JPH0335379B2 - - Google Patents

Info

Publication number
JPH0335379B2
JPH0335379B2 JP58059902A JP5990283A JPH0335379B2 JP H0335379 B2 JPH0335379 B2 JP H0335379B2 JP 58059902 A JP58059902 A JP 58059902A JP 5990283 A JP5990283 A JP 5990283A JP H0335379 B2 JPH0335379 B2 JP H0335379B2
Authority
JP
Japan
Prior art keywords
treatment
aluminum
oxide film
film
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58059902A
Other languages
Japanese (ja)
Other versions
JPS59185783A (en
Inventor
Tetsuji Iwama
Koji Mitamura
Isao Takeuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP5990283A priority Critical patent/JPS59185783A/en
Publication of JPS59185783A publication Critical patent/JPS59185783A/en
Publication of JPH0335379B2 publication Critical patent/JPH0335379B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • C23C22/66Treatment of aluminium or alloys based thereon

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はアルミニウム又はアルミニウム合金の
表面処理法に係り、アルミニウム又はアルミニウ
ム合金を、例えばメタホウ酸ナトリウム過酸化水
素化合物又は四ホウ酸ナトリウム過酸化水素物と
いつたペルオクソ硼酸塩を含む塩基性水溶液で処
理して、表面に水和酸化皮膜を生成させることに
よつて、耐食性、親水性、及び塗膜密着性が著し
く向上したものとなるアルミニウム又はアルミニ
ウム合金の表面処理法を提供することを目的とす
る。 従来、アルミニウム又はアルミニウム合金(以
下単にアルミニウム合金という)の表面に酸化皮
膜を生成させる為の化成処理方法として、クロメ
ート法、ベーマイト法、M.B.V法あるいはE.W
法等種々の手段が提案されている。 これらのうち、クロメート法は、低温で短時間
のうちに、アルミニウム合金表面に耐食性が良好
な酸化皮膜を生成させ、しかもこの酸化皮膜は塗
膜密着性も良好なものの、撥水性であるが故に、
熱交換媒体(フイン材)あるいはPS版用等のよ
うに親水性が要求される分野ではクロメート法に
よる化成処理方法は採用できないといつた致命的
欠点がある。又、クロメート法は、クロメート処
理後の排水中にクロム、シアン等の有害イオンが
含まれているので、排液処理に多大な負担がかか
るといつた欠点もある。 又、ベーマイト法は、アルミニウム合金を80℃
以上に加熱した脱塩水中で処理するものであるか
ら、良好な耐食性のある酸化皮膜を生成させるの
に少なくとも95℃以上の処理温度で、かつ処理温
度も3分以上要し、その為浴管理が困難で、均質
な皮膜が得られにくいといつた欠点がある。従つ
て、このような欠点の故に、アルミニウム合金を
熱交換媒体材として用いる場合におけるプレコー
ト材用の処理としては全く向いていない。そこ
で、このような欠点を補う為に、アンモニア又は
トリエタノールアミン等を添加しておき、溶解反
応を促進して短時間で処理できるようにすること
が提案されているが、溶解反応と酸化皮膜生成の
バランスがとりにくく、又耐食性は酸化皮膜が増
膜する割にはそれ程改善されず、例えばクロメー
ト処理法による皮膜に比べると劣つている。 又、M.B.V法、E.W法等は、処理温度が通常
90〜100℃と高く、かつ処理時間も通常3分以上
と長く、従つて上記ベーマイト法と同様にプレコ
ート材用の処理としては不適当である。 又、アルミニウム合金を次亜塩素酸ナトリウム
又は次亜塩素酸カリウムの水溶液で処理して、該
表面に酸化皮膜を生成させる化成処理法(特公昭
53−32772号)も提案されているが、この化成処
理法による酸化皮膜の耐食性は素材の材質及び調
質、処理浴中の酸化剤濃度、塩基性物質の添加
量、溶存Al濃度に基づくPHに大きく影響を受け、
すなわち酸化剤添加効果の認められる塩基性浴に
て、処理温度70℃以上で水和酸化皮膜を生成させ
る際に、処理浴のPHを高くしすぎると、例えばPH
11.5以上にすると、酸化以上に溶解が促進され、
特にAl−Fe化合物、Al−Fe−Si化合物、Al−
Mn化合物、Al−Fe−Mn化合物、Al−Fe−Mn
−Si化合物といつた金属間化合物の周辺部のAl
素地の局部溶解が促進され、金属間化合物の脱落
が生じ、約2〜10μm径で、処理前後の表面の粗
さの差より算出される深さ約1μm以上のピツト
の発生が多くなり、その為酸化皮膜の生成のない
といつた欠陥部が多くなり、耐食性が著しく劣下
するといつた欠点が認められた。 本発明者は、排液処理等公害上の問題を引き起
こすことなく、耐食性、親水性、塗膜密着性の良
好な皮膜を生成させる化成処理法について鋭意研
究した結果、アルミニウム合金をペルオクソ硼酸
塩を含む塩基性水溶液で処理(例えば、浸漬又は
散布)すると、この表面処理によつて得られた水
和酸化皮膜は耐食性、親水性、塗膜密着性にずれ
についても優れていることを見い出し、本発明を
なしとげたのである。 次に、耐食性、親水性、塗膜密着性に優れた水
和酸化皮膜の生成される本発明に係るアルミニウ
ム又はアルミニウム合金の表面処理法について説
明する。 本発明において用いられる酸化剤としての例え
ばメタホウ酸ナトリウム過酸化水素化物
(NaBO2・H2O2・3H2O)は又は四ホウ酸ナトリ
ウム過酸化水素化物(Na2B4O7・H2O2・9H2O)
といつたペルオクソ硼酸塩の濃度は、約0.0001〜
3.5g/であることが望ましく、より望ましく
は0.05〜3.5g/、特に望ましくは0.5〜1g/
である。すなわち、濃度が低すぎると酸化力が
弱く、又濃度が高すぎると均一な皮膜が得られに
くく、かつ処理における酸化剤の持ち出しが多く
なり、不経済となる。 処理液を塩基性にするには、通常には苛性ソー
ダが用いられるが、苛性カリ、水酸化カルシウ
ム、炭酸ナトリウム、ホウ砂、塩基性アミン類
(例えば、トリエタノールアミン、アンモニア類)
を用いてもよい。但し、塩基性浴のPHは約11.5以
下にしておくことが大切であり、望ましくはPHを
約10〜11にしておくことが良い。すなわち、PHが
11.5を越えて高くなりすぎると、金属間化合物周
辺の素地アルミニウムが溶解し、その為ピツトが
多く生成されてしまつて耐食性が低下してしま
い、逆にPHが10未満の小さすぎる場合には、アル
ミニウムの溶解量が減少し、皮膜生成速度が遅く
なり、すなわち皮膜生成量が少ないので耐食性が
低下する傾向にある。そこで、処理液のPHを、特
に10〜11にしておけば、アルミニウムの溶解と酸
化のバランスが得られ、金属間化合物の脱落によ
るピツト数が非常に少なくなり、緻密な水和酸化
皮膜が生成されることになる。 処理時間については、長ければ良いものではな
く、例えば約60〜180秒位である。すなわち、ア
ルミニウム合金の表面層には金属間化合物があ
り、この金属間化合物の下にも金属間化合物があ
る為、処理によつて水和酸化皮膜が厚くなつて
も、処理に際して金属間化合物が脱落し、水和酸
化皮膜に皮膜欠陥が生じてしまうからである。そ
れ故に、処理時間を約60〜180秒として、生成さ
れる水和酸化皮膜量が約3〜6mg/dm2となるよ
うにしておけば皮膜欠陥が少なく、耐食性に優れ
るのみでなく、生産性も向上することになる。 そして、このようにして処理されると、水和酸
化皮膜の表面状態は、金属間化合物の脱落による
約2〜10μm径で、処理前後の表面粗さプロフイ
ールの差から算出される深さ約1μm以上のピツ
トの発生数が約120個/mm2以下となり、耐食性は
優れている。尚、アルミニウムの純度が高くなる
