JPH0335912Y2 - - Google Patents

Info

Publication number
JPH0335912Y2
JPH0335912Y2 JP5315285U JP5315285U JPH0335912Y2 JP H0335912 Y2 JPH0335912 Y2 JP H0335912Y2 JP 5315285 U JP5315285 U JP 5315285U JP 5315285 U JP5315285 U JP 5315285U JP H0335912 Y2 JPH0335912 Y2 JP H0335912Y2
Authority
JP
Japan
Prior art keywords
air
control valve
pressure
temperature
intake air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5315285U
Other languages
Japanese (ja)
Other versions
JPS61169297U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP5315285U priority Critical patent/JPH0335912Y2/ja
Publication of JPS61169297U publication Critical patent/JPS61169297U/ja
Application granted granted Critical
Publication of JPH0335912Y2 publication Critical patent/JPH0335912Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Control Of Positive-Displacement Air Blowers (AREA)

Description

【考案の詳細な説明】 [産業上の利用分野] 本考案は、空気温度が低温の時、ターボ圧縮機
の減量効率が低下したり、減量範囲が狭くなつた
りしないようにした、圧縮空気製造装置に関する
ものである。
[Detailed description of the invention] [Field of industrial application] The present invention is a method for producing compressed air that prevents the weight loss efficiency of a turbo compressor from decreasing or the weight loss range from narrowing when the air temperature is low. It is related to the device.

[従来の技術] 工場等で使用する圧縮空気を製造するための圧
縮空気製造装置としては、従来例えば第3図に示
すものがある。
[Prior Art] As a compressed air production apparatus for producing compressed air for use in factories and the like, there is a conventional one shown in FIG. 3, for example.

第3図中、1はターボ圧縮機、2は吸入フイル
タ、3は吸入フイルタ2出側とターボ圧縮機1入
側を接続する空気吸入管、4は空気吸入管3の中
途部に接続され且つ吸入された空気(吸入空気)
に旋回流を与えることなく抵抗を与える制御弁
(例えば、バタフライ弁等)、5はターボ圧縮機1
出側に接続された空気吐出管、6は空気吐出管5
に接続された圧力検出器、7は圧力検出器6で検
出した空気圧力に対応して制御弁4の開度を制御
する圧力指示制御器、8は空気吐出管5に接続さ
れた流量検出器、9は空気吐出管5に接続された
バイパス管、10はバイバス管9の中途部に接続
された流量制御弁、11は流量検出器8で検出し
た空気流量に対応して流量制御弁10の開度を制
御する流量指示制御器である。
In FIG. 3, 1 is a turbo compressor, 2 is a suction filter, 3 is an air suction pipe connecting the outlet side of the suction filter 2 and the inlet side of the turbo compressor 1, and 4 is connected to the midway part of the air suction pipe 3. Inhaled air (inhaled air)
5 is a control valve (such as a butterfly valve) that provides resistance without giving a swirling flow to the turbo compressor 1.
Air discharge pipe connected to the outlet side, 6 is air discharge pipe 5
7 is a pressure indicating controller that controls the opening degree of the control valve 4 in accordance with the air pressure detected by the pressure detector 6; 8 is a flow rate detector connected to the air discharge pipe 5; , 9 is a bypass pipe connected to the air discharge pipe 5, 10 is a flow control valve connected to the midway part of the bypass pipe 9, and 11 is a flow control valve 10 in response to the air flow rate detected by the flow rate detector 8. This is a flow rate indicator controller that controls the opening degree.

上記圧縮空気製造装置では、ターボ圧縮機1か
ら吐出される圧縮空気の圧力は予め圧力指示制御
器7に設定され、空気吐出管5から消費地へ送ら
れる圧縮空気の流量は予め流量指示制御器11に
設定されている。
In the above compressed air production apparatus, the pressure of the compressed air discharged from the turbo compressor 1 is set in advance in the pressure indicator controller 7, and the flow rate of the compressed air sent from the air discharge pipe 5 to the consumption area is set in advance in the flow indicator controller 7. It is set to 11.

