JPH0336480Y2 - - Google Patents

Info

Publication number
JPH0336480Y2
JPH0336480Y2 JP205386U JP205386U JPH0336480Y2 JP H0336480 Y2 JPH0336480 Y2 JP H0336480Y2 JP 205386 U JP205386 U JP 205386U JP 205386 U JP205386 U JP 205386U JP H0336480 Y2 JPH0336480 Y2 JP H0336480Y2
Authority
JP
Japan
Prior art keywords
pressure
bulkhead
aircraft
fuselage
pressurized cabin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP205386U
Other languages
Japanese (ja)
Other versions
JPS62114900U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP205386U priority Critical patent/JPH0336480Y2/ja
Publication of JPS62114900U publication Critical patent/JPS62114900U/ja
Application granted granted Critical
Publication of JPH0336480Y2 publication Critical patent/JPH0336480Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Pressure Vessels And Lids Thereof (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Description

【考案の詳細な説明】 [産業上の利用分野] この考案は航空機、特に高高度で飛行する旅客
機に適用される航空機の機体構造に関するもので
ある。
[Detailed Description of the Invention] [Industrial Field of Application] This invention relates to an aircraft body structure applied to an aircraft, particularly a passenger aircraft flying at high altitude.

[従来技術] 高空を飛行する飛行機、特に民間航空機では大
気圧の減少にともなつて機内の圧力を高められる
ように、与圧の可能に機室、キヤビンが必要であ
る。この与圧キヤビンは飛行機胴体の前端部およ
び後端部に圧力隔壁を設けて仕切ることにより形
成されている。ところで、ジヤンボといわれるよ
うな最大巡航高度12500m程度の場合には機内外
の圧力差は0.63Kg/cm2にもなる。したがつて、圧
力隔壁もこの圧力差が繰り返し作用しても耐えら
れる疲労強度をもつている。
[Prior Art] Airplanes flying at high altitudes, especially commercial aircraft, require a pressurized cabin or cabin so that the pressure inside the aircraft can be increased as atmospheric pressure decreases. The pressurized cabin is formed by partitioning the front and rear ends of the aircraft fuselage with pressure bulkheads. By the way, when the maximum cruising altitude is about 12,500m, which is called jumbo, the pressure difference between the inside and outside of the aircraft is as much as 0.63Kg/cm 2 . Therefore, the pressure bulkhead also has a fatigue strength that can withstand the repeated action of this pressure difference.

しかしながら、従来の前端部および後端部に設
けられる圧力隔壁は各々1個で与圧キヤビンと外
側の外気圧との圧力差を受けているため、材料的
不良、組付的不良等が万一あると疲労強度で設計
されていても繰り返し回数が低い回数で破壊に致
つてしまうことがある。
However, since the conventional pressure bulkheads provided at the front end and the rear end each receive a pressure difference between the pressurized cabin and the outside atmospheric pressure, there is a possibility that material defects, assembly defects, etc. Even if it is designed for fatigue strength, it may fail after a low number of repetitions.

[目的] そこで、この考案は従来技術のこのような問題
点に鑑みてなされたもので、その目的は、万一設
計通りに出来ていなかつたとしても、フエールセ
ーフの考えで隔壁を2重にするとともに、その隔
壁間の圧力を与圧と外気圧との間の値にすること
により、各圧力隔壁への繰り返し荷重を下げて、
より安全を追求した航空機の機体構造を提供する
ことにある。
[Purpose] Therefore, this idea was made in view of the problems of the conventional technology, and its purpose is to double the bulkhead as a fail-safe concept even if it is not completed as designed. At the same time, by setting the pressure between the partition walls to a value between pressurization and external pressure, the repetitive load on each pressure partition can be reduced,
Our goal is to provide an aircraft structure that pursues greater safety.

[実施例] 以下、図面に基づいてこの考案を説明する。[Example] This invention will be explained below based on the drawings.

第1図および第2図はこの考案に係る航空機の
機体構造の一実施例を示す図である。図中、1は
機体であり、機体1は胴体3に主翼5、水平尾翼
7および垂直尾翼9によつて構成されている。胴
体3は前端部および後端部に第1圧力隔壁11,
13を設けて与圧キヤビン15を形成している。
FIGS. 1 and 2 are diagrams showing an embodiment of the aircraft body structure according to this invention. In the figure, 1 is a fuselage, and the fuselage 1 is composed of a fuselage 3, a main wing 5, a horizontal stabilizer 7, and a vertical stabilizer 9. The fuselage 3 has a first pressure bulkhead 11 at the front end and the rear end.
13 is provided to form a pressurized cabin 15.

この第1圧力隔壁11,13は平板であつて
も、また球形の殻であつてもよい。ただ、平板の
場合には内圧を曲げによつて受けもつので支持点
に大きな曲げ応力が発生しやすい。それで球形の
殻、別名耐圧ドームとすることによつて、面内力
で内圧に耐えるようにしている。
The first pressure partitions 11, 13 may be flat plates or spherical shells. However, in the case of a flat plate, the internal pressure is absorbed by bending, so large bending stress is likely to occur at the support point. Therefore, by making it a spherical shell, also known as a pressure-resistant dome, it is able to withstand internal pressure through in-plane force.

