JPH0336252A - High speed hot dipping method - Google Patents
High speed hot dipping methodInfo
- Publication number
- JPH0336252A JPH0336252A JP16813189A JP16813189A JPH0336252A JP H0336252 A JPH0336252 A JP H0336252A JP 16813189 A JP16813189 A JP 16813189A JP 16813189 A JP16813189 A JP 16813189A JP H0336252 A JPH0336252 A JP H0336252A
- Authority
- JP
- Japan
- Prior art keywords
- molten metal
- nozzle
- plating
- steel
- traveling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000007598 dipping method Methods 0.000 title abstract 2
- 229910052751 metal Inorganic materials 0.000 claims abstract description 83
- 239000002184 metal Substances 0.000 claims abstract description 83
- 238000007747 plating Methods 0.000 claims abstract description 56
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 50
- 239000010959 steel Substances 0.000 claims abstract description 50
- 238000000034 method Methods 0.000 claims abstract description 31
- 230000005499 meniscus Effects 0.000 claims abstract description 11
- 230000003068 static effect Effects 0.000 claims abstract description 5
- 230000008021 deposition Effects 0.000 abstract 1
- 238000011144 upstream manufacturing Methods 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 38
- 238000001125 extrusion Methods 0.000 description 14
- 239000010410 layer Substances 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000005246 galvanizing Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 239000011701 zinc Substances 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- 229910000765 intermetallic Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910020816 Sn Pb Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910002065 alloy metal Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000010409 ironing Methods 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Coating With Molten Metal (AREA)
Abstract
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は、高速溶融メッキ法に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to a high-speed hot-dip plating method.
(従来の技術)
Zn、 /J、 Sn、 Pbおよびこれらの金属の合
金系被覆鋼板は自動車用、建築用、電気機器用、缶用の
材料として広く用いられており、品質と生産性の向上が
重要である。(Prior art) Zn, /J, Sn, Pb, and alloy-based coated steel sheets of these metals are widely used as materials for automobiles, construction, electrical equipment, and cans, and are used to improve quality and productivity. is important.
従来の溶融メッキ方法は鋼帯を還元性ガスの雰囲気中で
力H熱することにより表面を清浄化した後、被覆したい
金属の溶融浴に導いて浸漬メッキしその後、メッキ浴よ
り引き上げて、直後にスリット状のノズルにより噴射す
る気体で過剰に付着した溶融金属を除去し付着量を制御
するもの、あるいは片面だけを溶融金属に接触させた後
噴射気体により過剰の溶融金属を除去し付着量を制御す
るものがある。この様な浸漬メッキはZnメッキ、AI
メッキおよびターンメッキに代表されるように、今日一
般に広く使用される素材の製造法として採用されている
。In the conventional hot-dip plating method, the surface of the steel strip is cleaned by heating it in a reducing gas atmosphere, and then the steel strip is introduced into a molten bath of the metal to be coated for immersion plating. A method that controls the amount of adhered molten metal by removing excess molten metal with a gas jetted through a slit-shaped nozzle, or a method that controls the amount of adhered molten metal by removing excess molten metal with a jet of gas after contacting only one side with the molten metal. There is something to control. Such immersion plating is Zn plating, AI
As typified by plating and turn plating, it has been adopted as a manufacturing method for materials that are widely used today.
この方法の欠点は鋼帯がメッキ浴中を通過する際、調帯
の一部がメッキ浴中に溶出し、この溶出した大部分のF
eはその後、浴成分と金属間化合物を形成して、浴中に
浮遊し、いわゆる浮遊ドロスとなる。この浮遊ドロスは
メッキの際メッキ層中に混入し製品の外観や耐食性、加
工性などを低下させていた。次にメッキ浴の容量につい
ては鋼帯をボットロールでメッキ浴中に導入し浸漬でき
る程の大容量が必要である。The disadvantage of this method is that when the steel strip passes through the plating bath, a part of the strip is eluted into the plating bath, and most of the eluted F
The e then forms an intermetallic compound with the bath components and floats in the bath, becoming so-called floating dross. This floating dross gets mixed into the plating layer during plating, degrading the appearance, corrosion resistance, workability, etc. of the product. Next, the capacity of the plating bath must be large enough to allow the steel strip to be introduced and immersed into the bath using a bot roll.
