JPH0336302B2 - - Google Patents

Info

Publication number
JPH0336302B2
JPH0336302B2 JP56198934A JP19893481A JPH0336302B2 JP H0336302 B2 JPH0336302 B2 JP H0336302B2 JP 56198934 A JP56198934 A JP 56198934A JP 19893481 A JP19893481 A JP 19893481A JP H0336302 B2 JPH0336302 B2 JP H0336302B2
Authority
JP
Japan
Prior art keywords
oxide film
silicon nitride
silicon
nitride film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56198934A
Other languages
Japanese (ja)
Other versions
JPS5898944A (en
Inventor
Kenji Kawakita
Hiroyuki Sakai
Tsutomu Fujita
Toyoki Takemoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19893481A priority Critical patent/JPS5898944A/en
Publication of JPS5898944A publication Critical patent/JPS5898944A/en
Priority to US06/660,255 priority patent/US4563227A/en
Publication of JPH0336302B2 publication Critical patent/JPH0336302B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • H01L21/76232Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials of trenches having a shape other than rectangular or V-shape, e.g. rounded corners, oblique or rounded trench walls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Element Separation (AREA)
  • Local Oxidation Of Silicon (AREA)

Description

【発明の詳細な説明】 この発明は酸化膜分離構造を有する半導体装置
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor device having an oxide film isolation structure.

半導体装置に酸化膜分離構造を形成する方法と
して、選択酸化法が従来より広く用いられてい
る。
A selective oxidation method has been widely used as a method for forming an oxide film isolation structure in a semiconductor device.

第1図AないしDは、前記方法により酸化膜分
離構造を有する半導体装置を製造する場合の工程
手段を示しており、次のようにして製造される。
FIGS. 1A to 1D show process means for manufacturing a semiconductor device having an oxide film isolation structure by the method described above, and the semiconductor device is manufactured in the following manner.

(1) シリコン基板1の上に下地シリコン酸化膜2
およびシリコン窒化膜3を形成した後、レジス
ト4を島領域形成箇所に残して部分的に開口す
る(第1図A)。
(1) Base silicon oxide film 2 on silicon substrate 1
After forming the silicon nitride film 3, a partial opening is made leaving the resist 4 at the location where the island region is to be formed (FIG. 1A).

(2) ついで、レジスト4をマスクとしてシリコン
窒化膜3をプラズマエツチングにより除去し、
さらに下地シリコン酸化膜2をフツ素系のエツ
チング液でエツチング除去する(同図B)。
(2) Next, using the resist 4 as a mask, the silicon nitride film 3 is removed by plasma etching,
Further, the underlying silicon oxide film 2 is removed by etching with a fluorine-based etching solution (FIG. 3B).

(3) 続いて、異方性ドライエツチングによりシリ
コン基板1を所望の深さだけエツチングする
(同図C)。
(3) Next, the silicon substrate 1 is etched to a desired depth by anisotropic dry etching (FIG. 3C).

(4) レジスト4を除去した後、シリコン窒化膜3
をマスクとして選択酸化を行い、分離酸化膜5
を形成する。しかる後、分離酸化膜形成にさい
し成長したシリコン酸化膜を除去し、さらにシ
リコン窒化膜3を除去することにより酸化膜分
離構造を完成する(同図D)。
(4) After removing the resist 4, remove the silicon nitride film 3.
Selective oxidation is performed using the mask as a mask to form the isolation oxide film 5.
form. Thereafter, the silicon oxide film grown during the formation of the isolation oxide film is removed, and the silicon nitride film 3 is further removed to complete the oxide film isolation structure (FIG. 3D).

しかしながら、このようにして形成された分離
酸化膜は、シリコン基板開口部より下地シリコン
酸化膜を通じて横方向の酸化が進み、素子形成さ
れるべき島領域の面積がマスク設計に対して減少
するという欠点を有する。
However, the isolation oxide film formed in this way has the drawback that oxidation progresses in the lateral direction through the underlying silicon oxide film from the silicon substrate opening, and the area of the island region where the device is to be formed is reduced relative to the mask design. has.

そして、このような欠点のために、素子寸法を
正確に設定できないという問題点が生じるばかり
でなく、島領域に形成された素子の電気的特性が
横方向の酸化の入り込みにより影響を受けるとい
う問題がある。また、横方向の酸化の入り込みが
下地シリコン酸化膜の膜厚に依存するため、マス
ク設計において一様性に欠ける。
These drawbacks not only cause the problem that the device dimensions cannot be set accurately, but also the problem that the electrical characteristics of the device formed in the island region are affected by the penetration of oxidation in the lateral direction. There is. Furthermore, since the penetration of oxidation in the lateral direction depends on the thickness of the underlying silicon oxide film, uniformity is lacking in mask design.

