JPH0335378B2 - - Google Patents

Info

Publication number
JPH0335378B2
JPH0335378B2 JP58059901A JP5990183A JPH0335378B2 JP H0335378 B2 JPH0335378 B2 JP H0335378B2 JP 58059901 A JP58059901 A JP 58059901A JP 5990183 A JP5990183 A JP 5990183A JP H0335378 B2 JPH0335378 B2 JP H0335378B2
Authority
JP
Japan
Prior art keywords
treatment
aluminum
oxide film
aluminum alloy
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58059901A
Other languages
Japanese (ja)
Other versions
JPS59185782A (en
Inventor
Tetsuji Iwama
Koji Mitamura
Isao Takeuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP5990183A priority Critical patent/JPS59185782A/en
Publication of JPS59185782A publication Critical patent/JPS59185782A/en
Publication of JPH0335378B2 publication Critical patent/JPH0335378B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • C23C22/66Treatment of aluminium or alloys based thereon

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はアルミニウム又はアルミニウム合金の
表面処理法に係り、アルミニウム又はアルミニウ
ム合金を、亜塩素酸塩、亜臭素酸塩、亜ヨウ素酸
塩、塩素酸塩、臭素酸塩、ヨウ素酸塩の中から選
ばれる少なくとも一種の化合物を含む塩基性水溶
液で処理して、表面に水和酸化皮膜を生成させる
ことによつて、耐食性、親水性、及び塗膜密着性
が著しく向上したものとなるアルミニウム又はア
ルミニウム合金の表面処理法を提供することを目
的とする。 従来、アルミニウム又はアルミニウム合金(以
下単にアルミニウム合金という)の表面に酸化皮
膜を生成させる為の化成処理方法として、クロメ
ート法、ベーマイト法、M.B.V法あるいはE.W
法等種々の手段が提案されている。 これらのうち、クロメート法は、低温で短時間
のうちに、アルミニウム合金表面に耐食性が良好
な酸化皮膜を生成させ、しかもこの酸化皮膜は塗
膜密着性も良好なものの、撥水性であるが故に、
熱交換媒体(フイン材)あるいはPS版用等のよ
うに親水性が要求される分野ではクロメート法に
よる化成処理方法は採用できないといつた致命的
に欠点がある。又、クロメート法は、クロメート
処理後の排水中にクロム、シアン等の有害イオン
が含まれているので、排液処理に多大な負担がか
かるといつた欠点もある。 又、ベーマイト法は、アルミニウム合金を80℃
以上に加熱した脱塩水中で処理するものであるか
ら、良好な耐食性のある酸化皮膜を生成させるの
に少なくとも95℃以上の処理温度で、かつ処理温
度も3分以上要し、その為浴管理が困難で、均質
な皮膜が得られにくいといつた欠点がある。従つ
て、このような欠点の故に、アルミニウム合金を
熱交換媒体材として用いる場合におけるプレコー
ト材用の処理としては全く向いていない。そこ
で、このような欠点を補う為に、アンモニア又は
トリエタノールアミン等を添加しておき、溶解反
応を促進して短時間で処理できるようにすること
が提案されているが、溶解反応と酸化皮膜生成の
バランスがとりにくく、又耐食性は酸化皮膜が増
膜する割にはそれ程改善されず、例えばクロメー
ト処理法による皮膜に比べると劣つている。 又、M.B.V法、E.W法等は、処理温度が通常
90〜100℃と高く、かつ処理時間も通常3分以上
と長く、従つて上記ベーマイト法と同様にプレコ
ート材用の処理としては不適当である。 又、アルミニウム合金を次亜塩素酸ナトリウム
又は次亜塩素酸カリウムの水溶液で処理して、該
表面に酸化皮膜を生成させる化成処理法(特公昭
53−32772号)も提案されているが、この化成処
理法による酸化皮膜の耐食性は素材の材質及び調
質、処理浴中の酸化剤濃度、塩基性物質の添加
量、溶存Alに基づくPHに大きく影響を受け、す
なわち酸化剤添加効果の認められる塩基性浴に
て、処理温度70℃以上で水和酸化皮膜を生成させ
る際に、処理浴のPHを高くしすぎると、例えばPH
11.5以上にすると、酸化以上に溶解が促進され、
特にAl−Fe化合物、Al−Fe−Si化合物、Al−
Mn化合物、Al−Fe−Mn化合物、Al−Fe−Mn
−Si化合物といつた金属間化合物の周辺部のAl
素地の局部溶解が促進され、金属間化合物の脱落
が生じ、約2〜10μm径で、処理前後の表面粗さ
