JPH0335574B2 - - Google Patents

Info

Publication number
JPH0335574B2
JPH0335574B2 JP59269932A JP26993284A JPH0335574B2 JP H0335574 B2 JPH0335574 B2 JP H0335574B2 JP 59269932 A JP59269932 A JP 59269932A JP 26993284 A JP26993284 A JP 26993284A JP H0335574 B2 JPH0335574 B2 JP H0335574B2
Authority
JP
Japan
Prior art keywords
combustion
catalyst layer
combustion catalyst
layer
oxidation catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59269932A
Other languages
Japanese (ja)
Other versions
JPS61147014A (en
Inventor
Ryoji Shimada
Yoshuki Gokaja
Ikuo Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59269932A priority Critical patent/JPS61147014A/en
Publication of JPS61147014A publication Critical patent/JPS61147014A/en
Publication of JPH0335574B2 publication Critical patent/JPH0335574B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/12Radiant burners
    • F23D14/18Radiant burners using catalysis for flameless combustion

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、触媒体上に気体燃料あるいは気化さ
せた液体燃料を供給し、燃焼用空気によつて前記
の燃料を触媒酸化させ、その反応により生じた燃
焼熱および輻射熱を利用する触媒バーナに関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention supplies gaseous fuel or vaporized liquid fuel onto a catalyst body, catalytically oxidizes the fuel with combustion air, and oxidizes the fuel produced by the reaction. This invention relates to a catalytic burner that utilizes combustion heat and radiant heat.

従来の技術 従来この種の触媒バーナは、第2図に示すよう
に多数の小孔を有した燃料分散管1を裏面から設
置したバーナケース2内に、拡散材3とPt、Rh、
Pd等の白金族金属の内1種類以上を用いた酸化
触媒を一定の担持率で担持した単一の燃焼用触媒
層4を設けた構成になつており、燃料分散管1か
ら送入されたガス燃料は拡散材3の内部を均一に
拡散しながら燃焼用触媒層4内に至り、何らかの
着火手段で着火された後、燃焼用触媒層4の表面
上で定常的な触媒燃焼が行われるようになつてい
た。(例えば、特開昭58−213110号公報) 発明が解決しようとする問題点 しかしながら上記構成では、燃焼用触媒層4の
大気側、中央部、裏面部でそれぞれ反応性が異な
るため各部の温度も違いが生じる。特に燃焼用触
媒層の裏面部付近は燃料ガスの燃焼用空気に対す
る割合が非常に大であるため、燃焼ガスの一部し
か反応しないのに対し、燃焼触媒層の中央部に燃
料ガスが至れば、燃焼用空気の存在する割合が大
きくなり、反応は急激に進行するため急激に反応
温度は上昇する。また燃焼用触媒層4の大気側に
近い部分に燃料ガスが至る頃には、中央部で反応
しきれなかつた残余の燃料ガスが大量の拡散空気
によつて酸化されるため生じる反応熱は大ではな
く、同時に生じた反応熱を放出し、また拡散空気
の冷却作用も影響するため、最も低温部分を形成
する。したがつて、定常触媒酸化反応中の燃焼用
触媒層4の温度分布は、中央部が最も高温で、次
いで裏面付近、大気側付近となる。したがつて理
想的な酸化触媒の担持率の分布も中央部が最も多
量に必要とし、反応に関与する割合の低い裏面部
では低担持率ですみ、また燃焼用空気が大量に存
在する大気側付近は中央部よりも低担持率です
む。しかるに酸化触媒の担持率が各部で一定の単
一の燃焼用触媒層4では、反応性に対応した担持
率分布となり得ず、特に酸化触媒に白金族金属等
の高価なものを用いた場合、燃焼に必要な量の酸
化触媒量を得るためには相当な高コストを覚悟し
なければならなかつた。
BACKGROUND ART Conventionally, this type of catalytic burner has a burner case 2 in which a fuel dispersion pipe 1 having a large number of small holes is installed from the back side, as shown in FIG. 2, and a diffusion material 3 and Pt, Rh,
The structure includes a single combustion catalyst layer 4 that supports an oxidation catalyst using one or more types of platinum group metals such as Pd at a constant loading rate, and the fuel is fed from the fuel distribution pipe 1. The gaseous fuel reaches the combustion catalyst layer 4 while uniformly diffusing inside the diffusion material 3, and after being ignited by some kind of ignition means, steady catalytic combustion is carried out on the surface of the combustion catalyst layer 4. I was getting used to it. (For example, Japanese Unexamined Patent Publication No. 58-213110) Problems to be Solved by the Invention However, in the above configuration, the reactivity differs between the atmosphere side, the center portion, and the back surface portion of the combustion catalyst layer 4, so the temperature of each portion also varies. It makes a difference. Particularly near the back surface of the combustion catalyst layer, the ratio of fuel gas to combustion air is very large, so only a portion of the combustion gas reacts, whereas if the fuel gas reaches the center of the combustion catalyst layer, , the proportion of combustion air present increases, and the reaction proceeds rapidly, resulting in a rapid rise in reaction temperature. Furthermore, by the time the fuel gas reaches the part of the combustion catalyst layer 4 close to the atmosphere, the residual fuel gas that has not completely reacted in the central part is oxidized by a large amount of diffused air, so the reaction heat generated is large. Rather, the reaction heat generated at the same time is released, and the cooling effect of the diffused air also affects the temperature, so it forms the lowest temperature region. Therefore, the temperature distribution of the combustion catalyst layer 4 during the steady catalytic oxidation reaction has the highest temperature at the center, followed by the back surface and the atmosphere side. Therefore, the ideal distribution of the oxidation catalyst loading rate requires the largest amount in the central area, a lower loading rate in the back area where the proportion involved in the reaction is low, and the atmospheric side where a large amount of combustion air exists. The surrounding area requires a lower loading rate than the central area. However, in a single combustion catalyst layer 4 in which the oxidation catalyst loading rate is constant in each part, it is not possible to achieve a loading rate distribution that corresponds to the reactivity, especially when an expensive oxidation catalyst such as a platinum group metal is used. In order to obtain the amount of oxidation catalyst necessary for combustion, one had to be prepared for considerably high costs.

