JPH0336772A - Ultrasonic oscillator - Google Patents

Ultrasonic oscillator

Info

Publication number
JPH0336772A
JPH0336772A JP1171178A JP17117889A JPH0336772A JP H0336772 A JPH0336772 A JP H0336772A JP 1171178 A JP1171178 A JP 1171178A JP 17117889 A JP17117889 A JP 17117889A JP H0336772 A JPH0336772 A JP H0336772A
Authority
JP
Japan
Prior art keywords
piezoelectric element
metal cylinder
oscillation
ultrasonic oscillator
radial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1171178A
Other languages
Japanese (ja)
Inventor
Kiyohide Tsutsumi
堤 清英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1171178A priority Critical patent/JPH0336772A/en
Publication of JPH0336772A publication Critical patent/JPH0336772A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To prevent lowering of oscillation generating efficiency even if the oscillation mode of a body coupled to an ultrasonic oscillator is coincident with the oscillation mode of the ultrasonic oscillator by fixing an annular piezoelectric element for radial oscillation to a metal cylinder to construct the ultrasonic oscillator and forming a coupled ember consisting of the ultrasonic oscillator and the body to be oscillated. CONSTITUTION:A piezoelectric element 1 for radial oscillation is formed in annular shape. The outer peripheral surface of one end of a metal cylinder 2 and the inner peripheral surface of the piezoelectric element 1 are brought in close contact with and fixed to each other. When high frequency power is supplied to the piezoelectric element 1, alternating radial stress is generated. If the frequency of the high frequency power is coincident with the resonant frequency of the longitudinal primary oscillation mode of the mechanical oscillating system constructed by the piezoelectric element 1 and the metal cylinder 2, longitudinal oscillation amplitude is made maximum. The piezoelectric element 1 is disposed at the point where the radial stress is maximum to efficiently generate the longitudinal oscillation of the metal cylinder 2.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、超音波振動発生源である圧電型の超音波振
動子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a piezoelectric type ultrasonic vibrator that is an ultrasonic vibration generation source.

[従来の技術] 第6図(a)は通常のランジュバン型の超音波振動子を
示す正面図であり、(4a)及び(4b)は軸方向に振
動する円柱形状の圧電素子、〈5a)及び(5b)は金
属円柱で、これらは軸方向に積層して接着剤等によって
相互に固定されている。なお、上記の構成では圧電素子
(4a) 、 (4b)は2個の部材を積重ねているが
、圧電素子の機能としては1個の部材でもよく、これら
に給電する方法等の理由によって通常は複数個に分割さ
れている。
[Prior Art] FIG. 6(a) is a front view showing a normal Langevin type ultrasonic transducer, (4a) and (4b) are cylindrical piezoelectric elements that vibrate in the axial direction, and (5a) and (5b) are metal cylinders, which are stacked in the axial direction and fixed to each other with an adhesive or the like. In the above configuration, the piezoelectric elements (4a) and (4b) are two stacked members, but the function of the piezoelectric elements may be as a single member, and depending on the method of supplying power to them, etc. It is divided into multiple pieces.

上記のような構成の超音波振動子において、圧電素子(
4a) 、 (4b)に高周波電力が供給されると、圧
電素子(4a) 、 (4b)の軸方向(振動子の縦方
向)に交番応力が発生する。そして、圧電素子(4a)
In the ultrasonic transducer configured as above, a piezoelectric element (
When high frequency power is supplied to 4a) and 4b, alternating stress is generated in the axial direction of the piezoelectric elements 4a and 4b (vertical direction of the vibrator). And piezoelectric element (4a)
.

(4b)と金属円柱(5a) 、 (5b)とで構成さ
れる機械振動系の縦方向−次振動モードの共振周波数に
、高周波電力の周波数が重畳すると縦方向の振動の振幅
が最大となる。
When the frequency of high-frequency power is superimposed on the resonance frequency of the vertical-order vibration mode of the mechanical vibration system composed of (4b) and metal cylinders (5a) and (5b), the amplitude of the vertical vibration becomes maximum. .

第6図(b) 、(c)はこの共振状態のときの超音波
振動子の縦方向応力と縦方向変位を示す。これらの図に
よって明らかのように、超音波振動子としての円柱構造
物はその両端部で逆相の振動変位を有する。すなわち、
振動子が伸長時には上端は上方に、下端は下方に、縮小
時には上端は下方に、下端は上方にそれぞれ変位する。
FIGS. 6(b) and 6(c) show the longitudinal stress and longitudinal displacement of the ultrasonic transducer in this resonant state. As is clear from these figures, the cylindrical structure serving as the ultrasonic vibrator has vibration displacements in opposite phases at both ends thereof. That is,
When the vibrator is extended, the upper end is displaced upward and the lower end is displaced downward, and when the vibrator is contracted, the upper end is displaced downward and the lower end is displaced upward.