一方、下地シリコン酸化膜の膜厚を薄くして横
方向の酸化を防止しようとすると、分離酸化膜形
成時に結晶欠陥が誘起されやすくなるという欠点
が生じる。
On the other hand, if an attempt is made to prevent lateral oxidation by reducing the thickness of the underlying silicon oxide film, a drawback arises in that crystal defects are more likely to be induced when forming the isolation oxide film.

したがつて、この発明の目的は、横方向への酸
化の入り込みがなく寸法精度が高く結晶欠陥のな
い酸化膜分離構造を有する半導体装置の製造方法
を提供することである。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a method for manufacturing a semiconductor device having an oxide film isolation structure that is free from lateral oxidation, has high dimensional accuracy, and is free from crystal defects.

この発明の一実施例を第2図に示す。 An embodiment of this invention is shown in FIG.

(1) まず、シリコン基板6の上に順次下地シリコ
ン酸化膜8aおよび第1シリコン窒化膜9aを
積層形成した後、レジスト10を島領域形成予
定箇所に残して部分的に開口する(第2図A)。
(1) First, a base silicon oxide film 8a and a first silicon nitride film 9a are sequentially laminated on a silicon substrate 6, and then a partial opening is made, leaving a resist 10 at a location where an island region is to be formed (see FIG. A).

(2) ついで、レジスト10をマスクとして第1シ
リコン窒化膜9aをプラズマエツチングにより
除去し、さらに下地シリコン酸化膜8aをエツ
チング除去する(同図B)。
(2) Next, using the resist 10 as a mask, the first silicon nitride film 9a is removed by plasma etching, and the base silicon oxide film 8a is further etched away (FIG. B).

(3) 続いて、異方性ドライエツチングによりシリ
コン基板6を所望の深さだけエツチングする
(同図C)。
(3) Next, the silicon substrate 6 is etched to a desired depth by anisotropic dry etching (FIG. C).

(4) レジスト10を除去した後、下地シリコン酸
化膜8aの上に形成された第1シリコン窒化膜
9aが前記下地シリコン酸化膜8aの開口側面
より内方にひさし状に出るように、下地シリコ
ン酸化膜8aをフツ酸系エツチヤントにより島
領域側にサイドエツチングする(同図D)。
(4) After removing the resist 10, remove the base silicon oxide film 8a so that the first silicon nitride film 9a formed on the base silicon oxide film 8a protrudes inward from the opening side surface of the base silicon oxide film 8a. The oxide film 8a is side-etched toward the island region using a hydrofluoric acid etchant (D in the same figure).

(5) 続いて、第2シリコン酸化膜8bおよび第2
シリコン窒化膜9bを形成する(同図E)。
(5) Next, the second silicon oxide film 8b and the second
A silicon nitride film 9b is formed (FIG. E).

(6) 異方性ドライエツチングにより、第2シリコ
ン窒化膜9bをその膜厚だけエツチング除去
し、島領域の側面にのみ第2シリコン窒化膜9
bを残す(同図F)。
(6) By anisotropic dry etching, the second silicon nitride film 9b is etched away by the thickness thereof, and the second silicon nitride film 9b is removed only on the side surfaces of the island region.
b (Figure F).

(7) 続いて、島領域の表面および側面の第1シリ
コン窒化膜9aおよび第2シリコン窒化膜9b
をマスクとして選択酸化を行ない、分離酸化膜
7を形成する(同図G)。この後、分離酸化膜
形成に際し成長したシリコン酸化膜を除去し、
さらにシリコン窒化膜を除去することにより酸
化膜分離構造を完成する。
(7) Next, the first silicon nitride film 9a and the second silicon nitride film 9b are formed on the surface and side surfaces of the island region.
Selective oxidation is performed using as a mask to form isolation oxide film 7 (G in the same figure). After this, the silicon oxide film grown during the formation of the isolation oxide film is removed,
Furthermore, the silicon nitride film is removed to complete the oxide film isolation structure.

このようにして形成された分離酸化膜は、シリ
コン基板6の島領域となる部分の表面および側面
にシリコン窒化膜9a,9bを被着させた構造よ
り形成されているため、従来問題となつていた横
方向の酸化の入り込みを防止することができ、寸
法精度の良い酸化膜分離構造とすることができ
る。
The isolation oxide film thus formed has a structure in which the silicon nitride films 9a and 9b are deposited on the surface and side surfaces of the island region of the silicon substrate 6, which has caused problems in the past. It is possible to prevent oxidation from entering in the lateral direction, and it is possible to obtain an oxide film isolation structure with good dimensional accuracy.