本発明はかかる従来の問題点を解消するもの
で、燃焼用触媒体の各層を反応性に応じた触媒性
能とし、効率的な酸化反応をさせ、かつ全体的な
触媒量の節減を行うことを目的とする。
The present invention solves these conventional problems by making each layer of the combustion catalyst have catalytic performance according to its reactivity, allowing efficient oxidation reaction, and reducing the overall amount of catalyst. purpose.

問題点を解決するための手段 上記の問題点を解決するために、本発明の触媒
バーナは、耐熱性セラミツク担体に酸化触媒を担
持した燃焼用触媒体を3層に分け、燃料供給部に
近い裏面層と拡散空気に近接する表面層の部分を
中央層よりも低い担持率にしたものである。
Means for Solving the Problems In order to solve the above problems, the catalytic burner of the present invention has a combustion catalyst body in which an oxidation catalyst is supported on a heat-resistant ceramic carrier, which is divided into three layers. The back layer and the surface layer close to the diffusion air have a lower loading rate than the central layer.

作 用 本発明は上記の構成によつて、燃料供給部から
供給された燃料ガスが燃焼用触媒体の裏面層で一
部反応し、温度上昇しながら最も酸化触媒の担持
率の高い中央層に至り、急激に反応が進み、同時
に急激に温度上昇しながら表面層に至る。表面層
では、燃料ガスの大半が燃焼し、未燃成分の完全
燃焼の段階となる。したがつて中央層における酸
化触媒の担持率を裏面層、表面層よりも比較的多
くして効率のよい、安価なものとなる。
Effects According to the present invention, with the above configuration, the fuel gas supplied from the fuel supply part partially reacts in the back layer of the combustion catalyst, and as the temperature rises, the fuel gas is transferred to the center layer where the oxidation catalyst is supported the highest. The reaction progresses rapidly and at the same time reaches the surface layer with a rapid temperature rise. In the surface layer, most of the fuel gas is combusted, and unburned components are completely combusted. Therefore, the supporting ratio of the oxidation catalyst in the center layer is relatively higher than that in the back layer and the surface layer, resulting in a highly efficient and inexpensive product.