このように、圧電素子(4a) 、 (4b)は力を発
生する素子であるので、縦方向の応力が最大となる中央
部に配設されている。
In this way, since the piezoelectric elements (4a) and (4b) are elements that generate force, they are arranged at the center where the longitudinal stress is maximum.

[発明が解決しようとする課題] 上記のような従来の超音波振動子では、縦振動を伝達す
る物体に結合する場合、結合する物体固有の振動モード
と超音波振動子の振動モードとを一致させる必要があり
、結合する物体を製作する場合、その固有の振動モード
を超音波振動子の振動モードと一致させるために複雑な
計算と経験を必要とする。すなわち、第7図(a)に示
すように圧電素子(4a) 、 (4b)と金属円柱(
5a) 、 (5b)とからなる超音波振動子に、この
共振周波数と異なる縦振動モードを有する金属円柱(3
)を結合した場合、全体系の振動モードが変位し、(b
) 、 (c)図に示すように圧電素子(4a) 、 
(4b)の位置が縦方向応力最大点からずれ、振動発生
効率が悪くなってしまうという問題があった。
[Problems to be Solved by the Invention] In the conventional ultrasonic vibrator as described above, when coupled to an object that transmits longitudinal vibration, it is difficult to match the vibration mode of the object to be coupled with the vibration mode of the ultrasonic transducer. When manufacturing an object to be coupled, complicated calculations and experience are required to match its natural vibration mode with the vibration mode of the ultrasonic transducer. That is, as shown in FIG. 7(a), piezoelectric elements (4a) and (4b) and a metal cylinder (
5a) and (5b), a metal cylinder (3
), the vibration mode of the entire system is displaced and (b
), (c) As shown in the figure, a piezoelectric element (4a),
There was a problem in that the position (4b) was shifted from the point of maximum longitudinal stress, resulting in poor vibration generation efficiency.

この発明は、上記のような課題を解決するためになされ
たもので、超音波振動子に結合する物体の振動モードが
超音波振動子の振動モードと一致しても、振動発生効率
が低下しない超音波振動子を得ることを目的とする。
This invention was made to solve the above-mentioned problem, and the vibration generation efficiency does not decrease even if the vibration mode of the object coupled to the ultrasonic vibrator matches the vibration mode of the ultrasonic vibrator. The purpose is to obtain an ultrasonic transducer.

[課題を解決するための手段] この発明に係る超音波振動子は、環状に形成され高周波
電力の供給を受けると径方向に振−動する圧電素子の内
周面に、金属円筒の端部の外周面を密着させて固着した
ものである。
[Means for Solving the Problems] The ultrasonic vibrator according to the present invention has an end portion of a metal cylinder on the inner peripheral surface of a piezoelectric element that is formed in an annular shape and vibrates in the radial direction when supplied with high-frequency power. The outer circumferential surface of the holder is tightly attached to the holder.

[作 用] この発明における環状の圧電素子に生じる径方向の振動
が金属円筒に伝播すると、金属円筒の軸方向の振動とな
る。
[Function] When the radial vibration generated in the annular piezoelectric element in this invention is propagated to the metal cylinder, it becomes an axial vibration of the metal cylinder.

[実施例〕 第1図(a)はこの発明の一実施例による超音波振動子
の構成を示す斜視図であり、(1)は径方向に振動する
圧電素子で、環状に形成されている。
[Embodiment] FIG. 1(a) is a perspective view showing the configuration of an ultrasonic transducer according to an embodiment of the present invention, in which (1) is a piezoelectric element that vibrates in the radial direction and is formed in an annular shape. .

(2)は金属円柱で、この金属円柱(2)の一端部の外
周面と圧電素子(1)の内周面とは密着して固定されて
いる。なお、第1図(b)は圧電素子(1)の振動方向
を示す斜視図である。
(2) is a metal cylinder, and the outer circumferential surface of one end of the metal cylinder (2) and the inner circumferential surface of the piezoelectric element (1) are closely fixed. Note that FIG. 1(b) is a perspective view showing the vibration direction of the piezoelectric element (1).