従来この大容量にしたメッキ浴の浴組成を変更する場合
、特に大幅に変更して製品品種を切り替える場合はメッ
キ浴の一部をくみ出して、メッキ金属や添加金属を補給
もしくは添加する必要がある。このため多大の費用、時
間、労力を必要とするので、単一のメッキラインで製造
できる製品の種類には限界があった。また浸漬時間が長
いため金属と鋼板が反応して加工性を劣化させる脆い合
金層が厚く形成するためメッキ浴に添加元素を加えて合
金層を薄くする手段が取られてきたが今日に様に加工の
程度が厳しくなると限界が生じている。さらに空気中の
酸素と溶融金属が反応して酸化ドロスが発生して溶融金
属を無駄に消費するとともに鋼帯表面に付着して外観を
損なっている。When changing the bath composition of a conventionally large capacity plating bath, especially when making a major change and changing the product type, it is necessary to pump out a portion of the plating bath and replenish or add plating metals and additive metals. . This requires a great deal of cost, time, and labor, and there is a limit to the types of products that can be manufactured on a single plating line. In addition, due to the long immersion time, the metal and steel plate react and form a thick brittle alloy layer that deteriorates workability, so measures have been taken to thin the alloy layer by adding additive elements to the plating bath. As the degree of processing becomes more severe, limits are being reached. Furthermore, oxygen in the air reacts with the molten metal to generate oxidized dross, which wastes the molten metal and adheres to the surface of the steel strip, impairing its appearance.
次にメッキ付着量の制御は前述の如く気体絞り法により
行うことが一般的であるがラインスピードが160m/
min以上になると絞り落とされた金属が激しく飛散し
スプラッシュとなって鋼帯に付着したり鋼帯により持ち
上げられるメッキ金属量も多くなってドロスの発生量が
多くなり、高速化には限界があった。Next, the amount of plating deposited is generally controlled by the gas squeezing method as mentioned above, but the line speed is 160 m/min.
If the speed exceeds min, the metal that has been squeezed out will fly off violently and become a splash that will stick to the steel strip, and the amount of plated metal that will be lifted up by the steel strip will increase, resulting in a large amount of dross, and there is a limit to how high the speed can be increased. Ta.
特公昭57−24066号公報に開示されている溶融金
属をロールヨー1・方式で塗布してメッキする方法によ
れば浴組成切り替えには有利であるがメッキ浴の汚染、
高速化の問題は解決できない。The method disclosed in Japanese Patent Publication No. 57-24066, in which molten metal is coated using the roll-yaw 1 method, is advantageous in changing the bath composition, but it also causes problems such as contamination of the plating bath and
The problem of speeding up cannot be solved.
米国特許第3,201,275号明細書でも溶融メッキ
に適用した場合に上記の問題解決となる方法を開示しで
あるが、この方法はコーティングノズルより液面が低い
樹脂溶液から毛細管現象で樹脂溶液を吸い上げ、コーテ
ィングノズルに樹脂溶液のメニスカスを形成しテープと
接触することによりコーティングを行っている。この方
法を溶融メッキに適用しようとすると次のような問題点
が生じる。U.S. Patent No. 3,201,275 also discloses a method that solves the above problem when applied to hot-dip plating, but this method uses capillary action to generate resin from a resin solution whose liquid level is lower than that of the coating nozzle. Coating is performed by sucking up the solution, forming a meniscus of resin solution in the coating nozzle, and bringing it into contact with the tape. When this method is applied to hot-dip plating, the following problems arise.
毛細管現象により溶融金属を吸い上げるためには管の壁
が溶融金属と濡れ性が良いことが必要でありこの様な材
質のものでは同時に溶融金属と反応してしまい吸い上げ
る途中で溶融金属を汚染するとともに毛細管を閉塞して
しまう。また溶融金属は樹脂溶液と比較すると比重が大
きいので円滑な吸い上げが困難で金属帯の走行速度が速
くなると溶融金属の供給が不足し被覆ができなくなる。In order to suck up molten metal by capillary action, the wall of the tube needs to have good wettability with the molten metal, and if the tube is made of such a material, it will react with the molten metal at the same time, contaminating the molten metal while sucking it up. It blocks the capillaries. Furthermore, since molten metal has a higher specific gravity than a resin solution, it is difficult to suck it up smoothly, and if the traveling speed of the metal strip increases, the supply of molten metal becomes insufficient and coating becomes impossible.
