbonate on hydroxyapatite formed from CaHPO 4 and Ca 4 (PO 4) 2 O
JP3668530B2 (en) Method for producing tetracalcium phosphate
JPH02311340A (en) Hydraulic cement composition
JP3215892B2 (en) Method for producing hydroxyapatite whiskers
JPH0460069B2 (en)
CA2762840C (en) Calcium sulphate-based products having enhanced water resistance
JP3216324B2 (en) Method for producing quaternary calcium phosphate
JPH04321507A (en) Production of calcium tertiary phosphate and hydraulic calcium phosphate cement
WO2000068144A1 (en) Method for the preparation of carbonated hydroxyapatite compositions
Şenberber et al. Thermal kinetics and thermodynamics of the dehydration reaction of Mg3 (PO4) 2· 22H2O
Konishi LOW-TEMPERATURE SYNTHESIS OF TRICALCIUM PHOSPHATE AND RELATED MATERIALS
JPH03112838A (en) Wet-process for producing alpha-type calcium triphosphate cement
JPS596830B2 (en) Room temperature curable high strength bonding composition
JP3854408B2 (en) Calcium phosphate cement powder
JPH04187608A (en) Cement for dentistry and orthopedic surgery
JPH01320251A (en) Pasty hardenable composition

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term