而して、吸入フイルタ2から空気吸入管3に導
入された空気は、制御弁4を通つてターボ圧縮機
1へ吸入され、所定の圧力に圧縮されて空気吐出
管5へ吐出され、消費地へ送られる。
The air introduced into the air suction pipe 3 from the suction filter 2 is sucked into the turbo compressor 1 through the control valve 4, compressed to a predetermined pressure, and discharged to the air discharge pipe 5, where it is sent to the consumption area. sent to.

消費地での圧縮空気の消費量が少い場合、圧力
検出器6で検出された空気圧力が上昇するため、
この空気圧力に基づき、圧力指示制御器7から制
御弁4へ指令が与えられ、吐出管5内の空気圧力
が所定の圧力になるよう制御弁4が絞られる。
If the amount of compressed air consumed at the consumption area is small, the air pressure detected by the pressure detector 6 will increase.
Based on this air pressure, a command is given from the pressure instruction controller 7 to the control valve 4, and the control valve 4 is throttled so that the air pressure in the discharge pipe 5 becomes a predetermined pressure.

又、消費地での圧縮空気の使用量が少い場合、
流量検出器8により検出された吐出管5内の空気
流量に基づき流量制御弁10が開き、余分の圧縮
空気は排気される。
Also, if the amount of compressed air used in the consumption area is small,
The flow rate control valve 10 opens based on the air flow rate in the discharge pipe 5 detected by the flow rate detector 8, and excess compressed air is exhausted.

消費地での圧縮空気の消費量が多いと、空気吐
出管3内の空気圧力が低下するため、圧力検出器
6で検出された空気圧力に基いて制御弁4が開
き、同様に流量制御弁10は絞られる。
When the amount of compressed air consumed at the consumption area is large, the air pressure inside the air discharge pipe 3 decreases, so the control valve 4 opens based on the air pressure detected by the pressure detector 6, and the flow control valve similarly opens. 10 is narrowed down.

圧縮空気製造装置の他の例としては、第4図に
示すものがある。
Another example of a compressed air production apparatus is shown in FIG.

第4図の装置は、第3図の装置と略同様の装置
となつているが、第3図の装置と異なる点は、第
3図の装置では空気吸入管3を流れる空気の流量
を吸入空気に旋回流を与えることなく抵抗を与え
る制御弁4により制御しているのに対し、第4図
の装置では、空気吸入管3を流れる空気の流量
を、空気に旋回流を与えると共に抵抗を与えるイ
ンレツトガイドベーン式制御弁12により制御し
得るようにしたことである。
The device shown in FIG. 4 is almost the same as the device shown in FIG. 3, but the difference from the device shown in FIG. 3 is that the device shown in FIG. In contrast, in the device shown in Fig. 4, the flow rate of the air flowing through the air suction pipe 3 is controlled by a control valve 4 that provides resistance without giving a swirling flow to the air. It is possible to control the inlet guide vane type control valve 12 provided by the inlet guide vane type control valve 12.

第3図及び第4図に示す圧縮空気製造装置で
は、吸入される空気温度が夏期のように高い場合
と冬期のように低い場合では、ターボ圧縮機1の
吐出側の空気圧力の設定値が等しい場合であつて
も、ターボ圧縮機1の軸馬力は異なつたものとな
る。なぜなら、冬期等においては、ターボ圧縮機
1で圧縮する空気の温度が異常に低温になつてい
る場合、空気の比重が増加して空気に与えられる
エネルギが増加する結果、吐出空気量が増加する
からである。
In the compressed air production apparatus shown in FIGS. 3 and 4, the set value of the air pressure on the discharge side of the turbo compressor 1 changes when the temperature of the intake air is high as in the summer and when it is low as in the winter. Even if they are equal, the shaft horsepower of the turbo compressor 1 will be different. This is because, in winter, etc., when the temperature of the air compressed by the turbo compressor 1 is abnormally low, the specific gravity of the air increases and the energy given to the air increases, resulting in an increase in the amount of discharged air. It is from.