ところで高速通板時には走行金属帯に付随した雰囲気の
気体が高速でメニスカス部に衝突し気体をメニスカスに
巻き込むため形成された被覆層は連続でなく使用に耐え
ないものとなる。By the way, during high-speed sheet passing, the gas in the atmosphere accompanying the traveling metal band collides with the meniscus portion at high speed and the gas is drawn into the meniscus, so that the formed coating layer is not continuous and cannot be used.
特開昭61−207555号公報には上記溶融金属の円
滑な供給手段として以下の方法の開示がある。ノズルの
開口部に溶融金属のメニスカスを形成して、そのメニス
カスに金属帯を接触させながら金属帯を走行させると開
口部からの溶融金属流出量は自由流出の場合より多く連
続操業でのメッキ付着量を容易に制御できる。この流出
量は溶融金属の濡れ付着力によりもたらされるもので走
行する鋼帯の速度に応じて付着量は一定に制御される。JP-A-61-207555 discloses the following method as a means for smoothly supplying the molten metal. If a meniscus of molten metal is formed at the opening of the nozzle and the metal strip is run while the metal strip is in contact with the meniscus, the amount of molten metal flowing out from the opening will be greater than that in the case of free flow, which will increase the plating adhesion during continuous operation. The amount can be easily controlled. This outflow amount is caused by the wetting and adhesion of the molten metal, and the amount of adhesion is controlled to be constant depending on the speed of the traveling steel strip.
溶融金属の円滑供給については一応の解決をみたところ
であるが一方、高速通板時に金属帯に付随して搬送され
る雰囲気気体がメニスカスに衝突する点は前記と同様解
決されず高速メッキには限界がある。Although we have found a tentative solution to the problem of smooth supply of molten metal, on the other hand, the issue of atmospheric gas carried along with the metal strip colliding with the meniscus during high-speed threading remains unresolved, making it a limit for high-speed plating. There is.
特開昭59−67357号公報にはアモルファスリボン
の製造方法に着眼して溶融金属をスリッI・状ノズルま
たは多孔ノズルを通して回転ディスクの代わりに走行す
る鋼板上に吹き付け、吹き付けられた溶融金属は鋼板に
よって冷却されてそのまま被覆金属とする方法が開示さ
れている。具体的には溶融金属を入れた容器をドラム上
を走行する鋼板の上方に設置し、溶融金属の入った容器
にはスリット状ノズルあるいは多孔ノズルを付けておき
、ノズル先端と板との間隔を近接させ、通常11IIl
11以下とする。溶融金属の流出速度の制御はヘッドの
高さあるいは静等の不活性ガスを用いる加圧方式に依存
する。この方法においても高速で走行する鋼帯に付随し
て搬送される雰囲気気体が溶融金属と鋼帯の接触点に衝
突し溶融金属内に巻き込まれるため部分的に不メッキが
生じ、高速化には限界がある。JP-A-59-67357 focuses on a method of manufacturing an amorphous ribbon, in which molten metal is sprayed onto a steel plate running instead of a rotating disk through a slit I-shaped nozzle or a multi-hole nozzle, and the molten metal sprayed onto the steel plate. A method is disclosed in which the metal is directly cooled to form a coated metal. Specifically, a container containing molten metal is placed above a steel plate running on a drum, a slit-shaped nozzle or a multi-hole nozzle is attached to the container containing molten metal, and the distance between the nozzle tip and the plate is adjusted. close together, usually 11IIl
Must be 11 or less. Control of the flow rate of the molten metal depends on the height of the head or the pressurization method using static or other inert gas. Even in this method, atmospheric gas carried along with the steel strip running at high speed collides with the contact point between the molten metal and the steel strip and gets caught up in the molten metal, resulting in partial non-plating. There is a limit.
また同様なことはTダイ法による溶融樹脂の押し出し時
にも経験される所である。すなわち押し出された溶融状
態の樹脂フィルムを冷却ロールに接触させて冷却する工
程でフィルムの搬送速度が高速になるとフィルムに付随
して搬送される雰囲気気体がフィルム内に巻き込まれ部
分的なフィルム切れが生ずる。A similar problem is also experienced when extruding molten resin using the T-die method. In other words, when the extruded molten resin film is brought into contact with a cooling roll to cool it down, when the transport speed of the film becomes high, the atmospheric gas transported along with the film gets caught up in the film, causing partial film breakage. arise.