の差より算出される深さ約1μm以上のビツトの
発生が多くなり、その為酸化皮膜の生成のないと
いつた欠陥部品が多くなり、耐食性が著しく劣化
するといつた欠点が認められた。 本発明者は、排液処理等公害上の問題を引き起
こすことなく、耐食性、親水性、塗膜密着性の良
好な皮膜を生成させる化成処理法について鋭意研
究した結果、アルミニウム合金を亜塩素酸塩、亜
臭素酸塩、亜ヨウ素酸塩、塩素酸塩、臭素酸塩、
ヨウ素酸塩の中から選ばれる少なくとも一種の化
合物を含む塩基性水溶液で処理(例えば浸漬又は
散布)すると、この表面処理によつて得られた水
和酸化皮膜は耐食性、親水性、塗膜密着性いずれ
についても優れていることを見い出し、本発明を
なしとげたのである。 次に、耐食性、親水性、塗膜密着性に優れた水
和酸化皮膜の生成される本発明に係るアルミニウ
ム又はアルミニウム合金の表面処理法について説
明する。 本発明において用いられる亜塩素酸塩、塩素酸
塩等の酸化剤の濃度は、約0.0001〜3.5g/で
あることが望ましく、より望ましくは約0.05〜
3.5g/、特に望ましくは0.5〜1g/であ
る。すなわち、濃度が低すぎると酸化力が弱く、
又濃度が高すぎると均一な皮膜が得られにくく、
かつ処理における酸化剤の持ち出しが多くなり、
不経済となる。 処理液を塩基性にするには、通常には苛性ソー
ダが用いられるが、苛性カリ、水酸化カルシウ
ム、炭酸ナトリウム、ホウ酸、塩基性アミン類
(トリエタノールアミン、アンモニア等)を用い
てもよい。但し、塩基性浴のPHは約11.5以下にし
ておくことが大切であり、望ましくはPHを約10〜
11にしておくことが良い。すなわち、PHが11.5を
越えて高くなりすぎると、金属間化合物周辺の素
地アルミニウムが溶解し、その為ピツトが多く生
成されてしまつて耐食性が低下してしまい、逆に
PHが10未満の小さすぎる場合には、アルミニウム
の溶解量が減少し、皮膜生成速度が遅くなり、す
なわち皮膜生成量が少ないので耐食性が低下する
傾向にある。そこで、処理液のPHを、特に10〜11
にしておけば、アルミニウムの溶解と酸化のバラ
ンスが得られ、金属間化合物の脱落によるピツト
数が非常に少なくなり、緻密な水和酸化皮膜が生
成されることになる。 処理時間については、長ければ良いものではな
く、例えば約60〜180秒位である。すなわち、ア
ルミニウム合金の表面層には金属間化合物があ
り、この金属間化合物の下にも金属間化合物があ
る為、処理によつて水和酸化皮膜が厚くなつて
も、処理に際して金属間化合物が脱落し、水和酸
化皮膜に皮膜欠陥が生じてしまうからである。そ
れ故に、処理時間を約60〜180秒として、生成さ
れる水和酸化皮膜量が約3〜6mg/dm2となるよ
うにしておけば皮膜欠陥が少なく、耐食性に優れ
るのみでなく、生産性も向上することになる。 そして、このようにして処理されると、水和酸
化皮膜の表面状態は、金属間化合物の脱落による
約2〜10μm径で、処理前後の表面粗さプロフイ
ールの差から算出される深さ約1μm以上のピツ
トの発生数が約120個/mm2以下となり、耐食性
は優れている。尚、アルミニウムの純度が高くな
るにつれて存在する金属間化合物の数は少なく、
又その大きさも小さくなるので、さらに耐食性は
良くなる。 又、亜塩素酸塩等を含む塩基性水溶液で処理
後、例えばケイ酸ソーダ処理等の後処理を施せ
ば、親水性が一層良くなる。 次に、本発明の具体的実施例について説明す
る。 実施例 1〜10 JIS1200O材(75mm×150mm×0.12mm)のアルミ
ニウム合金を、亜塩素酸ナトリウム(実施例1)、
臭素酸ナトリウム(実施例2)、亜臭素酸ナトリ
ウム(実施例3)、ヨウ素酸アンモニウム(実施
例4)、亜ヨウ素酸アンモニウム(実施例5)、亜
塩基酸ナトリウムと塩素ナトリウム(等重量、実
施例6)、塩素酸ナトリウム(実施例7)、亜塩素
酸ナトリウム(実施例8)、亜塩素酸カルシウム
(実施例9)、亜ヨウ素酸マグネシウム(実施例
10)を各々添加した塩基性水溶液中に浸漬処理し
て、該表面に水和酸化皮膜を生成させる。 比較例 1〜5 実施例1と同素材を、従来のベーマイト法処理
(脱塩水、比較例1)、クロメート法処理(アロジ
ン#1200、比較例2)、酸化材無添加の塩基性水
溶液処理(比較例3、4)、次亜塩素酸ナトリウ
ム水溶液(比較例5)で処理する。 上記実施例1〜10及び比較例1〜5で得た皮膜
の特性を測定すると表に示す通りである。 尚、生成皮膜の状態は肉眼観察によるものであ
り、又、皮膜生成量はJIS H8680による皮膜重量
測定法によるものであり、又、耐食性はJIS
Z2371による塩水噴霧試験336時間後レイテイン
グナンバー表示法によつて示すものであり(10の
数字が最良で、数字が小さくなるにつれて悪くな
る)、又、親水性は協和接触角計CA−D型によつ
て水滴と接触角を示すものであり(接触角が小さ
い程親水性良好)、又、塗膜密着性は、ポリウレ
タン系塗料をスプレー塗装し、次いでJIS H8681
によるC.A.S.S.試験48時間行なつた試料の塗膜密
着性をごばん目表示法により表示したものであり
(100/100が最良で、分子が小さくなるにつれて
塗膜密着性は悪くなる)、そして金属間化合物の
脱落によるピツト発生数は、径が約2〜10μm
で、深さが約1μm以上のピツト数を、10枚の素
材における平均を求めて、mm2当りの数で表示した
