JPH0336745A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0336745A
JPH0336745A JP1172162A JP17216289A JPH0336745A JP H0336745 A JPH0336745 A JP H0336745A JP 1172162 A JP1172162 A JP 1172162A JP 17216289 A JP17216289 A JP 17216289A JP H0336745 A JPH0336745 A JP H0336745A
Authority
JP
Japan
Prior art keywords
electrode pad
chip
size
pad
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1172162A
Other languages
Japanese (ja)
Other versions
JP2680132B2 (en
Inventor
Yoshio Watabe
由夫 渡部
Shinji Emori
江森 伸二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1172162A priority Critical patent/JP2680132B2/en
Publication of JPH0336745A publication Critical patent/JPH0336745A/en
Application granted granted Critical
Publication of JP2680132B2 publication Critical patent/JP2680132B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19043Component type being a resistor

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Wire Bonding (AREA)

Abstract

PURPOSE:To enable an IC chip to be subjected to a probing test and reduce parasitic capacitance of an electrode pad by providing a first electrode pad having an enough size to permit a probe to be applied thereto, a second electrode pad for high speed signal having a size less than said first electrode pad through a resistance layer. CONSTITUTION:A first electrode pad 6 is disposed in the vicinity of the end 4 of a semiconductor chip 2, which has its size enough larger to permit a probe to be applied thereto. The first electrode pad 6 is connected to a high speed signal second electrode pad 8 having its size less than the first electrode pad 6 through a resistance layer R. The second electrode pad 8 is connected to a transistor T of a high speed signal circuit formed on the semiconductor chip 2. By employing as a signal path the second electrode pad 8 having a smaller size and having reduced parasitic capacitance, the title device can perform a high speed signal operation.

Description

【発明の詳細な説明】 [概要] 半導体装置に係り、特に高速動作を行なう半導体装置に
関し、 ICチップのブロービング試験を行なうことができると
共に、電極パッドの寄生容量を低減させて高速化を実現
することができる半導体装置を提供することを目的とし
、 探針プローブを当てるための第1の電極パッドと、前記
第1の電極パッドよりもパッドサイズの小さい高速信号
用の第2の電極パッドと、前記第1の電極パッドと前記
第2の電極パッドを接続する抵抗層と、前記第2の電極
パッドに接続される高速信号用回路とを有するように構
成する。
[Detailed Description of the Invention] [Summary] Regarding semiconductor devices, especially semiconductor devices that operate at high speed, it is possible to perform a blobbing test on an IC chip, and also achieve high speed by reducing the parasitic capacitance of electrode pads. The purpose of the present invention is to provide a semiconductor device that can be used for high-speed signals, and has a first electrode pad for applying a probe, and a second electrode pad for high-speed signals that is smaller in pad size than the first electrode pad. , a resistance layer connecting the first electrode pad and the second electrode pad, and a high-speed signal circuit connected to the second electrode pad.

[産業上の利用分野] 本発明は半導体装置に係り、特に高速動作を行なう半導
体装置に関する。
[Industrial Field of Application] The present invention relates to a semiconductor device, and particularly to a semiconductor device that operates at high speed.

[従来の技術] 近年、IC(半導体集積回路)は高速化の一途を辿って
いる。これに伴って、ICチップ上の電極パッドは、交
流特性を劣化させる一因となる寄生写量を低減するため
、パッドサイズを縮小することが強く要求されている。
[Background Art] In recent years, ICs (semiconductor integrated circuits) are becoming faster and faster. Along with this, there is a strong demand for electrode pads on IC chips to be reduced in pad size in order to reduce the amount of parasitic radiation that causes deterioration of AC characteristics.

しかし、従来の半導体装置において、パラゲージのイン
ナーリードと接続されるICチップ上の4S極パツドの
カバーサイズは、100μm0程度である。これは、ウ
ェーハ状態におけるICチップの電気的試験いわゆるブ
ロービング試験が、電極パッドに試験用の針すなわち探
針プローブを当てて行なわれるためである。
However, in conventional semiconductor devices, the cover size of the 4S pole pad on the IC chip connected to the inner lead of the paragauge is about 100 μm. This is because an electrical test of an IC chip in a wafer state, a so-called blobbing test, is performed by applying a test needle, ie, a probe, to an electrode pad.