以上の問題点を解決するためには雰囲気気体を除去、す
なわち真空にすればよいことは容易に想達するところで
あるが、実際の連続ラインで実行するためには、真空蒸
着ラインの様に差動減圧室を設ける必要があり建設費が
高価となるが、高速化を目指せば除去すべき気体の量が
増えるためまずます高価となり現実に経済的に戒り立つ
ラインは不可能となる。It is easy to imagine that in order to solve the above problems, the atmospheric gas can be removed, that is, create a vacuum, but in order to implement it in an actual continuous line, it is necessary to It is necessary to provide a decompression chamber, which increases the construction cost, but if the aim is to increase the speed, the amount of gas that must be removed increases, which makes it even more expensive, making it impossible to create an economically viable line.
(発明が解決しようとする課題)
本発明の目的とするところは、前記の如き従来の溶融メ
ッキ法の欠点を排除しうる高速溶融メッキ法を提供する
にある。(Problems to be Solved by the Invention) An object of the present invention is to provide a high-speed hot-dip plating method that can eliminate the drawbacks of the conventional hot-dip plating methods as described above.
(課題を解決すするための手段)
本発明者らは高速溶融メッキにおける雰囲気気体の巻き
込み防止方法について種々検討の結果、本発明を完成さ
せた。(Means for Solving the Problems) The present inventors have completed the present invention as a result of various studies on methods for preventing atmospheric gas from being entrained in high-speed hot-dip plating.
すなわら、本発明の要旨とするところは、走行する金属
帯の下面あるいは垂直面に対してノズルを配置して該ノ
ズルの開口部を金属帯に極めて接近させるとともにノズ
ルに溶融金属を静圧により供給して開口部に溶融金属の
液溜りを形成し、溶融金属と金属帯との間にメニスカス
を形成して溶融メッキを行う方法において該ノズルの鋼
帯走行方向上手に併設した幅方向のスリットあるいは幅
方向に並ぶ多孔から鋼帯の走行に付随して移動する気体
を吸引することを特徴とする高速溶融メッキ方法にある
。In other words, the gist of the present invention is to arrange a nozzle on the lower surface or vertical surface of a running metal strip, bring the opening of the nozzle very close to the metal strip, and apply molten metal to the nozzle under static pressure. In this method, a pool of molten metal is formed at the opening by supplying molten metal, and a meniscus is formed between the molten metal and the metal strip to perform hot-dip plating. The present invention is a high-speed hot-dip plating method characterized by sucking gas that moves along with the running of the steel strip through slits or porous holes arranged in the width direction.
以下、本発明の実施の態様を図面に基づいて説明する。Embodiments of the present invention will be described below based on the drawings.
Zn Aj Sn Pbおよびこれら各金属の合
金系金属の溶融金属9を入れた容器1を走行する鋼帯2
の下面あるいは垂直面に対して設置し鋼帯の反対面には
支持ロール3を設置する(第1図(a)〉。溶融金属の
入った容器1にはスリット状ノズルあるいは多孔ノズル
4を付け、ノズル先端と鋼帯との間隔は近接させ通常I
I以下とする。溶融金属の流出速度はヘッドの高さある
いは窒素等の非酸化性ガスによる加圧8などの静圧によ
って制御する。A steel strip 2 running through a container 1 containing molten metal 9 of Zn Aj Sn Pb and alloy metals of each of these metals.
A support roll 3 is installed on the opposite side of the steel strip (Fig. 1 (a)). A slit-shaped nozzle or a multi-hole nozzle 4 is attached to the container 1 containing the molten metal. , the distance between the nozzle tip and the steel strip is usually kept close to each other.
I or less. The outflow rate of the molten metal is controlled by the height of the head or static pressure, such as pressurization 8 with a non-oxidizing gas such as nitrogen.