次に、上記のような構成の超音波振動子の動作を説明す
る。第2図(a)の圧電素子(1)に高周波電力が供給
されると、径方向に交番応力が発生する。そして圧電素
子(1)と金属円柱〈2)とで構成される機械振動系の
縦方向−次振動モードの共振周波数に、高周波電力の周
波数が重畳すると、縦方向の振動振幅が最大となる。第
2図(b) 、(c)は以上述べた振動状態時の金属円
柱(2)の径方向応力と縦方向変位を示す線図であり、
この線図から明らかなように、圧電素子(1)は径方向
応力の最大点に配置され、金属円柱(2)に対して縦方
向振動を効率よく発生させることができる。
Next, the operation of the ultrasonic transducer configured as described above will be explained. When high frequency power is supplied to the piezoelectric element (1) in FIG. 2(a), alternating stress is generated in the radial direction. When the frequency of the high-frequency power is superimposed on the resonance frequency of the vertical-order vibration mode of the mechanical vibration system composed of the piezoelectric element (1) and the metal cylinder (2), the vibration amplitude in the vertical direction becomes maximum. FIGS. 2(b) and 2(c) are diagrams showing the radial stress and longitudinal displacement of the metal cylinder (2) during the vibration state described above,
As is clear from this diagram, the piezoelectric element (1) is placed at the point of maximum radial stress and can efficiently generate longitudinal vibration in the metal cylinder (2).

第3図(a)はこの発明による超音波振動子の共振周波
数と異なる縦振動モードを有する金属円柱(3)と、上
記の圧電素子(1)及び金属円柱(2〉とを結合した正
面図であり、第3図(b) 、 (c)はこれらの結合
物の軸方向の各点にいて得られた径方向応力及び縦方向
変位をそれぞれ示す線図である。
FIG. 3(a) is a front view of a metal cylinder (3) having a longitudinal vibration mode different from the resonance frequency of the ultrasonic transducer according to the present invention, combined with the piezoelectric element (1) and metal cylinder (2>). FIGS. 3(b) and 3(c) are diagrams showing the radial stress and longitudinal displacement obtained at each point in the axial direction of these bonded bodies, respectively.

これらの線図から明らかなように、超音波振動子自体の
縦振動モードと上記結合体の縦振動モードは変化し、負
方向応力の最大点位置dが移動するが、圧電素子(1)
が配置された位置では常に径方向の応力は最大値となり
、縦方向変位も上記の径方向応力の変化に従った値とな
る。
As is clear from these diagrams, the longitudinal vibration mode of the ultrasonic vibrator itself and the longitudinal vibration mode of the above-mentioned combined body change, and the maximum point position d of negative direction stress moves, but the piezoelectric element (1)
The radial stress always has a maximum value at the position where the radial stress is placed, and the longitudinal displacement also takes a value in accordance with the change in the radial stress.

なお、上記実施例では圧電素子(L)が1個の場合につ
いて説明したが、第4図に示すように2個の環状の圧電
素子(1)を金属円柱(2)の両端部に固着させるよう
にしても、径方向の応力最大点は圧電素子(1〉の配置
点となり、縦方向の変位も径方向応力の変化に従った値
となる。また、第5図に示すように環状の圧電素子(1
)を金属円柱(2)の一端部に固着し、他の圧電素子(
1)を金属円柱(3)の任意位置に固着して、金属円柱
(2) 、 (3)を結合させるような場合も、径方向
の応力最大点は2箇所の圧電素子(1)の配置点及び金
属円柱(3)の下端部の3箇所が得られる。また、縦方
向の変位も径方向応力の変化に従った値となる。
In the above embodiment, the case where there is one piezoelectric element (L) was explained, but as shown in Fig. 4, two annular piezoelectric elements (1) are fixed to both ends of a metal cylinder (2). Even in this case, the maximum stress point in the radial direction becomes the placement point of the piezoelectric element (1), and the displacement in the vertical direction also takes a value according to the change in the radial stress. Piezoelectric element (1
) is fixed to one end of the metal cylinder (2), and the other piezoelectric element (
Even in the case where the metal cylinders (2) and (3) are connected by fixing the piezoelectric element (1) to an arbitrary position on the metal cylinder (3), the maximum stress point in the radial direction is the placement of the piezoelectric element (1) at two locations. Three locations are obtained: the point and the lower end of the metal cylinder (3). Moreover, the displacement in the longitudinal direction also takes on a value according to the change in the radial stress.

このようにして、複数の環状の圧電素子(1)を金属円
柱に固着して超音波振動子を構成すると、1個の圧電素
子(1)の場合よりも一層強力なエネルギを有する超音
波振動子が得られ、上記実施例と同様の効果を奏する。
In this way, when an ultrasonic vibrator is constructed by fixing a plurality of annular piezoelectric elements (1) to a metal cylinder, ultrasonic vibrations with stronger energy than a single piezoelectric element (1) can generate. The same effect as in the above embodiment is obtained.

