JPH0336271A - Thin film formation - Google Patents

Thin film formation

Info

Publication number
JPH0336271A
JPH0336271A JP16796789A JP16796789A JPH0336271A JP H0336271 A JPH0336271 A JP H0336271A JP 16796789 A JP16796789 A JP 16796789A JP 16796789 A JP16796789 A JP 16796789A JP H0336271 A JPH0336271 A JP H0336271A
Authority
JP
Japan
Prior art keywords
thin film
substrate
cvd method
light
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16796789A
Other languages
Japanese (ja)
Inventor
Yasushi Morita
靖 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP16796789A priority Critical patent/JPH0336271A/en
Publication of JPH0336271A publication Critical patent/JPH0336271A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To compensate the nonuniformity of a film and to obtain uniform film thickness by combinedly using a stage of forming a thin film by an ECR plasma CVD method and a stage of forming a thin film by a photo-CVD method. CONSTITUTION:An ECR plasma CVD method is used and a plasma stream 2 is introduced via a window 14 into a treatment chamber 15 to form a thin film on a base material 1, by which the thin film whose thickness is increased in the central part and reduced at the periphery is formed. Further, a photo-CVD method is used and light 4 is introduced through a photoirradiation window 5 to form a thin film on the base material 1, by which the thin film whose thickness is reduced in the central part and increased at the periphery is formed. By combinedly using both stages mentioned above, a thin film of uniform film thickness can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、薄膜形成方法に関する。本発明は、CVD法
により基体上に薄膜を形成する各種の分野に汎用でき、
例えば、電子材料(半導体装置など)の製造工程で薄膜
を形成する場合に利用することができる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for forming a thin film. The present invention can be applied to various fields in which thin films are formed on substrates by CVD method,
For example, it can be used to form thin films in the manufacturing process of electronic materials (semiconductor devices, etc.).

〔発明の概要〕[Summary of the invention]

本発明は、基体上にECRプラズマCVD法により薄膜
を形成し、また基体に略平行もしくは裏面側より光を照
射することにより基体上に光CVD法により薄膜を形成
することによって、ECRプラズマCVD法により形成
される薄膜の膜厚が不均一な場合にも光CVD法による
薄膜によって該不均一を補償し、もって均一な膜厚の薄
膜を得られるよ・うにしたものである。
The present invention uses the ECR plasma CVD method by forming a thin film on a substrate by ECR plasma CVD method, and by irradiating light approximately parallel to the substrate or from the back side to form a thin film on the substrate by photoCVD method. Even if the thickness of the thin film formed by the method is non-uniform, the non-uniformity is compensated for by the thin film formed by the photo-CVD method, thereby making it possible to obtain a thin film with a uniform thickness.

〔従来の技術〕[Conventional technology]

ECRプラズマCVD法は、電子サイクロトロン共鳴(
ECR)による励起でプラズマを得るので、低圧で高密
度プラズマを形成でき、薄膜の低温での高速成長が可能
であるという利点をもつ。
The ECR plasma CVD method uses electron cyclotron resonance (
Since plasma is obtained by excitation by ECR), it has the advantage of being able to form high-density plasma at low pressure and allowing high-speed growth of thin films at low temperatures.