実施例 以下、本発明の一実施例を添付の図面に基いて
説明を行う。
Embodiment An embodiment of the present invention will be described below with reference to the accompanying drawings.

第1図に於て、耐熱性金属からなるバーナケー
ス1の下部には燃料分散ノズル2が貫通設置さ
れ、通気抵抗が無視できる程度の高い開孔度を有
する金網あるいはラス網形式のスペーサ3と前記
バーナケース1によりガス室4が形成されてい
る。一方、スペーサ3から前方には、スペーサ3
に近接した部分から耐熱性セラミツク繊維成型体
からなる保温拡散材5、ニクロムヒータ線を一定
パターンで分布させた予熱器6、Al2O3・SiO2
の微小細孔を有しかつ高い比表面積を有する耐熱
性セラミツク繊維成型体を担体とし、0.2〜0.3%
のRhの担持率を有する裏面燃焼用触媒層7、同
様の担体に0.5〜1%のRh担持率を有する中央燃
焼用触媒層8、さらに同様の担体に0.2〜0.3%の
Rh担持率を有する表面燃焼用触媒層9があり、
表面燃焼用触媒層9の前面は通気抵抗をほとんど
無視できる程度の高い開孔度を有する金網あるい
はラス網からなる保護ネツト10によつて保持さ
れており、保護ネツト10はその外周部を保持金
具11によつて固定されている。また、裏面燃焼
用触媒層7と中央燃焼用触媒層8の間には燃焼温
度検知用の熱電対12が設置されている。
In Fig. 1, a fuel dispersion nozzle 2 is installed through the lower part of a burner case 1 made of heat-resistant metal, and a spacer 3 in the form of a wire mesh or lath mesh having a high degree of aperture so that ventilation resistance can be ignored. A gas chamber 4 is formed by the burner case 1 . On the other hand, in front of spacer 3, spacer 3
A heat insulating diffusion material 5 made of a heat-resistant ceramic fiber molded body, a preheater 6 having nichrome heater wires distributed in a fixed pattern, and a material having micropores such as Al 2 O 3 / SiO 2 and having a high ratio A heat-resistant ceramic fiber molded body with a surface area of 0.2 to 0.3% is used as a carrier.
The back combustion catalyst layer 7 has a Rh loading rate of 0.5% to 1% on the same carrier, and the central combustion catalyst layer 8 has a Rh loading rate of 0.2% to 0.3% on the same carrier.
There is a surface combustion catalyst layer 9 having a Rh loading rate,
The front surface of the surface combustion catalyst layer 9 is held by a protective net 10 made of a wire mesh or lath mesh having a high degree of aperture that allows airflow resistance to be almost ignored, and the protective net 10 is held at its outer periphery by a holding metal fitting. 11. Further, a thermocouple 12 for detecting combustion temperature is installed between the back combustion catalyst layer 7 and the center combustion catalyst layer 8.

次に上記構成に於ける作用を説明する。 Next, the operation of the above configuration will be explained.