前端部および後端部の少なくとも後端部には、
第2圧力隔壁17を設けて第1圧力隔壁13とと
もに減圧室19を形成している。この減圧室19
は与圧キヤビン15と同様に大気圧の減少にとも
なつて圧力を高めることができるようになつてお
り、その圧力値PAは与圧キヤビン15の与圧PC
と外気圧POとの間の値にされている。
At least the rear end of the front end and the rear end,
A second pressure partition 17 is provided to form a reduced pressure chamber 19 together with the first pressure partition 13 . This decompression chamber 19
Like the pressurized cabin 15, the pressure can be increased as the atmospheric pressure decreases, and the pressure value P A is equal to the pressurized pressure P C of the pressurized cabin 15.
and the outside pressure P O.

次に作用について説明する。 Next, the effect will be explained.

航空機は地上では、与圧キヤビン15の圧力
PC、減圧室19の圧力PAさらには与圧を掛けな
い機体内の圧力POと1Kg/cm2で等しい。機が離
陸し上昇していくにつれて、機が飛行している高
度の外気圧は低下していく。この低下に伴なつて
与圧キヤビン15は与圧され、1Kg/cm2あるいは
これに近い圧力に保たれる。一方、減圧室19は
与圧キヤビン15の与圧よりいつも低く与圧され
る。
On the ground, the aircraft is under pressure in the pressurized cabin 15.
P C is equal to the pressure P A in the decompression chamber 19 and the pressure P O inside the aircraft without pressurization at 1 Kg/cm 2 . As the plane takes off and climbs, the outside air pressure at the altitude it is flying at decreases. As the pressure decreases, the pressurized cabin 15 is pressurized and maintained at a pressure of 1 kg/cm 2 or close to this. On the other hand, the pressure reduction chamber 19 is always pressurized lower than the pressure in the pressurization cabin 15.

したがつて、例えば圧力差PC−PO=0.63Kg/cm2
およびPC>PA>POの関係にあることから PC−PA<0.63Kg/cm2,PA−PO<0.63Kg/cm2であ
り、 PA=1/2(PC−PO)=0.315Kg/cm2とするならば PC−PA=0.315Kg/cm2,PA−PO=0.315Kg/cm2とな
る。それぞれの圧力差0.315Kg/cm2が各圧力隔壁
13,17に飛行の度に繰り返し作用することと
なる。このように、各圧力隔壁13,17は減圧
室19を設けることにより、非常に小さな繰り返
し荷重を受けることとなる。前端部の圧力隔壁1
1も2重にするならば同様である。良く知られて
いる疲労破壊曲線、いわゆるS−N曲線は繰り返
してかかる応力が大きければ破壊に至る繰り返し
回数が少なく、応力が小さければ回数が多くなる
ことを示している。したがつて、圧力隔壁11,
13,17を減圧室19を設ける前と同一にした
場合には、繰り返し応力が小さくなるため、減圧
室19を設ける前より破壊に至るまでの繰り返し
回数が多くなることは明らかである。また、例
え、材料的、組付的な不良等があつても作用する
力が小さくなるため、破壊が起らなくなる。万
一、一方の圧力隔壁が破壊されても、他の圧力隔
壁があるのでフエールセーフの思想を全うして大
事に至ることがない。
Therefore, for example, the pressure difference P C −P O =0.63Kg/cm 2
Since there is a relationship of P C > P A > P O , P C −P A <0.63Kg/cm 2 , P A −P O <0.63Kg/cm 2 , and P A =1/2(P C −P O )=0.315Kg/cm 2 , then P C −P A =0.315Kg/cm 2 and P A −P O =0.315Kg/cm 2 . A pressure difference of 0.315 Kg/cm 2 acts repeatedly on each pressure bulkhead 13, 17 each time the aircraft flies. In this way, each pressure partition wall 13, 17 receives a very small repeated load by providing the decompression chamber 19. Front end pressure bulkhead 1
The same applies if 1 is doubled. A well-known fatigue fracture curve, the so-called S-N curve, shows that the greater the repeated stress, the fewer the number of repetitions leading to fracture, and the smaller the stress, the greater the number of repetitions. Therefore, the pressure bulkhead 11,
It is clear that if 13 and 17 are the same as before the decompression chamber 19 was provided, the repeated stress would be smaller, so the number of repetitions until failure would be greater than before the decompression chamber 19 was provided. Furthermore, even if there is a material or assembly defect, the applied force is reduced, so no breakage occurs. Even if one pressure bulkhead is destroyed, there is another pressure bulkhead, so the fail-safe concept is fulfilled and nothing serious happens.

