JPH03358B2 - - Google Patents

Info

Publication number
JPH03358B2
JPH03358B2 JP62018164A JP1816487A JPH03358B2 JP H03358 B2 JPH03358 B2 JP H03358B2 JP 62018164 A JP62018164 A JP 62018164A JP 1816487 A JP1816487 A JP 1816487A JP H03358 B2 JPH03358 B2 JP H03358B2
Authority
JP
Japan
Prior art keywords
sio
carbon black
fine powder
water cooling
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62018164A
Other languages
Japanese (ja)
Other versions
JPS63190800A (en
Inventor
Toshio Nakada
Fumio Takemura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP62018164A priority Critical patent/JPS63190800A/en
Publication of JPS63190800A publication Critical patent/JPS63190800A/en
Publication of JPH03358B2 publication Critical patent/JPH03358B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/005Growth of whiskers or needles
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、金属、セラミツク、プラスチツクな
どの複合強化材として有用なSiCウイスカーの製
造方法に関する。 〔従来の技術〕 SiCウイスカーの生成反応には、使用するSi源
原料および炭材の種類、これら原料系の配合比
率、混合の方法、反応の雰囲気と温度、触媒の種
類など多様な因子が関与し、得られるウイスカー
の品質や収率はこれらの条件因子によつて大きく
支配される。とくにSi源原料としてSiO2の粉末、
炭材にカーボン粉末を用いる固相原料系の生成反
応においては、原料成分のミクロな均質分散とバ
ルギーな混合状態を形成するような混合方法を採
ることがシヨツトを含まない高品質なSiCウイス
カーを安定して得るための重要な決め手となる。 これまで原料成分の混合には、微粉末を二次的
に機械撹拌する方法が汎用されている。この方法
を用いる場合、炭材成分として本来的に超微細な
粒子形態をもつカーボンブラツクを適用すると
SiO2粉末との相互分散もかなり均質化する。さ
らに、大きな比表面積と高次に発達したストラク
チアーを備える特性範囲のカーボンブラツクを用
いると、混合体の嵩も増大することからSiCウイ
スカーの結晶生成ならびに成長が効果的に進行す
る(特開昭61−127700号)。 ところが、上記の機械撹拌混合法はSiO2粉末
を極力微細化してもカーボンブラツクとの十分な
均質分散は得難く、また均質分散状態が得られて
もその後のハンドリング過程で偏析現象を生じ易
い難点がある。 このような難点を解消するため、水蒸気を含む
熱ガス中にSiCl4、HSiCl3のような分解性のケイ
素化合物とメタノール、ベンゼン、灯油、クレオ
ソート油などの炭素化合物を送入してケイ素酸化
物と単体炭素を含む混合エーロゾルを生成させ、
この分散質を捕集することにより嵩比重が0.2
g/c.c.以下で均一性が高く、かつ構成粒度の細か
い混合原料系を得るSiCウイスカーの製造手段が
提案(特開昭59−121198号)されている。 〔発明が解決しようとする問題点〕 上記した特開昭59−121198号に係る方法は、気
相熱分解によつてケイ素酸化物と単体炭素との混
合エーロゾルを形成するため良好な均質分散性を
与えることができるが、Si源原料としてハロゲン
あるいはシラン系のような取扱いにくい分解性ケ
イ素化合物を用いる関係で装置および操業面での
煩雑性は避けられない。 〔問題点を解決するための手段〕 本発明は先行技術とは異なり、Si源原料と炭材
の混合にフアーネスカーボンブラツクの発生手法
を取入れることによつて高品質のSiCウイスカー
を安定かつ安全に量産し得る製造方法の開発に至
つたものである。 すなわち、本発明の構成は、高温燃焼ガス気流
中に炭化水素原料油を噴射し熱分解反応によりカ
ーボンブラツクを生成したのち水冷して反応を停
止するフアーネスカーボンブラツクの発生プロセ
スにおいて、前記水冷位置以後の高温系内に
SiO2微粉を導入し、捕集されたC−SiO2分散混
合物を非酸化性雰囲気下1300〜1800℃の温度に加
熱することを特徴とする。 本発明に適用されるフアーネスカーボンブラツ
クの発生プロセスには、炭化水素燃料と空気また
は酸素を含む適宜な酸化剤とを燃焼させて得られ
る高温燃焼ガス流中で原料炭化水素の蒸気を急速
に熱分解し、熱分解生成物を急水冷して浮遊する
生成カーボンブラツクを分離回収する常用のオイ
ルフアーネス法を用いることができるが、可及的
に高位の比表面積ならびにストラクチヤーを得る
ような発生条件を設定することが望ましい。 上記の発生プロセスにおいて、水冷位置以後の
安定した高温ゾーンへSiO2の微粉を導入する。
この導入位置の特定化は本発明の不可欠の要件
で、水冷位置より前のカーボンブラツク生成反応
ゾーンにSiO2微粉を導入した場合には複雑な反
応を生じ、粒状SiCを爽雑する不整状なカーボン
ブラツクに転化する。 導入するSiO2の微粉としては、硅石、シリカ
ゲルなどを微粉砕したもの、あるいはホワイトカ
ーボン等用いられるが、粒子径が100μm以下の
微細粉の使用が好適である。これらSiO2の微粉
は水冷位置以後の適宜な箇所から固体状態を噴入
することもできるが、これを冷却水に懸濁したサ
スペンジヨンの形態で冷却位置からフアーネス内
に供給する方法をとると、水分が揮散蒸発する過
程で凝集の解離分散が生じて均一化を一層促進
し、また操業の上からも実務的である。 この場合、水冷位置以後の高温系内にSiO2
微粉と共に、あるいはこれと別個にSiCウイスカ
ーの成長を助長する触媒成分を添加することもで
きる。有効な触媒成分はFe、NiもしくはCoから
選ばれる遷移金属物質で、無機塩類を溶解した水
溶液の状態で添加される。 SiO2微粉を導入して生成したC−SiO2分散混
合物は、バツグフイルターなどの捕集装置を用い
てガス流から分離捕集される。 このようにして得られたC−SiO2分散混合物
からなる原料系は、これを黒鉛反応容器に充填
し、非酸化性雰囲気に保持した電気炉中で1300〜
1800℃で、望ましくは1500〜1700℃の温度域で加
熱反応させてSiCウイスカーを生成する。 〔作用〕 上記の構成によれば、導入したSiO2微粉と生
成カーボンブラツク含有ガス流との急激な相互接
触を介してSiO2粒子表面にカーボンブラツクが
付着固化した極めて一様な均質分散と嵩高な混合
状態を形成する。したがつて、常に高品質なSiC
ウイスカーを安定して量産しえる原料系を確保す
ることが可能となる。 また、原料物質にハロゲン化合物などを用いて
いないから、混合過程を通じて有害ガスの発生な