そこで、上記圧縮空気製造装置では、必要空気
量まで吸入空気を絞つて減量する必要があり、こ
のため従来は、第3図に示すように、制御弁4の
開度を制御したり、第4図に示すようにインレツ
トガイドベーン式制御弁12の開度を制御して、
ターボ圧縮機1に吸入される空気を減量するよう
にしていた。
Therefore, in the above-mentioned compressed air production apparatus, it is necessary to reduce the amount of intake air by throttling it to the required amount of air.For this purpose, conventionally, as shown in FIG. As shown in the figure, the opening degree of the inlet guide vane type control valve 12 is controlled,
The amount of air taken into the turbo compressor 1 was reduced.

第5図、第6図は上記従来装置におけるターボ
圧縮機1の軸馬力及びターボ圧縮機1から吐出さ
れた圧縮空気の圧力(縦軸)と吸入空気量(横
軸)との関係を示すもので、第5図は大気温度が
30℃のとき、第6図は大気温度が−10℃のときで
あつて、第5図、第6図において曲線Aは第3図
に示すように吸入空気に旋回を与えることなく抵
抗を与える制御弁4を使用した場合、曲線Bは第
4図に示すように吸入空気に旋回を与えると共に
抵抗を与えるインレツトガイドベーン式制御弁1
2を使用した場合を示している。又第5図、第6
図中、X1,X2は吸入空気温度に対応したターボ
圧縮機1の特性曲線、Y1,Y2は同サージライン、
P1,P2はターボ圧縮機1から吐出された圧縮空
気の圧力(一定)の線である。
Figures 5 and 6 show the relationship between the shaft horsepower of the turbo compressor 1, the pressure of the compressed air discharged from the turbo compressor 1 (vertical axis), and the amount of intake air (horizontal axis) in the conventional device described above. So, Figure 5 shows that the atmospheric temperature is
At 30℃, Figure 6 shows the atmospheric temperature at -10℃, and in Figures 5 and 6, curve A provides resistance to the intake air without swirling it as shown in Figure 3. When the control valve 4 is used, the curve B shows the inlet guide vane type control valve 1 which gives a swirl to the intake air and also provides resistance as shown in Fig. 4.
2 is used. Also, Figures 5 and 6
In the figure, X 1 and X 2 are the characteristic curves of the turbo compressor 1 corresponding to the intake air temperature, Y 1 and Y 2 are the same surge line,
P 1 and P 2 are lines of pressure (constant) of compressed air discharged from the turbo compressor 1.

[考案が解決しようとする課題] 夏期のように大気温度が30℃のときは、圧力が
P1(一定)になるよう制御する場合、第5図に示
すように曲線B、すなわち、インレツトガイドベ
ーン式制御弁12を使用した方が、圧縮空気消費
量の減少等による吸入空気減量時の消費動力は少
くてすむが、冬期のように空気温度が低温になつ
た−10℃のときは、圧力がP2(一定)になるよう
制御する場合、第6図に曲線Bで示すように、イ
ンレツトガイドベーン式制御弁12を使用してい
ると吸入空気量は定格空気量の85%までしか減量
できない。これは、インレツトガイドベーン式制
御弁12の角度が約70゜以上になると、すなわち、
吸入空気量を85%よりも減量しようとした場合に
は、ひねりが大きすぎて空気に旋回をうまく与え
ることができなくなり、空気の流れが大きく乱
れ、軸馬力が低減しなくなるためである。
[Problem that the invention aims to solve] When the atmospheric temperature is 30℃, as in the summer, the pressure is
When controlling to maintain P 1 (constant), it is better to use curve B as shown in Fig. 5, that is, the inlet guide vane type control valve 12, when the intake air is reduced due to a decrease in compressed air consumption, etc. However, when the air temperature is low (-10℃) like in winter, if the pressure is controlled to be P 2 (constant), the power consumption is as shown by curve B in Figure 6. Furthermore, if the inlet guide vane type control valve 12 is used, the amount of intake air can only be reduced to 85% of the rated air amount. This occurs when the angle of the inlet guide vane type control valve 12 becomes approximately 70° or more, that is,
This is because if an attempt is made to reduce the amount of intake air by more than 85%, the twist will be too large and it will not be possible to properly give swirl to the air, the air flow will be greatly disturbed, and the shaft horsepower will not be reduced.