従って、ICの高速化に伴って電極パッドの縮小化が要
求されても、ブロービング試験において電極パッドに探
針プローブを精度よく当てるのに必要とされる゛バッド
サイズ以下に縮小することは困難であった。
Therefore, even if electrode pads are required to be made smaller as IC speeds increase, it is difficult to reduce the pad size to less than the size required to accurately apply a tip probe to an electrode pad in a blowing test. Met.

[発明が解決しようとする課題] このように、上記従来の半導体装置においては、ウェー
ハ状態におけるICチップの10−ビング試験を行なう
のに100μm口程度のパブドサイズの電極パッドが必
要とされるため、電極パッドの寄生容量を低減させてI
Cの高速化を図ることは困難であった。
[Problems to be Solved by the Invention] As described above, in the above-mentioned conventional semiconductor device, electrode pads with a pad size of about 100 μm are required to perform a 10-bing test on an IC chip in a wafer state. By reducing the parasitic capacitance of the electrode pad,
It has been difficult to increase the speed of C.

そこで本発明は、ICチップのブロービング試験を行な
うことができると共に、電極パッドの寄生容量を低減さ
せて高速化を実現することができる半導体装置を提供す
ることを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a semiconductor device that can perform a broaching test on an IC chip, and can also reduce the parasitic capacitance of an electrode pad and realize high speed operation.

[課題を解決するための手段] 第1図は、本発明の原理説明図である。[Means to solve the problem] FIG. 1 is a diagram explaining the principle of the present invention.

半導体チップ2のチップ端4近傍に、探針プローブを当
てるに十分な大きさのパッドサイズを有する第1の電極
パッド6が配置されている。この第1の電極バッド6は
、抵抗層Rを介して、第1の電極パッド6よりもパッド
サイズの小さい高速信号用の第2の電極パッド8に接続
されている。
A first electrode pad 6 is arranged near the chip end 4 of the semiconductor chip 2 and has a pad size large enough to be touched by a probe. The first electrode pad 6 is connected via the resistance layer R to a second electrode pad 8 for high-speed signals, which is smaller in pad size than the first electrode pad 6.

そしてこの第2の電極パッド8は、半導体チップ2上に
形成された高速信号用回路のトランジスタTと接続され
ている。
This second electrode pad 8 is connected to a transistor T of a high-speed signal circuit formed on the semiconductor chip 2.

[作 用] すなわち本発明は、パッドサイズが小さくて寄生容量の
小さい第2の電極パッド8を信号経路とすることにより
、高速信号動作を行なうことができる。このとき、パッ
ドサイズの大きい従って寄生容量の大きい第1の電極バ
ッド6との間に介在する抵抗層Rを高抵抗とすれば、こ
の第1の電極バッド6の寄生容量が高速信号経路の交流
特性に影響を及ぼすことはない。
[Function] That is, in the present invention, high-speed signal operation can be performed by using the second electrode pad 8, which has a small pad size and a small parasitic capacitance, as a signal path. At this time, if the resistance layer R interposed between the first electrode pad 6, which has a large pad size and therefore has a large parasitic capacitance, has a high resistance, the parasitic capacitance of the first electrode pad 6 is It does not affect the characteristics.

また、パッドサイズの大きい第1の電極バッド6には探
針プローブを容易に当てることができ、ウェーハ状態に
おける半導体チップ2のブロービング試験を安定的に行
なうことができる。このとき、ブロービング試験には低
周波又は直流の試験用信号が用いられるため、抵抗層R
が高抵抗であり、その高抵抗の抵抗層Rを介してトラン
ジスタTに試験用信号を入力しても、半導体チップ2の
機能試験に支障が生じることはない。
Furthermore, the probe can be easily applied to the first electrode pad 6 having a large pad size, and a broaching test of the semiconductor chip 2 in a wafer state can be stably performed. At this time, since a low frequency or DC test signal is used in the broaching test, the resistance layer R
has a high resistance, and even if a test signal is input to the transistor T through the high resistance resistance layer R, there will be no problem in the functional test of the semiconductor chip 2.