またノズルには溶融金属押し出し用のスリットあるいは
多孔4の他、m帯進行方向上手側に′tllI帯表面で
搬送される雰囲気気体10を吸引するスリットまたは多
孔5を設置する。この吸引ノズルは鋼帯表面近傍を減圧
状態にするためのものでなく溶融金属押し出し用ノズル
と吸引ノズル間において雰囲気気体を鋼帯走行方向に対
して逆方向移動させることを目的としており真空蒸着に
おける様な差動減圧機構及びポンプ容量を必要としない
ところに特徴がある。鋼帯走行方向に対して逆方向に移
動する雰囲気気体はメニスカスに巻き込まれることがな
くなる。溶融金属と鋼帯との濡れ性はメッキ密着性を確
保するために必要であり鋼帯表面の清浄度が重要である
。これは公知の方法、たとえば還元性雰囲気中での加熱
や脱脂、酸洗等の予傷処理、フラックス塗布等が利用で
きる。さらに鋼帯の温度を溶融金属の融点以下に力TI
熱する事も必要でこれも溶融メッキの常法である。In addition to the slit or hole 4 for extruding the molten metal, the nozzle is provided with a slit or hole 5 on the upper side in the direction of movement of the m band for sucking the atmospheric gas 10 conveyed on the surface of the 'tllI band. The purpose of this suction nozzle is not to reduce the pressure near the surface of the steel strip, but to move the atmospheric gas between the molten metal extrusion nozzle and the suction nozzle in the opposite direction to the running direction of the steel strip. The feature is that it does not require a differential pressure reduction mechanism or pump capacity. Atmospheric gas moving in the opposite direction to the steel strip running direction is no longer caught up in the meniscus. Wettability between the molten metal and the steel strip is necessary to ensure plating adhesion, and the cleanliness of the steel strip surface is important. For this purpose, known methods such as heating in a reducing atmosphere, degreasing, pre-damage treatment such as pickling, flux coating, etc. can be used. Further, the temperature of the steel strip is reduced to below the melting point of the molten metal.
It also requires heating, which is also the usual method for hot-dip plating.
次に実施例により本発明を説明する。Next, the present invention will be explained with reference to examples.
(実施例)
第1図(a)、 (b)は本発明の実施方法の1例を示
すもので、鋼帯2は還元性ガス雰囲気中で加熱して、表
面を′清浄にしたもので水平方向に走行する場合と垂直
方向に走行する場合のノズルの配置例を併記しである。(Example) Figures 1(a) and 1(b) show an example of the method of implementing the present invention, in which the steel strip 2 was heated in a reducing gas atmosphere to make the surface clean. Examples of nozzle arrangement when traveling in the horizontal direction and when traveling in the vertical direction are also shown.
支持ロール3で鋼帯2の走行を安定化させ、対向する面
に溶融金属押し出し用ノズル4を設置する。同じ面の鋼
帯2の走行方向上手側に鋼帯によって搬送される雰囲気
気体10を吸弓するノズル5を鋼帯幅方向に連続とする
か分割して設置する。これらのノズル4,5ば鋼帯2に
近接させるとともに溶融金属押し出し用ノズル4の基部
に溶融金属容器1を接続し溶融金属容器1より溶融金属
をノズル4に供給する。吸引ノズルには排気ポンプ6か
らの配管マを接続する。The running of the steel strip 2 is stabilized by a support roll 3, and a nozzle 4 for extruding molten metal is installed on the opposing surface. On the upper side in the running direction of the steel strip 2 on the same surface, a nozzle 5 for sucking atmospheric gas 10 conveyed by the steel strip is installed continuously or divided in the width direction of the steel strip. These nozzles 4 and 5 are placed close to the steel strip 2, and a molten metal container 1 is connected to the base of the molten metal extrusion nozzle 4, so that molten metal is supplied from the molten metal container 1 to the nozzle 4. A pipe from the exhaust pump 6 is connected to the suction nozzle.
次に綱帯2に溶融アルミニウムメッキと溶融亜0 鉛メッキを施した場合を説明する。Next, the rope belt 2 is plated with molten aluminum and molten aluminum is plated. The case where lead plating is applied will be explained.
溶融アルミニウムメッキの場合は鋼帯2として厚さ0.
8閣、幅500mmのものを用い、溶融金属押し出し用
ノズル4の開口部の隙間が0.7 mmで幅490閣の
ものを用いた。同様に雰囲気ガス吸弓用ノズル5は開口
部の隙間0.8閣、幅490胴のものを用いた。メッキ
は綱帯2と溶融金属押し出し用ノズル4の先端との距離
0.9恥、雰囲気ガス吸引用ノズル5の先端との距al
l 1.5111mとした。熔融金属の押し出しは窒素
ガスで220mmAqの圧力をかけ、溶融金属容器内の
溶融金属浴面高さの減少に応じて圧カフ80閣^qまで
上げて押し出し流出速度が一定となる様に制御した。浴
面高さと押し出し圧力の関係を第2図に示す。雰囲気ガ
スの吸引速度とメッキ後のガス巻き込みによる不メッキ
面積率の関係を第3図に示した。これらの関係からガス
巻き込みのない正常なメッキを均一に得ることができた
。尚、溶融アルミニウムの温度670°C1支持ロール
3での鋼帯2の温度600℃、鋼帯2の走行速度300
〜600m/m i n1
の条件でメッキを行なった。In the case of hot-dip aluminum plating, the steel strip 2 has a thickness of 0.