本考案はこのような従来の欠点を改善し、吸入
空気の減量範囲を広くし、効率を上昇させようと
するものである。
The present invention aims to improve the conventional drawbacks, widen the range of reduction in intake air, and improve efficiency.

[課題を解決するための手段] 本考案は、ターボ圧縮機の入口側上流に設置さ
れ且つ吸入空気に旋回流を与えることなく抵抗を
与える制御弁と、該制御弁に対し直列に接続され
且つ吸入空気に旋回流を与えると共に抵抗を与え
るインレツトガイドベーン式制御弁と、前記ター
ボ圧縮機から吐出される吐出空気の圧力を検出す
る圧力検出器と、該圧力検出器で検出した吐出空
気の圧力に対応して前記制御弁の開度を制御する
圧力指示制御器と、前記吸入空気の温度を検出す
る温度検出器と、該温度検出器で検出した吸入空
気の温度に対応して前記インレツトガイドベーン
式制御弁の開度を制御する温度指示制御器を設け
たものである。
[Means for Solving the Problems] The present invention includes a control valve that is installed upstream on the inlet side of a turbo compressor and that provides resistance to intake air without creating a swirl flow, and a control valve that is connected in series to the control valve and an inlet guide vane type control valve that provides swirling flow to intake air and resistance; a pressure detector that detects the pressure of the discharge air discharged from the turbo compressor; and a pressure detector that detects the pressure of the discharge air discharged from the turbo compressor; a pressure indicating controller that controls the opening degree of the control valve in response to the pressure; a temperature detector that detects the temperature of the intake air; It is equipped with a temperature indicating controller that controls the opening degree of the let guide vane type control valve.

[作用] 空気温度が所定温度より高温のときは、圧力制
御により吸入空気に旋回を与えると共に抵抗を与
えるインレツトガイドベーン式制御弁が吸入空気
量を減量し、空気温度が所定より低温のときは、
温度制御により吸入空気に旋回を与えることなく
抵抗を与える制御弁が吸入空気量を減量するよう
になる。
[Function] When the air temperature is higher than a predetermined temperature, the inlet guide vane type control valve, which gives swirl to the intake air and provides resistance, reduces the amount of intake air by pressure control, and when the air temperature is lower than the predetermined temperature, teeth,
Through temperature control, a control valve that provides resistance without swirling the intake air reduces the amount of intake air.

[実施例] 以下、本考案の実施例を図面に基づいて説明す
る。
[Example] Hereinafter, an example of the present invention will be described based on the drawings.

第1図は本考案の一実施例であり、本実施例で
は、第4図に示す圧縮空気製造装置において、空
気吸入管3の吸入フイルタ2とインレツトガイド
ベーン12の間に、吸入空気に旋回流を与えるこ
とくなく抵抗を与える制御弁(例えばバタフライ
弁、玉形弁、仕切弁、ボール弁等)13を設ける
と共に温度検出器14を設け、温度検出器14で
検出した吸入空気温度に基づき、制御弁13を制
御するようにしたものである。なお、図中第4図
に示す符号と同一のものには同一の符号が付して
ある。
FIG. 1 shows an embodiment of the present invention. In this embodiment, in the compressed air production apparatus shown in FIG. A control valve (for example, a butterfly valve, a globe valve, a gate valve, a ball valve, etc.) 13 that provides resistance without giving a swirling flow is provided, and a temperature sensor 14 is provided, so that the temperature of the intake air detected by the temperature sensor 14 is adjusted. Based on this, the control valve 13 is controlled. Components in the figure that are the same as those shown in FIG. 4 are given the same reference numerals.