につれて存在する金属間化合物の数及び大きさは
一般的に小さくなるので、さらに耐食性は良くな
る。 又、本発明のペルオクソ硼酸塩を含む塩基性水
溶液で処理後、例えばケイ酸ソーダ処理等の後処
理を施せば、親水性が一層良くなる。 次に、本発明の具体的実施例について説明す
る。 実施例 1〜4 JIS1200O材(75mm×150mm×0.12mm)のアルミ
ニウム合金を、メタホウ酸ナトリウム過酸化水素
化物を添加した塩基性水溶液に浸漬処理して、該
表面に水和酸化皮膜を生成させる。 実施例 5、6 実施例1と同素材を、四ホウ酸ナトリウム過酸
化水素化物を添加した塩基性水溶液中に浸漬処理
して、該表面に水和酸化皮膜を生成させる。 比較例 1〜4 実施例1と同素材を、従来のベーマイト法処理
(脱塩水、比較例1)、クロメート法処理(アロジ
ン#1200、比較例2)、酸化剤無添加の塩基性水
溶液処理(比較例3、4)する。 比較例 5 実施例1におけるメタホウ酸ナトリウム過酸化
水素化物の代わりに次亜塩素酸ナトリウムを用い
て同様に行う。 上記実施例1〜6及び比較例1〜5で得た皮膜
の特性を測定すると表に示す通りである。 尚、生成皮膜の状態は肉眼観察によるものであ
り、又、皮膜生成量はJIS H8680による皮膜重量
測定法によるものであり、又、耐食性はJIS
Z2371による塩水噴霧試験336時間後レイテイン
グナンバー表示法によつて示すものであり(10の
数字が最良で、数字が小さくなるにつれて悪くな
る)、又、親水性は協和接触角計CA−D型によつ
て水滴との接触角を示すものであり(接触角が小
さい程親水性良好)、又、塗膜密着性は、ポリウ
レタン系塗料をスプレー塗装し、次いでJIS
H8681によるC.A.S.S.試験48時間行なつた試料の
塗膜密着性をごばん目表示法による表示したもの
であり(100/100が最良で、分子が小さくなるに
つれて塗膜密着性は悪くなる)、そして金属間化
合物の脱落によるピツト発生数は、径が約2〜
10μmで、深さが約1μm以上のピツトの数を、10
枚の素材における平均を求めて、mm2当りの数で表
示したものである。
The present invention relates to a surface treatment method for aluminum or aluminum alloys, in which aluminum or aluminum alloys are treated with a basic aqueous solution containing a peroxoborate such as sodium metaborate hydrogen peroxide compound or sodium tetraborate hydrogen peroxide compound. The purpose of the present invention is to provide a method for surface treatment of aluminum or aluminum alloy, which significantly improves corrosion resistance, hydrophilicity, and coating adhesion by forming a hydrated oxide film on the surface. . Conventionally, the chromate method, boehmite method, MBV method, or EW has been used as a chemical conversion treatment method to generate an oxide film on the surface of aluminum or aluminum alloy (hereinafter simply referred to as aluminum alloy).
Various measures such as laws have been proposed. Among these methods, the chromate method generates an oxide film with good corrosion resistance on the aluminum alloy surface in a short time at low temperatures, and although this oxide film has good paint film adhesion, it is also water repellent. ,
A fatal drawback is that chemical conversion treatment using the chromate method cannot be used in fields where hydrophilicity is required, such as for heat exchange media (fin materials) or PS plates. In addition, the chromate method has the disadvantage that the wastewater after chromate treatment contains harmful ions such as chromium and cyanide, so that the wastewater treatment is burdensome. In addition, the boehmite method uses aluminum alloy at 80°C.
Since the treatment is carried out in demineralized water heated to a temperature higher than The drawback is that it is difficult to obtain a homogeneous film. Therefore, due to these drawbacks, this method is not suitable at all as a treatment for precoating materials when aluminum alloys are used as heat exchange medium materials. Therefore, in order to compensate for these drawbacks, it has been proposed to add ammonia or triethanolamine, etc., to accelerate the dissolution reaction and enable processing to be completed in a short time. It is difficult to balance the formation, and the corrosion resistance is not improved much even though the oxide film increases, and is inferior to, for example, a film formed by a chromate treatment method. In addition, for MBV method, EW method, etc., the processing temperature is usually
The temperature is as high as 90 to 100°C, and the processing time is usually long, 3 minutes or more. Therefore, like the boehmite method described above, it is unsuitable for processing precoated materials. In addition, a chemical conversion treatment method (Special Publications Showa) in which an aluminum alloy is treated with an aqueous solution of sodium hypochlorite or potassium hypochlorite to form an oxide film on the surface.