予熱器6に通電されると、発生した熱は裏面燃
焼用触媒層7から表面燃焼用触媒層9へ伝達さ
れ、裏面燃焼用触媒層7と中央燃焼触媒層8の間
の温度が一定の温度(260〜300℃)に到達するま
で通電が続行される。そして、燃焼温度検知用の
熱電対12が一定温度以上に予熱が進んだことを
感知すると、燃料ガス供給用の電磁弁(図示せ
ず)にも通電され、燃料が供給される。供給され
た燃料ガスは燃料分散ノズル2によつてガス室4
内に充満し、保護拡散材5内を均一に拡散しなが
ら、裏面燃焼用触媒層7に至り燃料ガスの一部が
酸化され、発生した熱によつて裏面燃焼用触媒層
7、中央燃焼用触媒層8の温度が上昇する。一部
反応しながら裏面燃焼用触媒層7を通過した燃料
ガスは中央燃焼用触媒層8に至つて、内部に拡散
してくる燃焼用空気により急激に酸化され、同時
に中央燃焼用触媒層9の温度も500℃程度に急上
昇する。さらに大半が酸化された燃料ガスは表面
燃焼用触媒層9に至つてほぼ完全に酸化される。
この段階では予熱器6は必要とせず、予熱器6へ
の通電は停止される。
When the preheater 6 is energized, the generated heat is transferred from the back combustion catalyst layer 7 to the front combustion catalyst layer 9, and the temperature between the back combustion catalyst layer 7 and the center combustion catalyst layer 8 remains constant. (260 to 300°C) is reached. When the thermocouple 12 for detecting combustion temperature detects that preheating has progressed to a certain temperature or higher, a solenoid valve (not shown) for supplying fuel gas is also energized, and fuel is supplied. The supplied fuel gas is passed through the fuel dispersion nozzle 2 to the gas chamber 4.
While uniformly diffusing inside the protective diffusion material 5, a part of the fuel gas reaches the back combustion catalyst layer 7 and is oxidized, and the generated heat causes the back combustion catalyst layer 7, the center combustion The temperature of the catalyst layer 8 increases. The fuel gas that has passed through the rear combustion catalyst layer 7 while partially reacting reaches the central combustion catalyst layer 8 and is rapidly oxidized by the combustion air that diffuses inside, and at the same time the central combustion catalyst layer 9. The temperature also rises rapidly to around 500℃. Furthermore, the fuel gas, most of which has been oxidized, reaches the surface combustion catalyst layer 9 and is almost completely oxidized.
At this stage, the preheater 6 is not required, and the power supply to the preheater 6 is stopped.

この時、表面燃焼用触媒層9は中央燃焼用触媒
層での燃焼熱の伝熱と、自己の反応熱を得るが、
それにも増して輻射熱としての熱放出、拡散空気
の冷却作用が強いため、表面燃焼用触媒層9の温
度は最も低く250〜350℃程度となる。このように
して裏面燃焼用触媒層7、中央燃焼用触媒層8、
表面燃焼用触媒層9の各層での触媒燃焼は定常状
態に至る。中央燃焼用触媒層8のRh担持率は、
他の2層に比べ高くなつているが、担体として、
100〜200m2/gといつた高い比表面積を有し、
800〜900℃といつた高い耐熱性を有するAl2O3
SiO2を用いているため、450〜550℃の燃焼温度
を保持している中央燃焼用触媒層8でも、触媒粒
子は比較的高分散で微粒子状態を保持できる。ま
た、表面燃焼用触媒層9の酸化触媒の担持率は中
央燃焼用触媒層8の酸化触媒の担持率よりも低い
ため、表面燃焼用触媒層9の酸化触媒粒子の分散
度は中央燃焼用触媒層8における分散度よりも高
く、極めて良好な微粒子状態を保持できる。さら
に、表面燃焼用触媒層9での反応温度が250〜350
℃程度であることからシンタリングの心配は全く
ない。
At this time, the surface combustion catalyst layer 9 receives heat of combustion from the central combustion catalyst layer and its own reaction heat, but
Moreover, since the heat release as radiant heat and the cooling effect of the diffused air are strong, the temperature of the surface combustion catalyst layer 9 is the lowest, about 250 to 350°C. In this way, the back combustion catalyst layer 7, the central combustion catalyst layer 8,
Catalytic combustion in each layer of the surface combustion catalyst layer 9 reaches a steady state. The Rh loading rate of the central combustion catalyst layer 8 is
Although it is higher than the other two layers, as a carrier,
It has a high specific surface area of 100 to 200 m 2 /g,
Al 2 O 3 with high heat resistance of 800 to 900℃.
Since SiO 2 is used, even in the central combustion catalyst layer 8 which maintains a combustion temperature of 450 to 550°C, the catalyst particles can be relatively highly dispersed and maintain a fine particle state. Furthermore, since the supporting rate of the oxidation catalyst in the surface combustion catalyst layer 9 is lower than the supporting rate of the oxidation catalyst in the central combustion catalyst layer 8, the degree of dispersion of the oxidation catalyst particles in the surface combustion catalyst layer 9 is lower than that of the central combustion catalyst layer. The degree of dispersion is higher than that in layer 8, and an extremely good state of fine particles can be maintained. Furthermore, the reaction temperature in the surface combustion catalyst layer 9 is between 250 and 350.
There is no need to worry about sintering since the temperature is about ℃.