[実施例コ 以下、本発明を図示する実施例に基づいて具体的に説明
する。
[Example] Hereinafter, the present invention will be specifically explained based on an illustrative example.

第2図(a)は、本発明の第1の実施例による半導体装
置を示す平面図である。
FIG. 2(a) is a plan view showing a semiconductor device according to a first embodiment of the present invention.

ICチップ上2のチップ端14近傍に、カバーサイズ1
00μm口程度の試験用の電極パッド16及び低速信号
用の電極パッド18と、カバ−サイズ25μm0程度の
高速信号用の電極パッド20とがそれぞれ配置されてい
る。そして試験用の電極パッド16と高速信号用の電極
パッド20とは、例えば30にΩ以上の高抵抗値の抵抗
層R1を介して接続されている。なお、この抵抗層R1
は、例えば不純物拡散によって形成してもよいし、また
ポリシリコン層等を用いて形成してもよい。
Cover size 1 is placed near the chip end 14 on IC chip 2.
An electrode pad 16 for testing and an electrode pad 18 for low-speed signals with a cover size of about 25 μm and an electrode pad 20 for high-speed signals with a cover size of about 25 μm are respectively arranged. The test electrode pad 16 and the high-speed signal electrode pad 20 are connected to, for example, 30 via a resistance layer R1 having a high resistance value of Ω or more. Note that this resistance layer R1
may be formed, for example, by impurity diffusion, or may be formed using a polysilicon layer or the like.

また、低速信号用の電極バッド18及び高速信号用のt
iパッド20は、ICチップ12上に形成されたトラン
ジスタTI、T2にそれぞれ接続されている。
In addition, electrode pad 18 for low-speed signals and t for high-speed signals are also provided.
The i-pad 20 is connected to transistors TI and T2 formed on the IC chip 12, respectively.

次いで、第2図(a)に示されるように配置され接続さ
れた電極バッド16.18.20を有するIC回路の一
例として、E CL (El′1itter Coup
led Logic )回路を第2図(b)ニ示ス。
Next, as an example of an IC circuit having electrode pads 16, 18, and 20 arranged and connected as shown in FIG.
The LED Logic circuit is shown in Figure 2(b).

トランジスタTI、T2のコレクタC1,C2は、それ
ぞれ抵抗Rcl、Rc2を介して、接地されたコレクタ
電源VCCに接続されている。またエミッタEl、E2
は、定電流源22を介して、一般に一5V程度の負の電
圧を有する電源Vatに接続されている。そしてトラン
ジスタT1のベースB1は、基準電圧Vllllが印加
される入力端子、即ち低速信号用の電極パッド18に接
続され、またトランジスタT2のベースB2は、入力電
圧VINが印加される入力端子、即ち高速信号用の電極
パッド20に接続されている。
Collectors C1 and C2 of transistors TI and T2 are connected to a grounded collector power supply VCC via resistors Rcl and Rc2, respectively. Also emitters El, E2
is connected via a constant current source 22 to a power supply Vat, which generally has a negative voltage of about -5V. The base B1 of the transistor T1 is connected to the input terminal to which the reference voltage Vllll is applied, that is, the electrode pad 18 for low-speed signals, and the base B2 of the transistor T2 is connected to the input terminal to which the input voltage VIN is applied, that is, the electrode pad 18 for low-speed signals. It is connected to a signal electrode pad 20.

そしてさらに、負荷の駆動能力を向上させるために、エ
ミッタホロワ回路が付加されている。
Furthermore, an emitter follower circuit is added to improve the load driving ability.