[発明の効果] 以上のように、この発明によれば径方向に振動する環状
の圧電素子を金属円柱に固着して超音波振動子を構成す
るようにしたので、この超音波振動子と被振動体との結
合体を形成することによりり、超音波振動子自体の振動
モードが変化しても、効率よく超音波振動を発生させる
ことができる効果がある。
[Effects of the Invention] As described above, according to the present invention, an annular piezoelectric element that vibrates in the radial direction is fixed to a metal cylinder to constitute an ultrasonic vibrator. By forming a combined body with the vibrating body, even if the vibration mode of the ultrasonic vibrator itself changes, it is possible to efficiently generate ultrasonic vibrations.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)はこの発明の一実施例による超音波振動子
の構成を示す斜視図、(b)は(a)図の圧電素子の振
動方向を示す斜視図、第2図(a) 、(b) 。 (c)はこの発明による超音波振動子及びその径方向応
力及び縦方向変位の特性を示す線図、第3図(a) 、
(b) 、(c)はこの発明による超音波振動子と金属
円柱との結合体及びその径方向応力及び縦方向変位の特
性を示す線図、第4図(a) 、 (b) 、(c)及
び第5図(a) 、 (b) 、 (c)はこの発明に
よる他の実施例及びこれを説明するための線図、第6図
(a) 、 (b) 。 (c)は従来の超音波振動子の構成例及びその特性を示
す線図、第7図(a) 、(b) 2(c)は他の従来
例の構成例及びその特性を示す線図である。 図において、(1)は圧電送受信、(2) 、 (3)
は金属円筒である。 なお、図中同一符号は同−又は相当部分を示す。
FIG. 1(a) is a perspective view showing the configuration of an ultrasonic transducer according to an embodiment of the present invention, FIG. 1(b) is a perspective view showing the vibration direction of the piezoelectric element shown in FIG. 2(a), and FIG. ,(b). (c) is a diagram showing the ultrasonic transducer according to the present invention and its characteristics of radial stress and longitudinal displacement; FIG. 3(a);
(b) and (c) are diagrams showing the combined body of the ultrasonic transducer and metal cylinder according to the present invention, and its characteristics of radial stress and longitudinal displacement; c) and FIGS. 5(a), (b), and (c) are other embodiments according to the present invention and diagrams for explaining the same, and FIGS. 6(a) and (b). (c) is a diagram showing an example of the configuration of a conventional ultrasonic transducer and its characteristics; FIGS. 7(a), (b), and 2(c) are diagrams showing an example of the configuration of another conventional example and its characteristics. It is. In the figure, (1) is piezoelectric transmission and reception, (2), (3)
is a metal cylinder. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims]  環状に形成され径方向に振動する圧電素子の内周面と
、金属円筒の端部の外周面とを密着させて固着した超音
波振動子。
An ultrasonic vibrator in which the inner circumferential surface of a piezoelectric element formed in an annular shape and vibrating in the radial direction and the outer circumferential surface of the end of a metal cylinder are closely attached and fixed.
JP1171178A 1989-07-04 1989-07-04 Ultrasonic oscillator Pending JPH0336772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1171178A JPH0336772A (en) 1989-07-04 1989-07-04 Ultrasonic oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1171178A JPH0336772A (en) 1989-07-04 1989-07-04 Ultrasonic oscillator

Publications (1)

Publication Number Publication Date
JPH0336772A true JPH0336772A (en) 1991-02-18

Family

ID=15918449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1171178A Pending JPH0336772A (en) 1989-07-04 1989-07-04 Ultrasonic oscillator

Country Status (1)

Country Link
JP (1) JPH0336772A (en)

Similar Documents

Publication Publication Date Title
JPH11135853A (en) Piezo electric transducer
JP4435695B2 (en) Piezoelectric motor operation method and piezoelectric motor in the form of a hollow cylindrical oscillator having a stator
JPH0217877A (en) Oscillator and ultrasonic motor using this oscillator
JP2002291263A (en) Vibrator and vibration wave drive device
JP4261894B2 (en) Vibration type driving device
JPH0336772A (en) Ultrasonic oscillator
JPH07143770A (en) Ultrasonic motor
JP5050652B2 (en) Transmitter and driving method thereof
JPH0311983A (en) Driving method of ultrasonic motor and vibrator for ultrasonic motor
JPS62254667A (en) Supporting structure of cylindrical piezoelectric vibrator
US3560771A (en) Acoustically active resonator
JPH07107756A (en) Ultrasonic motor
JPH0270277A (en) Ultrasonic motor
JPS6185076A (en) Vibration wave ring motor
SU1533769A1 (en) Ultrasonic system of torsional vibrations
RU2230615C1 (en) Sonic energy rod transducer
JPH06101944B2 (en) Piezoelectric motor
JP3562283B2 (en) Speaker
JPS63167683A (en) Piezoelectric motor
JPS62254666A (en) Piezoelectric motor
JPH06153546A (en) Ultrasonic oscillator and ultrasonic actuator
JPH0284080A (en) Oscillator and ultrasonic motor
JPS6318975A (en) Piezoelectric motor
SU1569044A2 (en) Arrangement for drawing metal
RU6352U1 (en) ELECTROMECHANICAL CONVERTER