The molten metal extrusion nozzle 4 had a gap of 0.7 mm at the opening and had a width of 490 mm. Similarly, the atmospheric gas suction nozzle 5 used had an opening gap of 0.8 mm and a width of 490 mm. For plating, the distance between the rope belt 2 and the tip of the molten metal extrusion nozzle 4 is 0.9 mm, and the distance between the tip of the atmospheric gas suction nozzle 5 is 1.
l 1.5111m. For extrusion of the molten metal, a pressure of 220 mmAq was applied using nitrogen gas, and as the height of the molten metal bath surface in the molten metal container decreased, the pressure was increased to 80 mm to control the extrusion outflow rate to be constant. . Figure 2 shows the relationship between bath surface height and extrusion pressure. FIG. 3 shows the relationship between the atmospheric gas suction speed and the unplated area ratio due to gas entrainment after plating. From these relationships, normal plating without gas entrainment could be obtained uniformly. In addition, the temperature of the molten aluminum is 670° C., the temperature of the steel strip 2 on the support roll 3 is 600° C., and the running speed of the steel strip 2 is 300° C.
Plating was performed under conditions of ~600 m/min1.
その結果、ガス巻き込みのない均一なメッキが得られた
。また金属間化合物のドロスの巻き込みのないメッキ層
が得られ、表面も酸化ドロスのない美麗な外観となった
。合金層は0.2μ以下で絞り、しごき加工に十分耐え
る加工性に優れた溶融メッキ鋼板を得ることができた。As a result, uniform plating without gas entrainment was obtained. In addition, a plated layer without any dross of intermetallic compounds was obtained, and the surface had a beautiful appearance without oxidized dross. The alloy layer was reduced to 0.2 μm or less, and a hot-dip plated steel plate with excellent workability and sufficient resistance to ironing could be obtained.
また次に示す溶融亜鉛メッキへの切り替え作業も別に用
意したノズルへ切り替えることにより簡便に行うことが
できた。Furthermore, the following switching to hot-dip galvanizing could be easily performed by switching to a separately prepared nozzle.
次に溶融亜鉛メッキの場合は鋼帯2として厚さ0、5
mm、幅500+nmのものを用い、溶融金属押し出し
用ノズル4の開口部の隙間が0.6 mmで幅490則
のものを用いた。同様に雰囲気ガス吸引用ノズル5は開
口部の隙間0.8mm、幅490mのものを用いた。メ
ッキは綱帯2と溶融金属押し出し用ノズル4の先端との
距離0.8 mm、雰囲気ガス吸引用ノズル5の先端と
の距離1.5 柵とした。溶融金属の押し出しは窒素ガ
スで600mmAqの圧力をかけ、溶融金属容器内の溶
融金属浴面高さの減少に応じ2
て圧力20402O40まで上げて押し出し流出速度が
一定となる様に制御した。浴面高さと押し出し圧力の関
係を第4図に示す。雰囲気ガス吸引速度とメッキ後のガ
ス巻き込みによる不メッキ面積率の関係を第5図に示し
た。これらの関係からガス巻き込みのないメッキを均一
に得ることができた。尚、溶融亜鉛の温度460°C1
支持ロール3での鋼帯2の温度400°C1鋼帯2の走
行速度300〜600m/minの条件でメッキを行な
った。Next, in the case of hot-dip galvanizing, the steel strip 2 has a thickness of 0, 5
mm, width 500+nm, the opening gap of the nozzle 4 for extruding molten metal was 0.6 mm, and the width was 490 mm. Similarly, the atmospheric gas suction nozzle 5 used had an opening gap of 0.8 mm and a width of 490 m. For plating, the distance between the rope strip 2 and the tip of the nozzle 4 for extruding molten metal was 0.8 mm, and the distance from the tip of the atmospheric gas suction nozzle 5 was 1.5 mm. The molten metal was extruded by applying a pressure of 600 mmAq with nitrogen gas, and as the height of the molten metal bath surface in the molten metal container decreased, the pressure was increased to 20402O40 to control the extrusion outflow rate to be constant. Figure 4 shows the relationship between bath surface height and extrusion pressure. FIG. 5 shows the relationship between the atmospheric gas suction speed and the unplated area ratio due to gas entrainment after plating. From these relationships, it was possible to obtain uniform plating without gas entrainment. In addition, the temperature of molten zinc is 460°C1
Plating was carried out under the following conditions: the temperature of the steel strip 2 on the support roll 3 was 400° C., and the running speed of the steel strip 2 was 300 to 600 m/min.