すなわち、トランジスタTI、T2のコレクタ電位が、
それぞれトランジスタT3.T4のベースに接続されて
いる。また、トランジスタT3゜T4のコレクタはそれ
ぞれ接地された電源Vccに接続され、またエミッタは
、それぞれ定電流源24.26を介して、負の電圧を有
する電源VIKに接続されている。そしてトランジスタ
T3.T4のエミッタ電位が、それぞれ出力VOLI丁
1 、 VouT2に接続されている。
That is, the collector potential of transistors TI and T2 is
Transistor T3. Connected to the base of T4. Further, the collectors of the transistors T3 and T4 are each connected to a grounded power supply Vcc, and the emitters are respectively connected to a power supply VIK having a negative voltage via constant current sources 24 and 26. and transistor T3. The emitter potential of T4 is connected to the outputs VOLI-1 and VouT2, respectively.

次いで、第2図に示された半導体装置のプロービング試
験について述べる。
Next, a probing test of the semiconductor device shown in FIG. 2 will be described.

半導体装置のブロービング試験は、ウェーハ状態におい
て、ICチップ12上の試験用の電極バッド16及び低
速信号用の電極バッド18に探針プローブを当てて行な
う、このとき、電極パッド16.18のチップサイズは
100μmO程度であるため、30μmφ程度の太さの
探針10−プであっても十分に精度よく当てることがで
きる。
A blowing test of a semiconductor device is performed in a wafer state by applying a probe to the test electrode pad 16 and low-speed signal electrode pad 18 on the IC chip 12. At this time, the tip of the electrode pad 16. Since the size is about 100 .mu.mO, even a probe 10 having a thickness of about 30 .mu.m.phi. can be applied with sufficient precision.

また、試験用信号は探針プローブを通って電極パッド1
6に入力され、30にΩ以上の高抵抗値の抵抗層R1を
経由してトランジスタT2に伝搬されるが、このときの
試験用信号には低周波信号又は直流信号が用いられるた
め、ICチップ12の論理チエツク等の機能試験には何
等の支障ら生じない。
In addition, the test signal passes through the probe to the electrode pad 1.
6 and is propagated to the transistor T2 via the resistance layer R1 with a high resistance value of 30Ω or more, but since the test signal at this time is a low frequency signal or a DC signal, the IC chip There is no problem with functional tests such as 12 logic checks.

次いで、組立後の半導体装置の動作について、第3図を
用いて述べる。
Next, the operation of the semiconductor device after assembly will be described using FIG.

第2図(a)に示されたICチップ12がパッケージ3
0上に搭載されている。そしてICチップ12のチップ
端14近傍の低速信号用の電極バッド18が、パッケー
ジ30に配置され基準電圧VBllが印加されるインナ
ーリード32とボンディングワイヤ33によって接続さ
れている。同様にして、高速信号用の電極バッド20が
、パッケージ30に配置され入力電圧VINが印加され
るインナーリード34とボンディングワイヤ35によっ
て接続されている。
The IC chip 12 shown in FIG. 2(a) is packaged in a package 3.
It is installed on 0. An electrode pad 18 for low-speed signals near the chip end 14 of the IC chip 12 is connected by a bonding wire 33 to an inner lead 32 arranged in the package 30 and to which a reference voltage VBll is applied. Similarly, the electrode pad 20 for high-speed signals is connected by a bonding wire 35 to an inner lead 34 arranged in the package 30 and to which the input voltage VIN is applied.

このとき、高速信号用の電極パッド20のチップサイズ
は25μm口程度太めって、探針プローブを当てるには
小さいが、ワイヤボンディングの可能な大きさである。
At this time, the chip size of the electrode pad 20 for high-speed signals is about 25 μm thick, which is too small to be touched by a tip probe, but large enough to allow wire bonding.

なお、試験用の電極バ・yド16は、オープンになって
いる。
Note that the electrode bar 16 for testing is open.