ど操業上のトラブルを伴うこともない。 〔実施例、比較例〕 炉頭部に接線方向空気供給口と炉軸方向に挿着
した燃焼バーナーおよび原料油噴射ノズルを備え
る燃焼室(直径250mm、長さ600mm)、該燃焼室と
同軸的に連設した狭径反応室(直径50mm、長さ
400mm)および引続く広径反応室(直径200mm、長
さ2000mm)とから構成され、広径反応室の後部位
置に3段階の反応停止用冷却水噴入ノズル(冷却
位置−:広径反応室入口から500mm、1000mm、
1500mmの各位置)を装着したオイルフアーネス炉
を設置した。前記オイルフアーネス炉の後段に
は、空冷導管を介して粉体捕集用のバツグフイル
ター装置をセツトした。 この装置を適用し、原料油に比重(15/4℃)
1.07、粘度(エングラー、40/20℃)1.80、トル
エン不溶分0.03、相関係数(BMCI)145の性状
をもつ芳香族炭化水素油を、また燃料油には比重
(15/14℃)0.980、粘度(cp/19℃)1.0、残炭
分0.6の性状をもつ炭化水素油を用いて、発生条
件の異なる2種のカーボンブラツクを発生させ
た。この際、第1段目の冷却水噴入ノズルから供
給する冷却水に最大粒径7μm、平均粒径42μmの
SiO2微粉を懸濁させると共に少量のCoCl2を溶解
させて炉内に導入した。最終的にバツグフイルタ
ーで捕集されたC−SiO2−Co化合物系の分散混
合物の組成、含有カーボンブラツクの特性等の性
状を発生条件と対比させて表に示した。 なお、表の項目中、SiO2微粉の導入量は生
成カーボンブラツクに対する重量比率(%)、
CoCl2添加量は導入SiO2微粉に対する重量比率
(%)として示し、C−SiO2−Co化合物生成比率
(wt%)は燃焼法および原子吸光分析法により測
定された値を用いた。
[Industrial Application Field] The present invention relates to a method for producing SiC whiskers useful as composite reinforcing materials for metals, ceramics, plastics, and the like. [Prior art] Various factors are involved in the SiC whisker production reaction, including the types of Si source raw materials and carbon materials used, the blending ratio of these raw materials, the mixing method, the reaction atmosphere and temperature, and the type of catalyst. However, the quality and yield of whiskers obtained are largely controlled by these conditional factors. In particular, SiO 2 powder as a Si source raw material,
In the production reaction of a solid-phase raw material system that uses carbon powder as the carbonaceous material, it is possible to produce high-quality SiC whiskers that do not contain shot by adopting a mixing method that creates a microscopic homogeneous dispersion of the raw material components and a bulgy mixed state. This is an important deciding factor for stable acquisition. Until now, a method of secondary mechanical stirring of fine powder has been widely used for mixing raw material components. When using this method, if carbon black, which inherently has an ultra-fine particle morphology, is used as a carbon material component,
The mutual dispersion with SiO 2 powder is also considerably homogenized. Furthermore, when carbon black with a characteristic range of a large specific surface area and highly developed structure is used, the bulk of the mixture increases, so crystal formation and growth of SiC whiskers proceed effectively (Japanese Patent Application Laid-Open No. 61-127700). However, the above-mentioned mechanical stirring mixing method has the disadvantage that even if the SiO 2 powder is made as fine as possible, it is difficult to obtain sufficient homogeneous dispersion with carbon black, and even if a homogeneous dispersion state is obtained, segregation phenomena are likely to occur during the subsequent handling process. There is. In order to overcome these difficulties, silicon oxidation is carried out by introducing decomposable silicon compounds such as SiCl 4 and HSiCl 3 and carbon compounds such as methanol, benzene, kerosene, and creosote oil into hot gas containing water vapor. Generates a mixed aerosol containing substances and elemental carbon,
By collecting this dispersoid, the bulk specific gravity can be reduced to 0.2