[効果] 以上説明してきたように、この考案によれば、
圧力隔壁を2重にし、その間を与圧キヤビンの圧
力と外気圧との間の値の圧力とした減圧室とする
ことにより、一方の圧力隔壁が破壊に至つても他
の圧力隔壁で安全を確保するフエールセーフが確
立でき、さらに圧力隔壁への繰り返し荷重が低下
するので破壊に至る繰り返し回数が伸びることお
よび繰り返しでなくとも一回に掛かる荷重が小さ
いので圧力隔壁に何らかの不具合が生じても破壊
に至る確率が小さくなる。
[Effect] As explained above, according to this invention,
By doubling the pressure bulkheads and creating a decompression chamber between them with a pressure between the pressure of the pressurized cabin and the outside pressure, even if one pressure bulkhead breaks down, the other pressure bulkhead can provide safety. Furthermore, since the repeated load on the pressure bulkhead is reduced, the number of repetitions leading to failure is increased, and even if the load is not repeated, the load applied at one time is small, so even if some malfunction occurs to the pressure bulkhead, it will not fail. The probability of reaching becomes smaller.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はこの考案にかかる航空機
の機体構造の一実施例を示すもので、第1図は第
2図の胴体後部の圧力隔壁部の拡大断面図、第2
図は機体構造を示す全体斜視図である。 1……機体、3……胴体、11,13……第1
圧力隔壁、15……与圧キヤビン、17……第2
圧力隔壁、19……減圧室、PO……外気圧、PA
……減圧室の圧力、PC……与圧キヤビンの圧力。
1 and 2 show an example of the fuselage structure of an aircraft according to this invention.
The figure is an overall perspective view showing the fuselage structure. 1... fuselage, 3... fuselage, 11, 13... 1st
Pressure bulkhead, 15... Pressurized cabin, 17... Second
Pressure bulkhead, 19...decompression chamber, P O ...external pressure, P A
... Pressure in the decompression chamber, P C ... Pressure in the pressurized cabin.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 胴体の前端部および後端部に第1圧力隔壁を設
けて与圧キヤビンを形成し、少なくとも前記後端
部に第2圧力隔壁を設けて前記第1圧力隔壁とと
もに減圧室を形成し、該減圧室の圧力を前記与圧
キヤビンの与圧と外気圧との間の値に設定するこ
とを特徴とする航空機の機体構造。
a first pressure bulkhead is provided at the front and rear ends of the fuselage to form a pressurized cabin; a second pressure bulkhead is provided at least at the rear end to form a vacuum chamber together with the first pressure bulkhead; An aircraft fuselage structure, characterized in that the pressure in the chamber is set to a value between the pressurization of the pressurized cabin and the outside air pressure.
JP205386U 1986-01-13 1986-01-13 Expired JPH0336480Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP205386U JPH0336480Y2 (en) 1986-01-13 1986-01-13

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP205386U JPH0336480Y2 (en) 1986-01-13 1986-01-13

Publications (2)

Publication Number Publication Date
JPS62114900U JPS62114900U (en) 1987-07-21
JPH0336480Y2 true JPH0336480Y2 (en) 1991-08-01

Family

ID=30780531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP205386U Expired JPH0336480Y2 (en) 1986-01-13 1986-01-13

Country Status (1)

Country Link
JP (1) JPH0336480Y2 (en)

Also Published As

Publication number Publication date
JPS62114900U (en) 1987-07-21

Similar Documents

Publication Publication Date Title
US6443392B2 (en) Monolithic structure with redundant load paths
RU2471672C2 (en) Pressure bulkhead and method for division of interior space of aircraft or spacecraft
US8177166B2 (en) Tail structure for an aircraft or spacecraft
US5893535A (en) Rib for blended wing-body aircraft
US5251849A (en) Strain reduced airplane skin
CN101489868B (en) Aircraft tail cone
US9611039B2 (en) Aircraft including a passenger cabin extending around a space defined outside the cabin and inside the aircraft
CN207346074U (en) A kind of double shoe VTOL fixed-wing unmanned planes of normal arrangement
US6497388B1 (en) Common flight deck module for family of commercial aircraft
US2263365A (en) Cabin for aircraft
JPH0336480Y2 (en)
US11441731B2 (en) Pressure vessel having substantially flat panel
CN107264771A (en) Pressure bulkhead device
US3405887A (en) Ring wing tension vehicle
US5031862A (en) Aircraft with passenger safety net
US1949304A (en) Aircraft
US4538778A (en) Dual towline spin-recovery device
US3963196A (en) Aircraft/spacecraft ground accelerator
US2554122A (en) Living accomodations in airplane wings
DE112020003675T5 (en) Device for expedited transportation of passengers over intercontinental distances
CN106945816B (en) Deformable unmanned plane and its deformable component
KR200151798Y1 (en) Body of airplane
RU2096261C1 (en) Universal case of flying vehicle
JPH11157495A (en) Pressure absorbing structure of moving body
CN218559176U (en) Inflatable flapping wing mechanism with multi-section flexible wings