このような半導体装置は、入力信号VINの信号経路と
なる高速信号用の電極パッド20のパッドサイズが25
μm口程度太め来の1/4程度に縮小され、従って寄生
容量が小さくなでいるために、高速信号動作を行なうこ
とができる。このとき、パッドサイズが100μm口程
度と太さく寄生容量の大きい試験用の電極パッド16と
高速信号用の電極パッド20との間には、30にΩ以上
の高抵抗値を有する抵抗層R1が介在しているために、
この試験用の電極パッド16の寄生容量が高速信号経路
の交流特性に影響を及ぼすことはない。
In such a semiconductor device, the pad size of the electrode pad 20 for high-speed signals serving as the signal path of the input signal VIN is 25.
Since it is reduced to about 1/4 of the diameter of the thicker one, about .mu.m, and the parasitic capacitance is kept small, high-speed signal operation can be performed. At this time, a resistance layer R1 having a high resistance value of 30Ω or more is placed between the test electrode pad 16, which has a thick pad size of about 100 μm and a large parasitic capacitance, and the high-speed signal electrode pad 20. Because of the intervention,
This parasitic capacitance of the test electrode pad 16 does not affect the AC characteristics of the high-speed signal path.

このように第1の実施例によれば、一方において、パッ
ドサイズの大きい試験用の電極パッド16を用いること
により、ウェーハ状態におけるICチップ12の10−
ビング試験を安定的に行なうことができる。また他方に
おいて、パッドサイズの小さい、従って寄生容量の小さ
い高速信号用の電極パッド20を信号経路とすることに
より、高速信号動作を行なうことができる。
As described above, according to the first embodiment, on the one hand, by using the test electrode pad 16 having a large pad size, it is possible to
Bing tests can be performed stably. On the other hand, high-speed signal operation can be performed by using the electrode pad 20 for high-speed signals, which is small in pad size and therefore has small parasitic capacitance, as a signal path.

次に、第4図を用いて、本発明の第2の実施例による半
導体装置を説明する。
Next, a semiconductor device according to a second embodiment of the present invention will be explained using FIG.

第4図(a)において、第2図(a)に示されたICチ
ップ12がパッケージ30上に搭載されている。そして
ICチップ12のチップ端14近傍の低速信号用の電極
パッド18及び高速信号用の電極パッド20が、それぞ
れパッケージ30に配置され、入力電圧VINが印加さ
れるインナーリード32及び基準電圧VBBが印加され
るインナーリード34とボンディングワイヤ35によっ
て接続されている。さらに試験用の電極バッド16が、
パッケージ30に配置され、最も低い(lost ne
gative )電源VgI+が印加されるインナーリ
ード36とボンディングワイヤ37によって接続されて
いる。
In FIG. 4(a), the IC chip 12 shown in FIG. 2(a) is mounted on a package 30. In FIG. Electrode pads 18 for low-speed signals and electrode pads 20 for high-speed signals near the chip end 14 of the IC chip 12 are arranged in a package 30, respectively, and inner leads 32 to which input voltage VIN is applied and reference voltage VBB are applied. The inner leads 34 and the bonding wires 35 are connected to each other. Furthermore, the electrode pad 16 for testing is
placed in the package 30 and the lowest (lost ne
Gative) It is connected by a bonding wire 37 to an inner lead 36 to which a power supply VgI+ is applied.

この第4図(a)に示される半導体装置の回路の一例を
第4図(b)に示す。
An example of the circuit of the semiconductor device shown in FIG. 4(a) is shown in FIG. 4(b).

この回路は、第2図(b)に示されたECL回路におい
て、入力電圧VINが印加される入力端子即ち高速信号
用の′r4極パッド20が、抵抗R1を介して、電源V
、に接続されているものである。
This circuit is similar to the ECL circuit shown in FIG.
, which is connected to.

次いで、動作を述べると、試験用の電極バッド16と高
速信号用の電極パッド20とを接続している30にΩ以
上の高抵抗値を有する抵抗層R1は電源V、に接続され
ることにより、高速信号用の電極パッド20に入力され
る入力信号■、の雑音防止用のプル・ダウン(pull
−down )抵抗として働く。
Next, to describe the operation, the resistance layer R1 having a high resistance value of Ω or more is connected to the power supply V at 30 which connects the test electrode pad 16 and the high-speed signal electrode pad 20. , a pull-down (pull-down) for noise prevention of the input signal inputted to the electrode pad 20 for high-speed signals.
-down) acts as a resistance.