A method for producing SiC whiskers has been proposed (Japanese Patent Application Laid-Open No. 121198/1983) which produces a mixed raw material system with high uniformity of less than g/cc and fine constituent particle size. [Problems to be Solved by the Invention] The method according to JP-A-59-121198 described above has good homogeneous dispersibility because it forms a mixed aerosol of silicon oxide and elemental carbon by vapor phase thermal decomposition. However, since the Si source material uses decomposable silicon compounds such as halogens or silanes, which are difficult to handle, complexity in terms of equipment and operation cannot be avoided. [Means for solving the problem] Unlike the prior art, the present invention stably and stably produces high-quality SiC whiskers by incorporating a furnace carbon black generation method into the mixture of Si source material and carbon material. This led to the development of a manufacturing method that allows for safe mass production. That is, the configuration of the present invention is such that in the furnace carbon black generation process, in which hydrocarbon feedstock oil is injected into a high-temperature combustion gas stream to generate carbon black through a thermal decomposition reaction, the reaction is stopped by water cooling. In the subsequent high temperature system
It is characterized by introducing SiO 2 fine powder and heating the collected C-SiO 2 dispersion mixture to a temperature of 1300 to 1800° C. in a non-oxidizing atmosphere. The furnace carbon black generation process applied to the present invention involves rapidly converting feedstock hydrocarbon vapor into a hot combustion gas stream obtained by burning a hydrocarbon fuel and a suitable oxidizing agent including air or oxygen. The conventional oil furnace method of pyrolysis and rapid water cooling of the pyrolysis product to separate and recover the suspended carbon black can be used; It is desirable to set conditions. In the above generation process, fine powder of SiO 2 is introduced into a stable high temperature zone after the water cooling position.
Specifying the introduction position is an essential requirement of the present invention.If SiO 2 fine powder is introduced into the carbon black generation reaction zone before the water cooling position, a complex reaction will occur, resulting in an irregular shape that contaminates the granular SiC. Converts to carbon black. As the SiO 2 fine powder to be introduced, finely pulverized silica, silica gel, etc., or white carbon may be used, but it is preferable to use a fine powder with a particle size of 100 μm or less. These fine powders of SiO 2 can be injected in a solid state from an appropriate point after the water cooling position, but if you take the method of supplying it in the form of a suspension suspended in cooling water from the cooling position into the furnace. In the process of volatilization and evaporation of water, dissociation and dispersion of agglomerates occurs, further promoting homogenization, and is also practical from an operational point of view. In this case, a catalyst component that promotes the growth of SiC whiskers can be added together with or separately from the SiO 2 fine powder into the high temperature system after the water cooling position. The effective catalyst component is a transition metal material selected from Fe, Ni or Co, which is added in the form of an aqueous solution containing dissolved inorganic salts. The C-SiO 2 dispersion mixture produced by introducing the SiO 2 fine powder is separated and collected from the gas stream using a collection device such as a bag filter. The raw material system consisting of the C-SiO 2 dispersion mixture obtained in this way was filled into a graphite reaction vessel and placed in an electric furnace maintained in a non-oxidizing atmosphere for 1300~