更に、バイアスを印加することによ、って、デイポジシ
ョンとエソチングを同時的に進行させ、下地基体が段差
部を有する場合にも平坦な膜を形成できる。このような
面からECRプラズマCVD法は、例えば次世代の超L
SIの製造プロセスとして非常に有効な技術ということ
ができる。従来のECRプラズマCVD法については、
特開昭60115235号、同62−224923号各
公報に開示がある。
Furthermore, by applying a bias, day positioning and etching can proceed simultaneously, and a flat film can be formed even when the underlying substrate has a stepped portion. From this point of view, the ECR plasma CVD method is suitable for, for example, next-generation ultra-L
It can be said that this is a very effective technology as an SI manufacturing process. Regarding the conventional ECR plasma CVD method,
Disclosures are made in JP-A-60115235 and JP-A No. 62-224923.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ECRプラズマCVD法は、一般に、第5図に示す如く
、プラズマ発生室11に図示矢印12で示す如く導波管
等でマイクロ波を導入するとともに囲りに配設したマグ
ネットコイル13により磁界をかけてプラズマ発生室1
1にECR励起プラズマを発生させ、該プラズマ流をプ
ラズマ引き出し窓14から処理室15に導き、該処理室
15においてCVDを行うことにより基体1に薄膜を形
成する。
Generally, in the ECR plasma CVD method, as shown in FIG. 5, microwaves are introduced into a plasma generation chamber 11 through a waveguide or the like as shown by an arrow 12, and a magnetic field is applied by a magnet coil 13 disposed around the chamber. Plasma generation chamber 1
A thin film is formed on the substrate 1 by generating ECR-excited plasma in the substrate 1, guiding the plasma flow through the plasma extraction window 14 to the processing chamber 15, and performing CVD in the processing chamber 15.

しかし、プラズマ引き出し窓14から導入されるプラズ
マ流は発散磁界の中にあり、プラズマ流も概念的には第
5図の如く末広がりに発散する形になる。矢印2でかか
るプラズマ流を略示する。
However, the plasma flow introduced from the plasma extraction window 14 is in a diverging magnetic field, and the plasma flow also conceptually diverges toward the end as shown in FIG. Arrow 2 schematically indicates such a plasma flow.

このため、第6図(a)に略示するように、基体1の周
辺ではプラズマ密度が低くなり、形成される膜厚がうす
くなる。このため、基体上に形成される薄膜の基体内に
おける膜厚分布が悪いという問題がある。基体内の膜厚
分布の概念図を第6図(b)に示すが、このように周辺
の膜厚がうすくなる。
For this reason, as schematically shown in FIG. 6(a), the plasma density becomes low around the base 1, and the thickness of the formed film becomes thin. Therefore, there is a problem that the thickness distribution of the thin film formed on the substrate is poor within the substrate. A conceptual diagram of the film thickness distribution within the substrate is shown in FIG. 6(b), and the film thickness in the periphery is thus thinner.

本発明は上記問題点を解決して、ECRプラズマCVD
法の利点を生かしつつ、膜厚が均一である薄膜を形成で
きる薄膜形成方法を提供することが目的である。
The present invention solves the above problems and enables ECR plasma CVD
It is an object of the present invention to provide a thin film forming method that can form a thin film with a uniform thickness while taking advantage of the advantages of the method.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、基体上に薄膜を形成する薄膜形成方法であっ
て、基体上にECRプラズマCVD法により薄膜を形成
する工程と、前記基体に略平行もしくは裏面側より光を
照射することにより前記基体上に光CVD法により薄膜
を形成する工程とを具備するものである。本発明におい
て、E(、RプラズマCVD法による薄膜形成と、光C
VD法による薄膜形成の工程とは、いずれが先でも、ま
た同時の工程でもよい。
The present invention is a thin film forming method for forming a thin film on a substrate, which includes a step of forming a thin film on the substrate by ECR plasma CVD method, and a step of forming the thin film on the substrate by irradiating light substantially parallel to the substrate or from the back side. The method includes a step of forming a thin film thereon by a photo-CVD method. In the present invention, thin film formation by E(, R plasma CVD method and optical C
The process of forming a thin film by the VD method may be performed either first or simultaneously.

この構成によって、上記目的を達成するものである。This configuration achieves the above object.

〔作 用〕[For production]

本発明の作用について説明する。 The operation of the present invention will be explained.

光CVD法を用いて、例えば、第2図(a)に示すよう
に、エキシマレーザ(A r F等)など、反応ガスを
光分解できる光3を基体に平行に照射して、光反応を起
こした場合、反応ガスによる光の吸収のため、光の進行
方向に光強度が下がり、反応速度も小さくなる。つまり
、光CVDの場合は、第2図(I))に膜厚分布を示す
ように、基体1の周囲の膜厚が大きくなる。光源に近い
所で厚くなるのである。
Using the photoCVD method, for example, as shown in Figure 2(a), a light 3 such as an excimer laser (A r F, etc.) capable of photodecomposing a reactive gas is irradiated onto the substrate in parallel to cause a photoreaction. If this happens, the light intensity will decrease in the direction of propagation of the light due to absorption of light by the reactant gas, and the reaction rate will also decrease. In other words, in the case of photo-CVD, the film thickness around the substrate 1 increases as shown in the film thickness distribution shown in FIG. 2(I). It becomes thicker near the light source.