このように第2の実施例によれば、一方においてウェー
ハ状態におけるICチップ12のブロービング試験を安
定的に行なうことができるようにし、また他方において
高速信号動作を行なうことができるようにするために設
けた抵抗層R1を、入力雑音防止用のプル・ダウン(p
ull−down )抵抗として用いることができる。
As described above, according to the second embodiment, on the one hand, it is possible to stably perform a blobbing test on the IC chip 12 in the wafer state, and on the other hand, it is possible to perform high-speed signal operation. The resistance layer R1 provided in the
(Ull-down) can be used as a resistor.

また、試験用の電極バッド16が最も低いエミッタ電源
V□に接続されるため、試験用の電極バッド16の寄生
容量が高速信号経路の交流特性に及ぼす影響は完全に遮
断される。
Furthermore, since the test electrode pad 16 is connected to the lowest emitter power supply V□, the influence of the parasitic capacitance of the test electrode pad 16 on the AC characteristics of the high-speed signal path is completely blocked.

次に、第5図を用いて、本発明の第3の実施例による半
導体装置を説明する。
Next, a semiconductor device according to a third embodiment of the present invention will be described with reference to FIG.

第5図(a)に示されるICチップ42は、第2図(a
)に示されたICチップ12において試験用のxiバッ
ド16と高速信号用の電極パッド20とを接続している
30にΩ以上の高抵抗値の抵抗層R1の代わりに、抵抗
値50Ω程度の抵抗層R2が設けられている。
The IC chip 42 shown in FIG. 5(a) is similar to the IC chip 42 shown in FIG.
) In the IC chip 12 shown in ), instead of the resistance layer R1 having a high resistance value of Ω or more, a resistor layer R1 having a resistance value of about 50Ω is connected to the 30 connecting the xi pad 16 for testing and the electrode pad 20 for high-speed signals. A resistive layer R2 is provided.

そしてこのICチップ42がパッケージ30上に搭載さ
れている。また、ICチップ42のチップ端44近傍の
低速信号用の電極パッド18は、基準電圧V。が印加さ
れるインナーリード32に接続されている。同様にして
、高速信号用の電極バッド2°Oは、パッケージ30に
配置されているインナーリード34を介して、入力電圧
VINが印加される伝送路Zoに接続されている。
This IC chip 42 is mounted on the package 30. Further, the electrode pad 18 for low-speed signals near the chip end 44 of the IC chip 42 has a reference voltage V. is connected to the inner lead 32 to which is applied. Similarly, the high-speed signal electrode pad 2°O is connected via an inner lead 34 arranged in the package 30 to the transmission line Zo to which the input voltage VIN is applied.

さらに試験用の電極バッド16は、一般に一2V程度の
終端電圧VTが印加されるインナーリード36に接続さ
れている。
Further, the test electrode pad 16 is connected to an inner lead 36 to which a termination voltage VT of about -2V is generally applied.

この第5図(a)に示される半導体装置の回路の一例を
第5図(b)に示す。
An example of the circuit of the semiconductor device shown in FIG. 5(a) is shown in FIG. 5(b).

この回路は、第2図(b)に示されたECL回路におい
て、入力電圧VINが印加される入力端子即ち高速信号
用の電極パッド20が、抵抗R2を介して、終端電圧V
Tに接続されているものである。
In this circuit, in the ECL circuit shown in FIG. 2(b), the input terminal to which the input voltage VIN is applied, that is, the electrode pad 20 for high-speed signals, is connected to the terminal voltage VIN via the resistor R2.
It is connected to T.

次いで、動作を述べると、試験用の電極バッド16と高
速信号用の電極パッド20とを接続している抵抗値50
Ω程度の抵抗層R2は、終端電圧■7に接続されること
により、高速信号用の電極パッド20に入力される入力
信号■、の終端抵抗として働く。
Next, to describe the operation, the resistance value 50 connecting the test electrode pad 16 and the high-speed signal electrode pad 20 is
The resistance layer R2 of approximately Ω is connected to the termination voltage (7), and thereby functions as a termination resistance for the input signal (2) inputted to the electrode pad 20 for high-speed signals.