発明の効果 以上のように本発明の触媒バーナによれば、以
下のような効果が得られる。
Effects of the Invention As described above, according to the catalytic burner of the present invention, the following effects can be obtained.

(1) 燃焼用触媒体を3層に分割し、表面層と裏面
層の酸化触媒の担持率を中央層の酸化触媒の担
持率よりも少くしたことにより、中央層での反
応性よりも低い反応性を有する表面層と裏面層
に於ける酸化触媒の量を節減することができ
る。
(1) The combustion catalyst body is divided into three layers, and the oxidation catalyst supported on the front and back layers is lower than the oxidation catalyst supported on the middle layer, resulting in lower reactivity than the middle layer. The amount of oxidation catalyst in the reactive surface layer and back layer can be reduced.

(2) 上記構成により、一定の担持率に固定した単
一の燃焼用触媒体の場合よりも、触媒金属の所
要量を節減することができる。
(2) With the above configuration, the required amount of catalyst metal can be reduced compared to the case of a single combustion catalyst body with a fixed loading rate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例である触媒バーナの
縦断面図、第2図は従来の触媒バーナの縦断面図
である。 2……燃料分散ノズル、7……裏面燃焼用触媒
層、8……中央燃焼用触媒層、9……表面燃焼用
触媒層。
FIG. 1 is a longitudinal sectional view of a catalytic burner according to an embodiment of the present invention, and FIG. 2 is a longitudinal sectional view of a conventional catalytic burner. 2... Fuel dispersion nozzle, 7... Catalyst layer for back side combustion, 8... Catalyst layer for center combustion, 9... Catalyst layer for front side combustion.

Claims (1)

【特許請求の範囲】 1 セラミツク繊維からなる非圧縮成型体、ある
いは織布、又は多孔体等の内1種類を担体とし、
酸化触媒を担持した燃焼用触媒体を3層に分割し
燃料供給部に近い層および外気に面した層の酸化
触媒の担持率をこの2つの層の間に位置する中央
の層の酸化触媒の担持率よりも少くした触媒バー
ナ。 2 燃焼用触媒体の担体としてγ−Al2O3
Al2O3・SiO2、SiO2等の多孔質かつ高い比表面積
を有するセラミツクスを用いた特許請求の範囲第
1項記載の触媒バーナ。 3 酸化触媒として、Pt、Pd、Rh等の白金族金
属の内1種類以上、またはLa、Co、Ce、Sr等か
らなるペロブスカイト型構造を有する酸化物等を
用いた特許請求の範囲第1項記載の触媒バーナ。
[Claims] 1. A non-compressed molded body made of ceramic fiber, a woven fabric, a porous body, etc. as a carrier,
The combustion catalyst supporting the oxidation catalyst is divided into three layers, and the loading ratio of the oxidation catalyst in the layer near the fuel supply section and the layer facing the outside air is compared with that of the oxidation catalyst in the middle layer located between these two layers. Catalytic burner with lower loading rate. 2 γ-Al 2 O 3 as a support for combustion catalyst,
The catalytic burner according to claim 1, which uses ceramics such as Al 2 O 3 .SiO 2 and SiO 2 that are porous and have a high specific surface area. 3. Claim 1 in which one or more of platinum group metals such as Pt, Pd, Rh, etc., or oxides having a perovskite structure consisting of La, Co, Ce, Sr, etc. are used as the oxidation catalyst. Catalytic burner as described.
JP59269932A 1984-12-21 1984-12-21 Catalytic burner Granted JPS61147014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59269932A JPS61147014A (en) 1984-12-21 1984-12-21 Catalytic burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59269932A JPS61147014A (en) 1984-12-21 1984-12-21 Catalytic burner