本発明においては、ECRプラズマCVD法と光CVD
法とを併用するので、ECRプラズマCVD法による薄
膜の膜厚分布の不均一を光CVD法により補償して、そ
の均一化を実現できる。
In the present invention, ECR plasma CVD method and optical CVD method are used.
Since the method is used in combination with the ECR plasma CVD method, the non-uniformity of the thickness distribution of the thin film due to the ECR plasma CVD method can be compensated for by the optical CVD method, and its uniformity can be realized.

即ち、光CVD法の上記特性を利用して、これをECR
プラズマCVD法に応用すると、基体周辺での厚さの分
布の劣化を改善できる。膜厚や堆積(成長)速度の制御
は、光の強度・や、基体と光源(レーザ光など)との距
離を変えることにより容易にできる。
That is, by utilizing the above-mentioned characteristics of the photoCVD method, this
When applied to the plasma CVD method, it is possible to improve the deterioration of the thickness distribution around the substrate. The film thickness and deposition (growth) rate can be easily controlled by changing the intensity of the light and the distance between the substrate and the light source (laser light, etc.).

例えば、基体を回転させて成長を行うことにより、基体
周辺すべての膜厚を補うことができる。
For example, by growing the substrate while rotating it, it is possible to compensate for the film thickness all around the substrate.

本発明において、光CVDは、基体に略平行もしくは裏
面側より光を照射して行う。基体の前面から光を照射す
ると、ECRプラズマCVD法により膜厚が大きくなる
基体中央部についても光CVD法による厚い膜成長が起
き、膜厚不均一の改善にならないからである。特開昭6
2−224923号公報には、ECRプラズマCVD法
と光CVD法を組み合わせる技術が開示されている(特
に同公報のFIG、7参照)が、この従来技術は膜質の
向上、ステップカバレッジの向上を目的としているため
、光を基体に直接照射している。この場合には膜厚分布
の改善は不可能である。直接照射した場合には、その部
分のみ膜厚が厚くなってしまい、膜厚分布は更に悪化す
るからである。
In the present invention, photoCVD is performed by irradiating light substantially parallel to the substrate or from the back side. This is because if light is irradiated from the front surface of the substrate, a thick film will grow by photo-CVD even in the central part of the substrate where the film thickness increases by ECR plasma CVD, and the non-uniformity of the film thickness will not be improved. Tokukai Showa 6
Publication No. 2-224923 discloses a technology that combines the ECR plasma CVD method and the optical CVD method (see especially FIG. 7 of the publication), but this conventional technology aims to improve film quality and step coverage. Therefore, the light is irradiated directly onto the substrate. In this case, it is impossible to improve the film thickness distribution. This is because, in the case of direct irradiation, the film thickness increases only in that part, and the film thickness distribution further deteriorates.

本発明においては、光を基体には直接照射しないで、基
体に略平行もしくは裏面側より光を照射するので、基体
上を光が通過することで光の進向方向に膜厚が減少する
という、ECRプラズマCVD法で得られる膜厚分布と
逆の膜厚分布が得られることになる。
In the present invention, the light is not irradiated directly onto the substrate, but is irradiated approximately parallel to the substrate or from the back side, so that the film thickness decreases in the direction in which the light travels as the light passes over the substrate. , a film thickness distribution opposite to that obtained by the ECR plasma CVD method is obtained.