このように第3の実施例によれば、一方においてウェー
ハ状態におけるICチップ12のブロービング試験を安
定的に行なうことができるようにし、また他方において
高速信号経路を行なうことができるようにするために設
けた抵抗71R2を、ICチップ内部終端抵抗として用
いることができる。このようなICチップ内部終端抵抗
は、インピーダンスのマツチングによって高周波動作に
極めて有効である。従って、半導体装置の高性能化を図
ることができる。
As described above, according to the third embodiment, on the one hand, it is possible to stably perform a blobbing test on the IC chip 12 in the wafer state, and on the other hand, it is possible to perform a high-speed signal path. The resistor 71R2 provided in the IC chip can be used as an internal termination resistor of the IC chip. Such an IC chip internal termination resistor is extremely effective for high frequency operation due to impedance matching. Therefore, it is possible to improve the performance of the semiconductor device.

なお、第3の実施例においては抵抗層R2が50Ω程度
であるため、試験用の電極バッド16をオープンにして
おくと試験用の電極バッド16の寄生容量が高速信号経
路の交流特性の劣化を招くおそれがあるが、実際の使用
においては試験用の電極パッド16が終端電圧■7に接
続されるため、このおそれは解消される。
In the third embodiment, the resistance layer R2 is approximately 50Ω, so if the test electrode pad 16 is left open, the parasitic capacitance of the test electrode pad 16 will cause deterioration of the AC characteristics of the high-speed signal path. However, in actual use, since the test electrode pad 16 is connected to the termination voltage (7), this fear is eliminated.

[発明の効果] 以上のように本発明によれば、探針プローブを当てるに
十分な大きさのパッドサイズを有する第1の電極パッド
と第1の電極パッドよりもパッドサイズの小さい高速信
号用の第2の電極パッドとを抵抗層を介して設けること
により、第1の電極パッドを用いてブロービング試験を
行なうことができると共に、パッドサイズが小さく寄生
容量の小さい第2の電極パッドを信号経路として高速信
号動作を実現することができる。
[Effects of the Invention] As described above, according to the present invention, the first electrode pad has a pad size large enough to be hit by a probe, and the high-speed signal pad has a pad size smaller than the first electrode pad. By providing a second electrode pad with a resistance layer in between, it is possible to perform a blobbing test using the first electrode pad, and the second electrode pad, which is small in size and has low parasitic capacitance, can be used as a signal. As a route, high-speed signal operation can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理説明図、 第2図及び第3図は本発明の第1の実81例による半導
体装置を示す図、 第4図は本発明の第2の実施例による半導体装置を示す
図、 第5図は本発明の第3の実施例による半導体装置を示す
図である。 図において、 2・・・半導体チップ 4.14.44・・・チップ端 6.8.16.18.20・・・電極パッド12.42
・・・ICチップ 22.24.26・・・定電流源 30・・・バヅゲージ 32.34.36・・・インナーリード33.35.3
7・・・ボンディングワイヤR,R1、R2、Rcl、
Rc2・・・抵抗T、TI、T2、T3、T4・・・ト
ランジスタC1、C2・・・コレクタ El、B2・・・エミッタ B1、B2・・・ベース V cc・= を源(HO3T PO8ITIVE)■
□・・・電源(HO3T NEGATIVE)Vlll
・・基準電圧 VIN・・・入力電圧 V OL+T  1 、V 0IJT Zo・・・伝送路 VT・・・終端電圧 2・・・出力 \、−一
FIG. 1 is a diagram illustrating the principle of the present invention. FIGS. 2 and 3 are diagrams showing a semiconductor device according to a first embodiment of the present invention. FIG. 4 is a semiconductor device according to a second embodiment of the present invention. FIG. 5 is a diagram showing a semiconductor device according to a third embodiment of the present invention. In the figure, 2...Semiconductor chip 4.14.44...Chip end 6.8.16.18.20...Electrode pad 12.42
...IC chip 22.24.26...constant current source 30...bud gauge 32.34.36...inner lead 33.35.3
7... Bonding wires R, R1, R2, Rcl,
Rc2...Resistor T, TI, T2, T3, T4...Transistor C1, C2...Collector El, B2...Emitter B1, B2...Base V cc・= Source (HO3T PO8ITIVE)■
□・・・Power supply (HO3T NEGATIVE) Vllll
...Reference voltage VIN...Input voltage VOL+T1, V0IJT Zo...Transmission line VT...Terminal voltage 2...Output\, -1