SiC whiskers are produced by a heating reaction at 1800°C, preferably in a temperature range of 1500 to 1700°C. [Operation] According to the above structure, carbon black adheres and solidifies to the SiO 2 particle surface through rapid mutual contact between the introduced SiO 2 fine powder and the generated carbon black-containing gas flow, resulting in extremely uniform homogeneous dispersion and bulkiness. form a mixed state. Therefore, always high quality SiC
It becomes possible to secure a raw material system that allows stable mass production of whiskers. Furthermore, since no halogen compounds are used as raw materials, no operational troubles such as the generation of harmful gases occur during the mixing process. [Example, Comparative Example] A combustion chamber (diameter 250 mm, length 600 mm) equipped with a tangential air supply port in the furnace head, a combustion burner inserted in the axial direction of the furnace, and a raw oil injection nozzle, coaxial with the combustion chamber. A narrow-diameter reaction chamber (diameter 50 mm, length
400mm) and a wide-diameter reaction chamber (diameter 200mm, length 2000mm), with a cooling water injection nozzle for stopping the reaction in three stages at the rear of the wide-diameter reaction chamber (cooling position: wide-diameter reaction chamber). 500mm, 1000mm from the entrance,
An oil furnace equipped with 1500mm (1500mm at each position) was installed. A bag filter device for collecting powder was installed downstream of the oil furnace via an air cooling conduit. Applying this equipment, the specific gravity (15/4℃) of raw oil
1.07, viscosity (Engler, 40/20℃) 1.80, toluene insoluble content 0.03, correlation coefficient (BMCI) 145, and fuel oil with specific gravity (15/14℃) 0.980, Two types of carbon black were generated under different generation conditions using a hydrocarbon oil with a viscosity (cp/19°C) of 1.0 and a residual carbon content of 0.6. At this time, the cooling water supplied from the first stage cooling water injection nozzle has a maximum particle size of 7 μm and an average particle size of 42 μm.
SiO 2 fine powder was suspended and a small amount of CoCl 2 was dissolved and introduced into the furnace. The composition of the dispersion mixture of the C--SiO 2 --Co compound finally collected by the bag filter, the properties of the contained carbon black, and other properties are shown in the table in comparison with the generation conditions. In addition, in the items in the table, the amount of introduced SiO 2 fine powder is the weight ratio (%) to the produced carbon black,
The amount of CoCl 2 added was expressed as a weight ratio (%) to the introduced SiO 2 fine powder, and the C-SiO 2 -Co compound production ratio (wt%) was determined by a combustion method and an atomic absorption spectrometry method.