空気の温度が、ある所定の温度、例えば5℃以
上のときには吸入空気に旋回を与えることなく抵
抗を与える制御弁14を全開にしておいて、イン
レツトガイドベーン式制御弁12で吸入空気の圧
力制御を行うことによりターボ圧縮機1の吸入空
気の減量を依存し、大気の温度が上記より低温の
5℃〜−40℃のときは、温度検出器14で検出し
た吸入空気温度12に基づいて絶対温度に比する
ような特性で吸入空気に旋回を与えることなく抵
抗を与える制御弁14を絞り、ターボ圧縮機1へ
吸入される吸入空気に抵抗を与え、吸入圧力を低
下させる。第2図に示す曲線Cは、第1図の装置
で−10℃の大気を圧縮するときにおけるターボ圧
縮機1の軸馬力と吸入空気量との関係を示すもの
である。このようにターボ圧縮機1へ吸入される
吸入空気を減圧させて吸入空気量を減量すること
により、ターボ圧縮機1の軸馬力が著しく低下す
る。
When the temperature of the air is above a certain predetermined temperature, for example 5°C, the control valve 14 that provides resistance without swirling the intake air is fully opened, and the inlet guide vane control valve 12 increases the pressure of the intake air. By performing control, the amount of intake air of the turbo compressor 1 is reduced, and when the atmospheric temperature is lower than the above, 5°C to -40°C, the intake air temperature 12 detected by the temperature detector 14 is The control valve 14, which provides resistance without swirling the intake air with a characteristic comparable to absolute temperature, is throttled to provide resistance to the intake air drawn into the turbo compressor 1, thereby lowering the intake pressure. Curve C shown in FIG. 2 shows the relationship between the shaft horsepower of the turbo compressor 1 and the amount of intake air when compressing -10 DEG C. atmospheric air using the device shown in FIG. By reducing the pressure of the intake air taken into the turbo compressor 1 in this way and reducing the amount of intake air, the shaft horsepower of the turbo compressor 1 is significantly reduced.

[考案の効果] 本考案は冬期等の低温時に、ターボ圧縮機の吸
入空気の減量範囲を広くし、効率も上昇させて省
エネルギに寄与することができる。
[Effects of the Invention] The present invention can widen the range of reduction in intake air of the turbo compressor during low temperatures such as in winter, and can also improve efficiency and contribute to energy saving.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例の系統図、第2図は
第1図の装置の特性を示すグラフ、第3図、第4
図は従来装置の系統図、第5図、第6図は従来装
置の特性を示すグラフである。 図中、1はターボ圧縮機、6は圧力検出器、7
は圧力指示制御器、12は吸入空気に旋回を与え
ると共に抵抗を与えるインレツトガイドベーン式
制御弁、13は吸入空気に旋回を与えることなく
抵抗を与える制御弁、14は温度検出器、15は
圧力指示制御器を示す。
Fig. 1 is a system diagram of an embodiment of the present invention, Fig. 2 is a graph showing the characteristics of the device shown in Fig. 1, Figs.
The figure is a system diagram of a conventional device, and FIGS. 5 and 6 are graphs showing characteristics of the conventional device. In the figure, 1 is a turbo compressor, 6 is a pressure detector, and 7 is a turbo compressor.
12 is a pressure indicating controller, 12 is an inlet guide vane type control valve that gives a swirl to the intake air and also provides resistance, 13 is a control valve that provides resistance without giving a swirl to the intake air, 14 is a temperature sensor, and 15 is a temperature sensor. Shows pressure indicating controller.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] ターボ圧縮機の入口側上流に設置され且つ吸入
空気に旋回流を与えることなく抵抗を与える制御
弁と、該制御弁に対し直列に接続され且つ吸入空
気に旋回流を与えると共に抵抗を与えるインレツ
トガイドベーン式制御弁と、前記ターボ圧縮機か
ら吐出される吐出空気の圧力を検出する圧力検出
器と、該圧力検出器で検出した吐出空気の圧力に
対応して前記制御弁の開度を制御する圧力指示制
御器と、前記吸入空気の温度を検出する温度検出
器と、該温度検出器で検出した吸入空気の温度に
対応して前記インレツトガイドベーン式制御弁の
開度を制御する温度指示制御器を設けたことを特
徴とする圧縮空気製造装置。
A control valve that is installed upstream of the inlet side of the turbo compressor and provides resistance to the intake air without giving it a swirling flow, and an inlet that is connected in series to the control valve and gives a swirling flow to the intake air and also provides resistance. a guide vane type control valve; a pressure detector for detecting the pressure of discharge air discharged from the turbo compressor; and controlling the opening degree of the control valve in response to the pressure of the discharge air detected by the pressure detector. a temperature detector for detecting the temperature of the intake air; and a temperature sensor for controlling the opening degree of the inlet guide vane type control valve in response to the temperature of the intake air detected by the temperature detector. A compressed air production device characterized by being equipped with an instruction controller.
JP5315285U 1985-04-10 1985-04-10 Expired JPH0335912Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5315285U JPH0335912Y2 (en) 1985-04-10 1985-04-10