その結果、雰囲気ガスの巻き込みのない均一なメッキを
得ることができた。また金属間化合物のドロスの巻き込
みのないメッキ層が得られ、表面も酸化ドロスのない美
麗な外観となった。合金層は0.1μ以下でプレス加工
に十分耐える加工性に優れた溶融メッキ鋼板を得ること
ができた。As a result, it was possible to obtain uniform plating without entrainment of atmospheric gas. In addition, a plated layer without any dross of intermetallic compounds was obtained, and the surface had a beautiful appearance without oxidized dross. It was possible to obtain a hot-dip plated steel sheet with an alloy layer of 0.1 μm or less and excellent workability that could sufficiently withstand press working.
(発明の効果)
最近の溶融アルミニウムメッキラインや溶融亜鉛メッキ
ラインは自動車、建材、を中心に益々生産量が増え、そ
れに応じてライン速度は益々速くなると同時にメッキ後
の立ち上がり高さは益々高3
くなる傾向にあり建設費コストは高くなる。一方品種の
多様化に伴い、同一ラインでの品種切り替えロスも多く
なる一方である。さらに品質上の要求レベルも益々高度
になりドロス付着防止はもらろん、付着量の均一化、加
工性の向上が強く要求されている。本発明の方法によれ
ば以上の問題点を一挙に解決できるとともに他分野例え
ば有機樹脂溶液の高速コーティングにも応用できる長所
を持ち、将来の表面処理方法を指向する画期的な価値の
ある方法である。(Effect of the invention) The production volume of recent hot-dip aluminum plating lines and hot-dip galvanizing lines is increasing, mainly for automobiles and building materials, and accordingly, line speeds are becoming faster and at the same time, the rise height after plating is becoming higher and higher. This tends to increase construction costs. On the other hand, with the diversification of product types, the number of product changeover losses on the same line is increasing. Furthermore, quality requirements are becoming increasingly high, and there is a strong demand for not only prevention of dross adhesion, but also uniformity of the amount of adhesion and improvement of workability. The method of the present invention can solve the above problems at once, and has the advantage of being applicable to other fields, such as high-speed coating of organic resin solutions, and is an innovative and valuable method that will lead to future surface treatment methods. It is.
第111(a)、 (b)は本発明によるメッキ法の一
例を示す図である。
第2図は溶融アルごニウムメッキ時の押し出し圧力、容
器内浴面高さと押し出し流出速度の関係を示す図である
。
第3図は溶融アルミニウムメッキ時の雰囲気ガスの吸引
速度とメッキ後のガス巻き込みによる不メッキ面積率の
関係を示す図である。
第4図は溶融亜鉛メッキ時の押し出し圧力、容4
器内浴面高さと押し出し流出速度の関係を示す図である
。
第5図は溶融亜鉛メッキ時の雰囲気ガスの吸引速度とメ
ッキ後のガス巻き込みによる不メッキ面積率の関係を示
す図である。
1・・・溶融金属〇−容器、2・・・鋼帯、3・・・支
持ロール、4・・・溶融金属押し出し用ノズル、5・・
・雰囲気ガス吸引用ノズル、6・・・排気ポンプ、7・
・・排気用配管、8・・・溶融金属押上用非酸化性加圧
ガス、9・・・溶融金属、lO・・・雰囲気ガスの流れ
。
■
口+◇■
口+◇4
(う≦ン
本lで慢〜l・ど士
(Or〃認ば〕
′Ti″×1.Q
N勺
勺り′−N
(%)書鼾11に・/ψ111(a) and 111(b) are diagrams showing an example of the plating method according to the present invention. FIG. 2 is a diagram showing the relationship between the extrusion pressure during molten argonium plating, the height of the bath surface in the container, and the extrusion outflow rate. FIG. 3 is a diagram showing the relationship between the atmospheric gas suction speed during molten aluminum plating and the unplated area ratio due to gas entrainment after plating. FIG. 4 is a diagram showing the relationship between the extrusion pressure during hot-dip galvanizing, the height of the bath surface in the container, and the extrusion outflow rate. FIG. 5 is a diagram showing the relationship between the atmospheric gas suction speed during hot-dip galvanizing and the unplated area ratio due to gas entrainment after plating. 1... Molten metal 〇-container, 2... Steel strip, 3... Support roll, 4... Molten metal extrusion nozzle, 5...