【表】 得られたC−SiO2−Co化合物系の分散混合物
40gを内径60mm、高さ150mm高純度黒鉛製反応容
器に軽く充填したのち黒鉛蓋を付して電気炉内に
セツトし、炉内を非酸化性雰囲気に保持しながら
1600℃の温度に2時間保持してSiCウイスカーを
反応生成させた。反応生成物を反応容器から取出
し、大気中700℃の温度で熱処理して未反応のカ
ーボンブラツクを燃焼除去した。このようにして
製造したSiCウイスカーの物理性状を表に示し
た。 なお、比較のために従来の機械的混合法に従
い、実施例Run No.1と同一特性(N2SA150
m2/g、DBP吸油量130ml/100g)のカーボン
ブラツクに50wt%のSiO2微粉およびSiO2微粉量
に対し2.0wt%のCoCl2を加え、V型混合機で撹
拌混合したC−SiO2−CoCl2比率(wt%)66.2:
33.1:0.7の組成をもつ混合原料を用いて実施例
と同一条件で製造したSiCウイスカーの性状につ
いても表に併載した。
[Table] Obtained dispersion mixture of C-SiO 2 -Co compound system
After lightly filling 40 g into a high-purity graphite reaction vessel with an inner diameter of 60 mm and a height of 150 mm, a graphite lid was attached and the reactor was placed in an electric furnace, while maintaining the inside of the furnace in a non-oxidizing atmosphere.
The temperature was maintained at 1600°C for 2 hours to react and generate SiC whiskers. The reaction product was taken out from the reaction vessel and heat treated in the atmosphere at a temperature of 700°C to burn off unreacted carbon black. The physical properties of the SiC whiskers produced in this way are shown in the table. For comparison, according to the conventional mechanical mixing method, the same characteristics as Example Run No. 1 (N 2 SA150
50 wt% SiO 2 fine powder and 2.0 wt% CoCl 2 based on the amount of SiO 2 fine powder were added to carbon black with a DBP oil absorption of 130 ml/100 g), and C-SiO 2 was mixed with stirring using a V- type mixer. −CoCl2 ratio (wt%) 66.2:
The properties of SiC whiskers produced under the same conditions as in the examples using a mixed raw material having a composition of 33.1:0.7 are also listed in the table.