光の角度としては、基体に直接的に当たらなければよく
、第3図に■で示すようにウェハ等の基体1に平行であ
るか、または■で示すように、やや前面からの略平行で
あるか、■で示すように裏面側からの如く、直接基体に
当たらない範囲であれば、角度は自由に変えてもよい。
The angle of the light does not need to be direct to the substrate; it may be parallel to the substrate 1 such as a wafer, as shown by ■ in Figure 3, or approximately parallel from the front, as shown by ■. The angle may be freely changed as long as it does not directly hit the substrate, such as from the back side as shown by ■.

〔実施例〕〔Example〕

以下本発明の一実施例について、第1図を参照して説明
する。本実施例は種々の電子装置、例えばS RA、 
M等の半導体装置の製造プロセスとして用いることがで
きる。なお、当然のことではあるが、本発明は実施例に
より限定されるものではない。
An embodiment of the present invention will be described below with reference to FIG. This embodiment applies to various electronic devices, such as SRA,
It can be used as a manufacturing process for semiconductor devices such as M. Note that, as a matter of course, the present invention is not limited to the examples.

第1図に、本例で用いたECRCラズマCVD装置の構
成を示す。この装置は、CVDを行う処理室15内の基
体1 (ここでは半導体ウェハ)に向けて光3 (ここ
ではArFレーザ等のレーザ光)を照射する光照射窓5
を有している。本例では、光3は、基体1であるウェハ
の表面(薄膜形成面〉に平行に照射した。
FIG. 1 shows the configuration of the ECRC lasma CVD apparatus used in this example. This device has a light irradiation window 5 that irradiates light 3 (here, laser light such as an ArF laser) toward a substrate 1 (here, a semiconductor wafer) in a processing chamber 15 in which CVD is performed.
have. In this example, the light 3 was irradiated parallel to the surface (thin film formation surface) of the wafer, which is the base 1.

符号2はプラズマ流であり、第5図を用いて説明したよ
うに、プラズマ引き出し窓14から処理室15に導入さ
れる。このプラズマ流2は発散形状になり、このため中
央に厚く周辺にうすい薄膜が形成されることになる。第
4図に、横軸に基体1の表面の位置、縦軸に膜厚をとっ
て膜厚分布を示すが、ECRCラズマCVDによっては
、符号Aで示すように中央(センター)で厚く周辺(エ
ツジ)でうずくなる。一方、光4による光CVD法では
、第4図に符号Bで示すよ・うに、逆に中央でうずく、
周辺で厚くなる。これは、光路上に存在する反応ガスに
よる光の吸収によって、徐々に光強度が弱くなるためで
ある。この結果、全体としての膜厚は、第4図に符号C
で示すような均一なものになる。なお本例では基体1を
支持するテーブル6を回転して、全体の膜厚を均一にす
るようにした。本実施例により、このように均一膜厚で
、しかもECRプラズマCVD法の利点である均質かつ
ダメージの少ない薄膜が形成できた。
Reference numeral 2 denotes a plasma flow, which is introduced into the processing chamber 15 from the plasma extraction window 14, as explained using FIG. This plasma flow 2 has a diverging shape, so that a thin film is formed that is thick at the center and thin at the periphery. Figure 4 shows the film thickness distribution, with the horizontal axis representing the position of the surface of the substrate 1 and the vertical axis representing the film thickness. Edge) makes me tingle. On the other hand, in the photoCVD method using light 4, as shown by the symbol B in FIG.
It becomes thicker at the periphery. This is because the light intensity gradually weakens due to light absorption by the reactive gas present on the optical path. As a result, the overall film thickness is shown in FIG.
It becomes uniform as shown in . In this example, the table 6 supporting the substrate 1 was rotated to make the entire film thickness uniform. According to this example, a thin film having a uniform thickness and being homogeneous and having little damage, which is an advantage of the ECR plasma CVD method, could be formed.

第1図中、11はプラズマ発生室、12はマイクロ波(
模式的図示)、13は磁界形成のためのマグネットコイ
ルである。
In Figure 1, 11 is a plasma generation chamber, 12 is a microwave (
13 is a magnet coil for forming a magnetic field.