また横方向の酸化の入り込みは、下地シリコン
酸化膜8aおよび第2シリコン酸化膜8bの膜厚
に関係なく防止できるので、十分な酸化膜厚まで
形成して分離酸化膜形成時の結晶欠陥の発生を防
止できるという効果を得ることができる。
In addition, the penetration of oxidation in the lateral direction can be prevented regardless of the film thickness of the base silicon oxide film 8a and the second silicon oxide film 8b, so that the oxide film can be formed to a sufficient thickness to prevent crystal defects when forming the isolation oxide film. The effect of preventing this can be obtained.

さらに、第2図Dのように下地シリコン酸化膜
8aをサイドエツチングし、第1シリコン窒化膜
9aの開口縁が下地シリコン酸化膜8aの開口側
面に対してひさし状に張り出した構造に形成する
ことにより、以後側面に第2シリコン窒化膜9b
を形成するに際し、十分な耐酸化性をもつた膜厚
に形成できるという効果を得ることができる。
Furthermore, as shown in FIG. 2D, the base silicon oxide film 8a is side-etched to form a structure in which the edge of the opening of the first silicon nitride film 9a extends over the side surface of the opening of the base silicon oxide film 8a. Thereafter, a second silicon nitride film 9b is formed on the side surface.
When forming the film, it is possible to obtain the effect that the film can be formed to a thickness with sufficient oxidation resistance.

第3図A,Bは、前記の効果を説明する図であ
る。同図Aは下地シリコン酸化膜8aをサイドエ
ツチングしないで第2シリコン酸化膜8bおよび
第2シリコン窒化膜9bを被着した後、異方性ド
ライエツチングにより側面に第2シリコン窒化膜
9bを限定形成した図で、同図Bはそれに対し
て、下地シリコン酸化膜8aをサイドエツチング
したあと側面に第2シリコン窒化膜9bを形成し
た図である。下地シリコン酸化膜8aをサイドエ
ツチングした場合、同じ膜厚の第2シリコン酸化
膜8bを形成する際、下地シリコン酸化膜8aと
の境界でシリコン酸化膜の膜厚の約半分程の段差
が生じる。その結果、第3図A,Bからわかるよ
うに、下地シリコン酸化膜8aをサイドエツチン
グした場合の方が、サイドエツチングしない場合
に比べて側面bの部分での第2シリコン窒化膜9
bの残りが多いことがわかる。
FIGS. 3A and 3B are diagrams illustrating the above effect. In Figure A, after a second silicon oxide film 8b and a second silicon nitride film 9b are deposited without side-etching the base silicon oxide film 8a, a second silicon nitride film 9b is formed in a limited manner on the side surface by anisotropic dry etching. On the other hand, Figure B is a diagram in which a second silicon nitride film 9b is formed on the side surface after side-etching the underlying silicon oxide film 8a. When the base silicon oxide film 8a is side-etched, when forming the second silicon oxide film 8b of the same thickness, a step approximately half the thickness of the silicon oxide film is generated at the boundary with the base silicon oxide film 8a. As a result, as can be seen from FIGS. 3A and 3B, when the base silicon oxide film 8a is side-etched, the second silicon nitride film 9 on the side surface b is better when the base silicon oxide film 8a is side-etched than when the side-etching is not performed.
It can be seen that there is a large amount of b remaining.

窒化膜9a,9bの膜厚の薄い部分が一箇所で
もあれば、選択酸化の途中で窒化膜の耐酸化マス
ク性がなくなり、その部分から酸化が進行する。
例えば、表面の第1シリコン窒化膜9a、側面の
第2シリコン窒化膜9bの膜厚を1000Å、下地シ
リコン酸化膜8a、第2シリコン酸化膜8bの膜
厚を300Åとし、約1.5μmの厚さの分離酸化膜を
形成すると、第3図Aの構造では、酸化の途中で
シリコン窒化膜9a,9bの角部bの所より酸化
が始まり、横方向の酸化が進行したのに対し、第
3図Bの構造では、横方向の酸化はなかつた。
If there is even one thin portion of the nitride films 9a, 9b, the oxidation masking properties of the nitride film will be lost during selective oxidation, and oxidation will proceed from that portion.
For example, the thickness of the first silicon nitride film 9a on the front surface and the second silicon nitride film 9b on the side surfaces is 1000 Å, the thickness of the base silicon oxide film 8a and the second silicon oxide film 8b is 300 Å, and the thickness is approximately 1.5 μm. When an isolation oxide film is formed, in the structure shown in FIG. In the structure of Figure B, there was no lateral oxidation.