No. 53-32772) has also been proposed, but the corrosion resistance of the oxide film produced by this chemical conversion treatment method depends on the PH value based on the material and tempering of the material, the oxidizing agent concentration in the treatment bath, the amount of basic substance added, and the dissolved Al concentration. was greatly influenced by
In other words, when generating a hydrated oxide film at a treatment temperature of 70°C or higher in a basic bath where the effect of adding an oxidizing agent is recognized, if the pH of the treatment bath is too high, for example, the PH
When it is 11.5 or higher, dissolution is promoted more than oxidation,
Especially Al-Fe compounds, Al-Fe-Si compounds, Al-
Mn compound, Al-Fe-Mn compound, Al-Fe-Mn
−Al around Si compounds and intermetallic compounds
Local dissolution of the substrate is promoted, intermetallic compounds fall off, and pits with a diameter of approximately 2 to 10 μm and a depth of approximately 1 μm or more calculated from the difference in surface roughness before and after treatment are frequently generated. As a result, there were many defective areas where no oxide film was formed, and the corrosion resistance was significantly deteriorated. As a result of intensive research into a chemical conversion treatment method that produces a film with good corrosion resistance, hydrophilicity, and paint film adhesion without causing pollution problems such as drainage treatment, the present inventor discovered that aluminum alloys can be treated with peroxoborate. We discovered that when treated with a basic aqueous solution (e.g., immersed or sprayed), the hydrated oxide film obtained by this surface treatment has excellent corrosion resistance, hydrophilicity, coating adhesion, and resistance to slippage. He accomplished his invention. Next, a method for surface treatment of aluminum or aluminum alloy according to the present invention, which produces a hydrated oxide film having excellent corrosion resistance, hydrophilicity, and coating adhesion, will be described. Examples of the oxidizing agent used in the present invention include sodium metaborate peroxide (NaBO 2 .H 2 O 2 .3H 2 O) or sodium tetraborate peroxide (Na 2 B 4 O 7 .H 2 O 2・9H 2 O)
The concentration of peroxoborate is approximately 0.0001~
The amount is preferably 3.5 g/, more preferably 0.05 to 3.5 g/, particularly preferably 0.5 to 1 g/
It is. That is, if the concentration is too low, the oxidizing power will be weak, and if the concentration is too high, it will be difficult to obtain a uniform film, and a large amount of the oxidizing agent will be carried out during the treatment, which will be uneconomical. Caustic soda is usually used to make the treatment solution basic, but caustic potassium, calcium hydroxide, sodium carbonate, borax, and basic amines (e.g., triethanolamine, ammonia) are also used.
may also be used. However, it is important to keep the pH of the basic bath at about 11.5 or less, preferably about 10 to 11. In other words, the PH
If the pH is too high, exceeding 11.5, the base aluminum around the intermetallic compound will dissolve, resulting in the formation of many pits, reducing corrosion resistance.On the other hand, if the pH is too low, below 10, The amount of dissolved aluminum decreases and the rate of film formation slows down, that is, the amount of film formed is small, so corrosion resistance tends to decrease. Therefore, by setting the pH of the treatment solution to 10 to 11, a balance between dissolution and oxidation of aluminum can be obtained, the number of pits due to shedding of intermetallic compounds will be extremely reduced, and a