〔発明の効果〕〔Effect of the invention〕

上述の如く本発明の薄膜形成力法によれば、ECRプラ
ズマCVD法の利点を生かしつつ、膜厚が均一である薄
膜を形成できるという効果を奏することができる。
As described above, according to the thin film forming method of the present invention, it is possible to form a thin film having a uniform thickness while taking advantage of the advantages of the ECR plasma CVD method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を説明するためのもので、該
実施例に用いたECRCラズマCVD装置の構成図であ
る。第2図は本発明の詳細な説明するためのもので、本
発明における光CVDの作用を示す図である。第3図は
本発明における光照射の例を説明する図である。第4図
は、上記実施例における形成薄膜の膜厚を示す図である
。第5図及び第6図は、問題点の説明図である。 1・・・基体、2・・・プラズマ流、3・・・光。
FIG. 1 is for explaining one embodiment of the present invention, and is a block diagram of an ECRC plasma CVD apparatus used in the embodiment. FIG. 2 is a diagram for explaining the present invention in detail and shows the action of photo-CVD in the present invention. FIG. 3 is a diagram illustrating an example of light irradiation in the present invention. FIG. 4 is a diagram showing the thickness of the thin film formed in the above example. FIGS. 5 and 6 are explanatory diagrams of the problems. 1... Substrate, 2... Plasma flow, 3... Light.

Claims (1)

【特許請求の範囲】[Claims] 1.基体上に薄膜を形成する薄膜形成方法であって、 基体上にECRプラズマCVD法により薄膜を形成する
工程と、 前記基体に略平行もしくは裏面側より光を照射すること
により前記基体上に光CVD法により薄膜を形成する工
程とを具備する薄膜形成方法。
1. A thin film forming method for forming a thin film on a substrate, the method comprising: forming a thin film on the substrate by ECR plasma CVD; and photo-CVD on the substrate by irradiating light approximately parallel to the substrate or from the back side. 1. A method for forming a thin film, comprising: forming a thin film by a method.
JP16796789A 1989-06-29 1989-06-29 Thin film formation Pending JPH0336271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16796789A JPH0336271A (en) 1989-06-29 1989-06-29 Thin film formation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16796789A JPH0336271A (en) 1989-06-29 1989-06-29 Thin film formation

Publications (1)

Publication Number Publication Date
JPH0336271A true JPH0336271A (en) 1991-02-15

Family

ID=15859356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16796789A Pending JPH0336271A (en) 1989-06-29 1989-06-29 Thin film formation

Country Status (1)

Country Link
JP (1) JPH0336271A (en)

Similar Documents

Publication Publication Date Title
US6660342B1 (en) Pulsed electromagnetic energy method for forming a film
US5256205A (en) Microwave plasma assisted supersonic gas jet deposition of thin film materials
JPH04364024A (en) Manufacture of semiconductor device
JPS5814644B2 (en) Hikaridensouronoseizouhouhou
TW200540988A (en) Plasma processing apparatus and method of designing the same
JPH0336271A (en) Thin film formation
JP2000164578A (en) Plasma processing device and method
JPH08203694A (en) Plasma treatment device
JP2698416B2 (en) Method of forming three-dimensional optical waveguide clad film
JPH049471A (en) Method for synthesizing diamond
JP3147769B2 (en) Plasma processing apparatus and processing method
JP3130977B2 (en) Thin film forming method and apparatus
JPS63213673A (en) Microwave plasma thin film forming device
JPH09153486A (en) Plasma processing method and device
JPH0817801A (en) Ecr plasma etching method of diamond thin film
JPH0244720A (en) Microwave plasma treatment device
JPH04296500A (en) Method and device for generating plasma
JPH04132684A (en) Method for forming diamond thin film
JPH1161414A (en) Microwave plasma device
KR20200055611A (en) plasma chemical vapor deposition apparatus using laser and the method thereof
JPH0480372A (en) Microwave plasma device
JPS63305516A (en) Optically pumped etching system
JPH11354292A (en) Plasma processing device
JPS62224923A (en) Formation of semiconductor thin film and device therefor
JPS59127840A (en) Deposition of organic film and device therefor