〔発明の効果〕〔Effect of the invention〕

本発明は、生成SiCウイスカーの品質の大きく
支配する原料成分の均質分散度合を操業的な困難
性を伴うことなしに著しく改善し、よつてシヨツ
ト含有量の少ない高品位のSiCウイスカーの安定
量産化を可能としたのであるから工業的価値は頗
る大である。
The present invention significantly improves the degree of homogeneous dispersion of raw material components, which largely controls the quality of produced SiC whiskers, without any operational difficulties, and thus enables stable mass production of high-quality SiC whiskers with low shot content. The industrial value is enormous because it made this possible.

Claims (1)

【特許請求の範囲】 1 高温燃焼ガス気流中に炭化水素原料油を噴射
し熱分解反応によりカーボンブラツクを生成した
のち水冷して反応を停止するフアーネスカーボン
ブラツクの発生プロセスにおいて、前記水冷位置
以後の高温系内にSiO2微粉を導入し、捕集され
たC−SiO2分散混合物を非酸化性雰囲気下1300
〜1800℃の温度に加熱することを特徴とするSiC
ウイスカーの製造方法。 2 水冷位置以後の高温系内にSiO2微粉と共に、
あるいはこれとは別個にFe、NiもしくはCoから
選ばれた触媒成分を水溶液状態で添加する特許請
求の範囲第1項記載のSiCウイスカーの製造方
法。 3 SiO2微粉を冷却水に懸濁させて水冷位置か
ら導入する特許請求の範囲第1項記載のSiCウイ
スカーの製造方法。
[Scope of Claims] 1. In the furnace carbon black generation process in which hydrocarbon feedstock oil is injected into a high-temperature combustion gas stream, carbon black is generated through a thermal decomposition reaction, and the reaction is stopped by water cooling, the furnace carbon black is generated after the water cooling position. SiO 2 fine powder was introduced into the high-temperature system, and the collected C-SiO 2 dispersion mixture was heated to
SiC characterized by heating to a temperature of ~1800℃
Whisker manufacturing method. 2 SiO 2 fine powder is contained in the high temperature system after the water cooling position.
Alternatively, the method for producing SiC whiskers according to claim 1, wherein a catalyst component selected from Fe, Ni, or Co is added in an aqueous solution state. 3. The method for producing SiC whiskers according to claim 1, wherein the SiO 2 fine powder is suspended in cooling water and introduced from the water cooling position.
JP62018164A 1987-01-30 1987-01-30 Production of sic whisker Granted JPS63190800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62018164A JPS63190800A (en) 1987-01-30 1987-01-30 Production of sic whisker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62018164A JPS63190800A (en) 1987-01-30 1987-01-30 Production of sic whisker

Publications (2)

Publication Number Publication Date
JPS63190800A JPS63190800A (en) 1988-08-08
JPH03358B2 true JPH03358B2 (en) 1991-01-07

Family

ID=11963967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62018164A Granted JPS63190800A (en) 1987-01-30 1987-01-30 Production of sic whisker

Country Status (1)

Country Link
JP (1) JPS63190800A (en)

Also Published As

Publication number Publication date
JPS63190800A (en) 1988-08-08

Similar Documents

Publication Publication Date Title
JP3383608B2 (en) Apparatus for synthesizing nanocrystalline materials
Koc et al. Synthesis of beta silicon carbide powders using carbon coated fumed silica
US2819151A (en) Process for burning silicon fluorides to form silica
WO1983004188A1 (en) Process for manufacturing metal carbides and their precursors
JPH0455736B2 (en)
US4904622A (en) Process for the preparation of silicon carbide whiskers
JPS60118615A (en) Production of novel carbon-containing composition and novel sialon
JPH03358B2 (en)
US3211527A (en) Process for producing ultrafine silicon nitride
JPH08506312A (en) Method for producing silicon carbide
JP2519347B2 (en) Carbide compound manufacturing method
JPH0118005B2 (en)
JP2536849B2 (en) Β-crystal silicon carbide powder for sintering
JP3154773B2 (en) Method for producing particulate silicon carbide
JP2916303B2 (en) Carbon containing composition
JPH06166510A (en) Production of silicon carbide fine powder
JPH04362009A (en) Production of fine particle beta type silicon carbide
JPH04270199A (en) Production of silicon carbide whisker
JPS6250402B2 (en)
JPS5983922A (en) Preparation of silicon carbide powder
JPH0339988B2 (en)
CN117916193A (en) Plasma arc process and apparatus for producing fumed silica
JPH0481544B2 (en)
EP0587888B1 (en) Process for producing a carbonaceous composition
JPS59102871A (en) Novel carbon-containing mixture, novel composite carbide andmanufacture of composite carbide sintered body