以上のように、この発明の半導体装置の製造方
法は、シリコン基板上に順次下地シリコン酸化膜
および第1シリコン窒化膜を積層形成し島領域を
残して前記第1シリコン窒化膜、下地シリコン酸
化膜およびシリコン基板の一部をドライエツチン
グ法によりエツチング除去し開口部を形成する工
程と、前記第1シリコン窒化膜の開口縁が前記下
地シリコン酸化膜の開口側面より内方にひさし状
に張り出すように前記下地シリコン酸化膜の開口
側面をサイドエツチングする工程と、シリコン基
板上に第2シリコン窒化膜を堆積形成するととも
に異方性ドライエツチング法により前記開口部の
底面に堆積した第2シリコン窒化膜をエツチング
除去して島領域の表面および側面に第2シリコン
窒化膜を形成する工程と、前記第1、第2シリコ
ン窒化膜をマスクとして前記開口部を選択酸化し
分離酸化膜を形成する工程とを含むものであるた
め、横方向の酸化の入り込みがなく、かつ十分な
耐酸化マスク性を有することにより、寸法精度が
高く、信頼性の高い酸化膜分離構造の形成を正確
かつ容易に行うことができるという効果を有す
る。
As described above, in the method of manufacturing a semiconductor device of the present invention, a base silicon oxide film and a first silicon nitride film are sequentially stacked on a silicon substrate, and the first silicon nitride film and the base silicon oxide film are stacked, leaving an island region. and a step of etching away a part of the silicon substrate by a dry etching method to form an opening, such that the edge of the opening of the first silicon nitride film extends inward from the side surface of the opening of the base silicon oxide film in a canopy shape. a second silicon nitride film is deposited on the silicon substrate, and a second silicon nitride film is deposited on the bottom surface of the opening by an anisotropic dry etching method. forming a second silicon nitride film on the surface and side surfaces of the island region; and selectively oxidizing the opening using the first and second silicon nitride films as a mask to form an isolation oxide film. Because it contains no oxidation in the lateral direction and has sufficient oxidation masking properties, it is possible to accurately and easily form a highly reliable oxide film isolation structure with high dimensional accuracy. It has this effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図AないしDは従来の半導体装置の製造方
法を示す工程説明図、第2図AないしGはこの発
明の一実施例の半導体装置の製造方法を示す工程
説明図、第3図AおよびBはそれぞれ従来例と実
施例とを比較して示す効果の説明図である。 6…シリコン基板(半導体基板)、6a…島領
域、6b…段差部、7…分離酸化膜、8…シリコ
ン酸化膜、8a,8′a…下地シリコン酸化膜、
8b,8′b…第2シリコン酸化膜、9…シリコ
ン窒化膜(耐酸化性膜)、9a,9′a…第1シリ
コン窒化膜、9b,9′b…第2シリコン窒化膜、
10…レジスト。
1 A to D are process explanatory diagrams showing a conventional method for manufacturing a semiconductor device, FIGS. 2 A to G are process explanatory diagrams showing a method for manufacturing a semiconductor device according to an embodiment of the present invention, and FIGS. B is an explanatory diagram of effects comparing the conventional example and the example. 6... Silicon substrate (semiconductor substrate), 6a... Island region, 6b... Step portion, 7... Isolation oxide film, 8... Silicon oxide film, 8a, 8'a... Base silicon oxide film,
8b, 8'b... second silicon oxide film, 9... silicon nitride film (oxidation resistant film), 9a, 9'a... first silicon nitride film, 9b, 9'b... second silicon nitride film,
10...Resist.