Claims (1)

【特許請求の範囲】 探針プローブを当てるための第1の電極パッドと、 前記第1の電極パッドよりもパッドサイズの小さい高速
信号用の第2の電極パッドと、 前記第1の電極パッドと前記第2の電極パッドを接続す
る抵抗層と、 前記第2の電極パッドに接続される高速信号用回路と を有することを特徴とする半導体装置。
[Claims] A first electrode pad to which a probe is applied; a second electrode pad for high-speed signals that is smaller in pad size than the first electrode pad; and the first electrode pad. A semiconductor device comprising: a resistance layer connecting the second electrode pad; and a high-speed signal circuit connected to the second electrode pad.
JP1172162A 1989-07-03 1989-07-03 Semiconductor device Expired - Lifetime JP2680132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1172162A JP2680132B2 (en) 1989-07-03 1989-07-03 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1172162A JP2680132B2 (en) 1989-07-03 1989-07-03 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH0336745A true JPH0336745A (en) 1991-02-18
JP2680132B2 JP2680132B2 (en) 1997-11-19

Family

ID=15936726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1172162A Expired - Lifetime JP2680132B2 (en) 1989-07-03 1989-07-03 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2680132B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6465850B1 (en) 1999-04-12 2002-10-15 Nec Corporation Semiconductor device
JP2008011561A (en) * 2007-08-23 2008-01-17 Renesas Technology Corp Semiconductor integrated circuit device
DE102007029657B4 (en) * 2007-06-27 2017-10-19 Fuji Electric Co., Ltd. Inverter module for power converters

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6465850B1 (en) 1999-04-12 2002-10-15 Nec Corporation Semiconductor device
DE102007029657B4 (en) * 2007-06-27 2017-10-19 Fuji Electric Co., Ltd. Inverter module for power converters
JP2008011561A (en) * 2007-08-23 2008-01-17 Renesas Technology Corp Semiconductor integrated circuit device
JP4711442B2 (en) * 2007-08-23 2011-06-29 ルネサスエレクトロニクス株式会社 Semiconductor integrated circuit device

Also Published As

Publication number Publication date
JP2680132B2 (en) 1997-11-19

Similar Documents

Publication Publication Date Title
KR900006484B1 (en) Semiconductor intergroted circuit
KR900005148B1 (en) Chip on chip semiconductor device
US20050242827A1 (en) Contact pad arrangement on a die
JPS6331105B2 (en)
JP2531827B2 (en) Semiconductor device and manufacturing method thereof
US12021515B2 (en) Semiconductor chip including chip pads of different surface areas, and semiconductor package including the semiconductor chip
JPH0336745A (en) Semiconductor device
US4675555A (en) IC input buffer emitter follower with current source value dependent upon connection length for equalizing signal delay
JPH11243120A (en) Semiconductor device and its manufacture
JPS6161256B2 (en)
JPH0541429A (en) Semiconductor ic wafer and manufacture of semiconductor ic
TWI241670B (en) Semiconductor device
US20220173061A1 (en) Semiconductor chip having chip pads of different surface areas, and semiconductor package including the same
JPS6016450A (en) Semiconductor integrated circuit device
JP2752815B2 (en) Semiconductor integrated circuit device
JPS6074467A (en) Mos type integrated circuit
JPS6112056A (en) Semiconductor device
JPS63200556A (en) Laying-out method for semiconductor integrated circuit
US4897705A (en) Lateral bipolar transistor for logic circuit
KR100335273B1 (en) Pad of semiconductor device
KR19980082531A (en) Power line device of semiconductor device
JPS59188956A (en) Semiconductor device
JPS63173335A (en) Integrated circuit device
JP2915319B2 (en) Semiconductor device
JPH01171240A (en) Semiconductor integrated circuit device