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5315285U JPH0335912Y2 (en) 1985-04-10 1985-04-10

Publications (2)

Publication Number Publication Date
JPS61169297U JPS61169297U (en) 1986-10-20
JPH0335912Y2 true JPH0335912Y2 (en) 1991-07-30

Family

ID=30573746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5315285U Expired JPH0335912Y2 (en) 1985-04-10 1985-04-10

Country Status (1)

Country Link
JP (1) JPH0335912Y2 (en)

Also Published As

Publication number Publication date
JPS61169297U (en) 1986-10-20

Similar Documents

Publication Publication Date Title
TWI507606B (en) Multiple capacity centrifugal compressor and control method thereof
CN106288197A (en) A kind of air conditioning control method based on pid algorithm and system thereof
CN109059217B (en) Total air volume control method of variable air volume air conditioning system based on operation curve
CN109556219B (en) Variable air volume air conditioning unit and control method thereof
CN109026801A (en) A kind of single shaft Systems of Centrifugal Compressor Unit and low energy consumption operating method
CN106704241A (en) Fan stable operation control method
CN105543443A (en) Antisurge control system of converter gas pressuring machine and method
CN104989661A (en) Anti-surge energy-saving control device of single-stage high-speed centrifugal air blower
JPH0335912Y2 (en)
CN208536173U (en) Air conditioner exhaust system and Integral ceiling
CN207395097U (en) A kind of room air automatic regulating system
CN108036438A (en) A kind of energy-saving fresh air system
JPH0131877Y2 (en)
JPH0746797Y2 (en) Compressed air manufacturing equipment
JPS62225842A (en) Air conditioner
JPS59153046A (en) Concentrated suction/exhaust air device
CN107560102A (en) A kind of VAV variable air volume systems total blast volume method control strategy
CN111442423A (en) Garage air supplementing and dehumidifying device and method
JPS61126399A (en) Capacity controller for compressor or blower
JPS623178A (en) Air conditioner
CN109028666A (en) A kind of regulation accurately grain depot inner ring road temperature control pipeline device
CN211953393U (en) System for controlling upper limit of humidity of refrigeration house by using dry compressed air and control system
CN210717963U (en) Power distribution type self-balancing ventilation system
CN213027129U (en) Ventilation and waste heat utilization system of full underground substation
JPH0229533A (en) Control method for outdoor air intake in vav control system