dense hydrated oxide film will be formed. will be done. Regarding the processing time, longer is not better; for example, it is about 60 to 180 seconds. In other words, there is an intermetallic compound on the surface layer of the aluminum alloy, and there are also intermetallic compounds below this intermetallic compound, so even if the hydrated oxide film becomes thicker during treatment, the intermetallic compound will This is because they fall off and cause film defects in the hydrated oxide film. Therefore, if the treatment time is set to about 60 to 180 seconds and the amount of hydrated oxide film produced is about 3 to 6 mg/ dm2 , not only will there be fewer film defects and excellent corrosion resistance, but also productivity will be improved. will also improve. When treated in this manner, the surface condition of the hydrated oxide film is approximately 2 to 10 μm in diameter due to the shedding of intermetallic compounds, and approximately 1 μm in depth calculated from the difference in surface roughness profile before and after treatment. The number of pits generated is approximately 120/mm 2 or less, and corrosion resistance is excellent. Note that as the purity of aluminum increases, the number and size of intermetallic compounds present generally decrease, so corrosion resistance further improves. Further, after treatment with the basic aqueous solution containing the peroxoborate of the present invention, if a post-treatment such as sodium silicate treatment is performed, the hydrophilicity is further improved. Next, specific examples of the present invention will be described. Examples 1 to 4 An aluminum alloy of JIS1200O material (75 mm x 150 mm x 0.12 mm) is immersed in a basic aqueous solution containing sodium metaborate hydrogen peroxide to form a hydrated oxide film on the surface. Examples 5 and 6 The same material as in Example 1 is immersed in a basic aqueous solution containing sodium tetraborate hydrogen peroxide to form a hydrated oxide film on the surface. Comparative Examples 1 to 4 The same material as in Example 1 was subjected to conventional boehmite treatment (desalinated water, Comparative Example 1), chromate treatment (Alodine #1200, Comparative Example 2), and basic aqueous solution treatment without oxidizing agent ( Comparative Examples 3 and 4). Comparative Example 5 The same procedure as in Example 1 is carried out using sodium hypochlorite instead of sodium metaborate hydrogen peroxide. The properties of the films obtained in Examples 1 to 6 and Comparative Examples 1 to 5 were measured as shown in the table. The condition of the formed film was determined by visual observation, the amount of film formed was determined by the film weight measurement method according to JIS H8680, and the corrosion resistance was determined by JIS H8680.
It is shown by the rating number display method after 336 hours of salt spray test with Z2371 (a number of 10 is the best, and the smaller the number, the worse it is). It shows the contact angle with water droplets (the smaller the contact angle, the better the hydrophilicity).Also, the adhesion of the paint film is determined by spray painting with polyurethane paint, then applying JIS
The paint film adhesion of the sample subjected to the CASS test for 48 hours according to H8681 is displayed using the square scale method (100/100 is the best, and the paint film adhesion worsens as the molecule becomes smaller), and The number of pits generated due to the falling off of intermetallic compounds is approximately 2 to 2 in diameter.
10μm, the number of pits with a depth of about 1μm or more is 10
The average value for each sheet of material is calculated and expressed as the number per mm 2 .