Publications (2)

Publication Number Publication Date
JPS61147014A JPS61147014A (en) 1986-07-04
JPH0335574B2 true JPH0335574B2 (en) 1991-05-28

Family

ID=17479203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59269932A Granted JPS61147014A (en) 1984-12-21 1984-12-21 Catalytic burner

Country Status (1)

Country Link
JP (1) JPS61147014A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5281128A (en) * 1990-11-26 1994-01-25 Catalytica, Inc. Multistage process for combusting fuel mixtures
US5425632A (en) * 1990-11-26 1995-06-20 Catalytica, Inc. Process for burning combustible mixtures
US5248251A (en) * 1990-11-26 1993-09-28 Catalytica, Inc. Graded palladium-containing partial combustion catalyst and a process for using it
US5326253A (en) * 1990-11-26 1994-07-05 Catalytica, Inc. Partial combustion process and a catalyst structure for use in the process
US5259754A (en) * 1990-11-26 1993-11-09 Catalytica, Inc. Partial combustion catalyst of palladium on a zirconia support and a process for using it
US5250489A (en) * 1990-11-26 1993-10-05 Catalytica, Inc. Catalyst structure having integral heat exchange
US5258349A (en) * 1990-11-26 1993-11-02 Catalytica, Inc. Graded palladium-containing partial combustion catalyst
US5559073A (en) * 1994-09-26 1996-09-24 Beijing Huaxia Environmental Protection Company Pollution control catalyst with mutual protective distributed-active-combinations each including noble-metal-atoms stably structured and protected therein
WO2009105907A1 (en) * 2008-02-27 2009-09-03 Radiamon S.A. Catalytic radiating heating appliance
KR100987417B1 (en) 2008-11-11 2010-10-13 주식회사 영재 Catalyst heater

Also Published As

Publication number Publication date
JPS61147014A (en) 1986-07-04

Similar Documents

Publication Publication Date Title
US6270336B1 (en) Catalytic combustion system and combustion control method
US3198240A (en) Catalytic oxidation unit and radiant gas burner
US3407025A (en) Semi-catalytic infra-red heat producing unit
JPH0335574B2 (en)
JPH1026315A (en) Catalytic combustor and method for catalytic combustion
JP2892027B2 (en) Manufacturing method of catalytic combustion device
US3147960A (en) Catalytic radiant heat treating apparatus
JPH06304482A (en) Catalyst and catalyzed combustion device used therewith
US5352114A (en) Catalytic burning apparatus and catalytic burning method
JPH0335573B2 (en)
JPS5849804A (en) Burner
US4364727A (en) Heat treatment of foodstuff
JPS60202223A (en) Catalyst burner
RU2110015C1 (en) Infra-red radiator, method of burning of hydrocarbon gaseous fuel and method of preparation of complex ceramics activated with catalyst
JPH044491B2 (en)
JPS61291821A (en) Catalytic burner
JPS61291817A (en) Catalyst combustion device
JPS6387514A (en) Catalytic burner
JP2861524B2 (en) Catalytic combustion device
JPS60202224A (en) Catalyst burner
JPS61187938A (en) Combustion catalyst body
JPS602812A (en) Liquid fuel combustion device
KR100387945B1 (en) Low NOx combustion method and combustor using catalytic combustion and catalyst bed with swirl
JP2720614B2 (en) Catalytic combustion device
JP2903640B2 (en) Catalytic combustion device