・Atmospheric gas suction nozzle, 6... Exhaust pump, 7.
... Exhaust piping, 8... Non-oxidizing pressurized gas for pushing up molten metal, 9... Molten metal, lO... Flow of atmospheric gas. ■ Mouth + ◇ ■ Mouth + ◇ 4 (U≦hon l arrogant~l・Doshi (Or〃approve) ′Ti″×1. /ψ
Claims (1)
配置して該ノズルの開口部を金属帯に極めて接近させる
とともにノズルに溶融金属を静圧により供給して開口部
に溶融金属の液溜りを形成し、溶融金属と金属帯との間
にメニスカスを形成して溶融メッキを行う方法において
該ノズルの鋼帯走行方向上手に併設した幅方向のスリッ
トあるいは幅方向に並ぶ多孔から鋼帯の走行に付随して
移動する気体を吸引することを特徴とする高速溶融メッ
キ方法。A nozzle is arranged on the underside or vertical surface of the traveling metal strip, the opening of the nozzle is brought very close to the metal strip, and molten metal is supplied to the nozzle using static pressure to form a pool of molten metal in the opening. In the method of performing hot-dip plating by forming a meniscus between the molten metal and the metal strip, the nozzle has a widthwise slit or a porous hole lined up in the width direction arranged in the direction in which the steel strip runs. A high-speed hot-dip plating method characterized by suctioning the accompanying moving gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16813189A JPH0336252A (en) | 1989-06-29 | 1989-06-29 | High speed hot dipping method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16813189A JPH0336252A (en) | 1989-06-29 | 1989-06-29 | High speed hot dipping method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0336252A true JPH0336252A (en) | 1991-02-15 |
Family
ID=15862412
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16813189A Pending JPH0336252A (en) | 1989-06-29 | 1989-06-29 | High speed hot dipping method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0336252A (en) |
-
1989
- 1989-06-29 JP JP16813189A patent/JPH0336252A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2914423A (en) | Method and apparatus for metallic coating of metallic strands | |
US5308659A (en) | Method of molten metal plating with slit nozzle | |
JPH0336252A (en) | High speed hot dipping method | |
JPH09228016A (en) | Method for plating molten metal and device therefor | |
US4207831A (en) | Apparatus for one side coating of a continuous strip | |
JPH03207844A (en) | Uniformly plating method for high-speed hot dipping | |
JPH07157853A (en) | Method for removing zinc fume in snout of hot dip metal coating and device therefor | |
JP7440751B2 (en) | Apparatus for producing hot-dip metal-plated steel strip, and method for producing hot-dip metal-coated steel strip | |
JPH0336253A (en) | Method for controlling plating amount in high speed hot dipping | |
JP2756867B2 (en) | High-speed hot-dip plating method | |
JPS6048587B2 (en) | Melt plating equipment | |
JPS61204363A (en) | Production of metal hot dipped steel plate having excellent appearance | |
US4973500A (en) | Method of plating metal sheets by passing the sheet upwards in close proximity to an upwardly directed nozzle | |
JPH04325662A (en) | Uniform hot-dip plating method | |
JPH07157854A (en) | Method for cleaning inside of snout of hot dip metal coating | |
JPH05339692A (en) | Nozzle for uniform hot dip coating | |
JPH10226864A (en) | Production of hot dip galvanized steel sheet | |
JPS61207555A (en) | Formation of film by hot dipping | |
US4288476A (en) | One side coating of continuous strand | |
JPH03134150A (en) | Method for uniformly discharging plating metal for high-speed hot dip coating and nozzle for this method | |
JPH07150320A (en) | Hot dip metal coating method and device thereof | |
JPH06322501A (en) | Method for controlling discharge rate of molten metal for slit nozzle hot dip coating method | |
JPH0356652A (en) | Method for replenishing plating metal for high speed hot dip coating | |
JPH07113154A (en) | Method and device for hot-dipping | |
JPH04325661A (en) | Hot dip plating method |