【表】【table】

【表】 尚、上記実施例では、ペルオクソ硼酸塩として
ペルオクソ硼酸ナトリウムを用いているが、これ
はペルオクソ硼酸カリウム、ペルオクソ硼酸アン
モニウム等を用いてもよい。 上述の如く、本発明に係るアルミニウム又はア
ルミニウム合金の表面処理法は、アルミニウム又
はアルミニウム合金をペルオクソ硼酸塩を含む塩
基性水溶液で処理して、アルミニウム又はアルミ
ニウム合金表面に水和酸化皮膜を生成するので、
耐食性、親水性及び塗膜密着性いずれについても
優れたものとなり、しかも短時間のうちに処理で
きるので、生産性も高く、低コストでできる等の
特長を有する。
[Table] In the above examples, sodium peroxoborate is used as the peroxoborate, but potassium peroxoborate, ammonium peroxoborate, etc. may also be used. As mentioned above, the method for surface treatment of aluminum or aluminum alloy according to the present invention involves treating aluminum or aluminum alloy with a basic aqueous solution containing peroxoborate to generate a hydrated oxide film on the surface of aluminum or aluminum alloy. ,
It has excellent corrosion resistance, hydrophilicity, and coating adhesion, and can be processed in a short time, resulting in high productivity and low cost.