Claims (1)

【特許請求の範囲】[Claims] 1 シリコン基板上に順次下地シリコン酸化膜お
よび第1シリコン窒化膜を積層形成し島領域を残
して前記第1シリコン窒化膜、下地シリコン酸化
膜およびシリコン基板の一部をドライエツチング
法によりエツチング除去し開口部を形成する工程
と、前記第1シリコン窒化膜の開口縁が前記下地
シリコン酸化膜の開口側面より内方にひさし状に
張り出すように前記下地シリコン酸化膜の開口側
面を湿式エツチング法によりサイドエツチングす
る工程と、シリコン基板上全面に第2シリコン窒
化膜を堆積形成するとともに異方性ドライエツチ
ング法により前記開口部の底面に堆積した第2シ
リコン窒化膜をエツチング除去して島領域の側面
に第2シリコン窒化膜を選択的に残存させる工程
と、前記第1、第2シリコン窒化膜をマスクとし
て前記開口部を選択酸化し分離酸化膜を形成する
工程とを含む半導体装置の製造方法。
1. A base silicon oxide film and a first silicon nitride film are sequentially stacked on a silicon substrate, and a part of the first silicon nitride film, base silicon oxide film, and silicon substrate are removed by dry etching, leaving an island region. forming an opening, and wet-etching the opening side surface of the base silicon oxide film so that the edge of the opening of the first silicon nitride film extends inward from the opening side surface of the base silicon oxide film in a canopy shape. A step of side etching, depositing and forming a second silicon nitride film on the entire surface of the silicon substrate, and etching away the second silicon nitride film deposited on the bottom surface of the opening by an anisotropic dry etching method to form a side surface of the island region. A method for manufacturing a semiconductor device, comprising the steps of: selectively leaving a second silicon nitride film; and selectively oxidizing the opening using the first and second silicon nitride films as a mask to form an isolation oxide film.
JP19893481A 1981-12-08 1981-12-08 Semiconductor device and manufacture thereof Granted JPS5898944A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP19893481A JPS5898944A (en) 1981-12-08 1981-12-08 Semiconductor device and manufacture thereof
US06/660,255 US4563227A (en) 1981-12-08 1984-10-12 Method for manufacturing a semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19893481A JPS5898944A (en) 1981-12-08 1981-12-08 Semiconductor device and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS5898944A JPS5898944A (en) 1983-06-13
JPH0336302B2 true JPH0336302B2 (en) 1991-05-31

Family

ID=16399393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19893481A Granted JPS5898944A (en) 1981-12-08 1981-12-08 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS5898944A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4538343A (en) * 1984-06-15 1985-09-03 Texas Instruments Incorporated Channel stop isolation technology utilizing two-step etching and selective oxidation with sidewall masking
US4561172A (en) * 1984-06-15 1985-12-31 Texas Instruments Incorporated Integrated circuit fabrication method utilizing selective etching and oxidation to form isolation regions
US4580330A (en) * 1984-06-15 1986-04-08 Texas Instruments Incorporated Integrated circuit isolation
JPS6148934A (en) * 1984-08-16 1986-03-10 Matsushita Electronics Corp Manufacture of semiconductor device
US5182227A (en) * 1986-04-25 1993-01-26 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method for manufacturing the same
BE1007588A3 (en) * 1993-09-23 1995-08-16 Philips Electronics Nv Process for the production of a semiconductor device having a semiconductor body with field isolation regions FORMED BY by an insulating material filled grooves.

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53120289A (en) * 1977-03-30 1978-10-20 Toshiba Corp Manufacture of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53120289A (en) * 1977-03-30 1978-10-20 Toshiba Corp Manufacture of semiconductor device

Also Published As

Publication number Publication date
JPS5898944A (en) 1983-06-13

Similar Documents

Publication Publication Date Title
US4857477A (en) Process for fabricating a semiconductor device
US5512509A (en) Method for forming an isolation layer in a semiconductor device
JPH07193121A (en) Production of semiconductor device
JP3065829B2 (en) Semiconductor device
US4612701A (en) Method to reduce the height of the bird's head in oxide isolated processes
JPH0336302B2 (en)
JPS63299144A (en) Method of separating interface sealed by oxide protective layer for pad
JPS58150A (en) Manufacture of semiconductor device
JP2896072B2 (en) Method for forming field oxide film of semiconductor device
JP2757919B2 (en) Method for manufacturing semiconductor device
JPS6358370B2 (en)
JPS59141222A (en) Manufacture of semiconductor device
JP2722518B2 (en) Method for manufacturing semiconductor device
JPS61119056A (en) Manufacture of semiconductor device
JPH079930B2 (en) Method for manufacturing semiconductor device
JPH0258778B2 (en)
JPH0744213B2 (en) Method for manufacturing semiconductor device
JPH0338733B2 (en)
JPH0249017B2 (en)
JPH1126572A (en) Manufacture of semiconductor device
JP2669160B2 (en) Method for manufacturing semiconductor device
JPS6115345A (en) Manufacture of semiconductor ic device
JPS6189633A (en) Manufacture of semiconductor device
JPS6271247A (en) Manufacture of semiconductor device
JPS5857737A (en) Manufacture of semiconductor device