Claims (1)

【特許請求の範囲】[Claims] 1 アルミニウム又はアルミニウム合金をペルオ
クン硼酸塩を含む塩基性水溶液で処理して、アル
ミニウム又はアルミニウム合金表面に水和酸化皮
膜を生成することを特徴とするアルミニウム又は
アルミニウム合金の表面処理法。
1. A method for surface treatment of aluminum or aluminum alloy, which comprises treating aluminum or aluminum alloy with a basic aqueous solution containing perocone borate to form a hydrated oxide film on the surface of aluminum or aluminum alloy.
JP5990283A 1983-04-08 1983-04-08 Surface treatment of aluminum or aluminum alloy Granted JPS59185783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5990283A JPS59185783A (en) 1983-04-08 1983-04-08 Surface treatment of aluminum or aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5990283A JPS59185783A (en) 1983-04-08 1983-04-08 Surface treatment of aluminum or aluminum alloy

Publications (2)

Publication Number Publication Date
JPS59185783A JPS59185783A (en) 1984-10-22
JPH0335379B2 true JPH0335379B2 (en) 1991-05-28

Family

ID=13126509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5990283A Granted JPS59185783A (en) 1983-04-08 1983-04-08 Surface treatment of aluminum or aluminum alloy

Country Status (1)

Country Link
JP (1) JPS59185783A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5083578B2 (en) * 2010-09-15 2012-11-28 株式会社イネックス Aluminum substrate with enhanced cooling effect by far-infrared high radiation coating and method for producing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5332772A (en) * 1976-09-08 1978-03-28 Seiko Epson Corp Electronic watch

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5332772A (en) * 1976-09-08 1978-03-28 Seiko Epson Corp Electronic watch

Also Published As

Publication number Publication date
JPS59185783A (en) 1984-10-22

Similar Documents

Publication Publication Date Title
Ishizaki et al. Anticorrosive magnesium phosphate coating on AZ31 magnesium alloy
JPS63501802A (en) Method of coating magnesium articles and electrolytic bath therefor
JPH07505445A (en) Nickel-free phosphate treatment method
US20200032381A1 (en) HOT-DIP Al ALLOY COATED STEEL SHEET AND METHOD OF PRODUCING SAME
BRPI0610540B1 (en) Annealed steel sheet production method after hot dip galvanization
JP6443467B2 (en) Fused Zn-Al-Mg plated steel sheet with coating and method for producing the same
JPH0364485A (en) Surface treating agent and treating bath for aluminum or aluminum alloy
US5601663A (en) Process for forming a black oxide on aluminum alloys and a solution therefor
US4103048A (en) Low temperature vapor sealing of anodized aluminum
AU639843B2 (en) Flux suitable for coating molten zinc, molten alloy of aluminum and zinc, and molten aluminum
US6387194B1 (en) Process and composition for chromizing 400-series stainless steels
JP3879038B2 (en) Surface treatment method of Mg alloy product and Mg alloy product formed with high corrosion resistance coating
JPH0335379B2 (en)
JPH0335378B2 (en)
US3620939A (en) Coating for magnesium and its alloys and method of applying
RU2559386C1 (en) Composition of powder mixture for thermodiffusion galvanizing of items out of magnesium alloys, method of thermodiffusion galvanizing of items out of magnesium alloys
JPH03240972A (en) Treatment of metal surface with zinc phosphate
Vlasova et al. A study of the influence of additives on the process of formation and corrosive properties of tripolyphosphate coatings on steel
JP3558940B2 (en) Surface treatment method for aluminum material
US6758956B1 (en) Method for darkening a superficial layer which contains zinc and which is of a material piece
US4256490A (en) Composition for diffusion coating of ferrous metals
JP3930706B2 (en) Surface treatment method of aluminum material and surface-treated aluminum material
JPS5848675A (en) Chemical treatment of aluminum or aluminum alloy
JPS59100271A (en) Surface treatment of aluminum or aluminum alloy
JPS5848676A (en) Chemical treatment of aluminum or aluminum alloy