ものである。
The present invention relates to a surface treatment method for aluminum or aluminum alloy, in which aluminum or aluminum alloy is selected from chlorite, bromite, iodate, chlorate, bromate, and iodate. Aluminum or aluminum alloy whose corrosion resistance, hydrophilicity, and paint film adhesion are significantly improved by treatment with a basic aqueous solution containing at least one type of compound to form a hydrated oxide film on the surface. The purpose of this invention is to provide a method for surface treatment. Conventionally, the chromate method, boehmite method, MBV method, or EW has been used as a chemical conversion treatment method to generate an oxide film on the surface of aluminum or aluminum alloy (hereinafter simply referred to as aluminum alloy).
Various measures such as laws have been proposed. Among these methods, the chromate method generates an oxide film with good corrosion resistance on the aluminum alloy surface in a short time at low temperatures, and although this oxide film has good paint film adhesion, it is also water repellent. ,
A fatal drawback is that chemical conversion treatment using the chromate method cannot be used in fields where hydrophilicity is required, such as for heat exchange media (fin materials) or PS plates. In addition, the chromate method has the disadvantage that the wastewater after chromate treatment contains harmful ions such as chromium and cyanide, so that the wastewater treatment is burdensome. In addition, the boehmite method uses aluminum alloy at 80°C.
Since the treatment is carried out in demineralized water heated to a temperature higher than The drawback is that it is difficult to obtain a homogeneous film. Therefore, due to these drawbacks, this method is not suitable at all as a treatment for precoating materials when aluminum alloys are used as heat exchange medium materials. Therefore, in order to compensate for these drawbacks, it has been proposed to add ammonia or triethanolamine, etc., to accelerate the dissolution reaction and enable processing to be completed in a short time. It is difficult to balance the formation, and the corrosion resistance is not improved much even though the oxide film increases, and is inferior to, for example, a film formed by a chromate treatment method. In addition, for MBV method, EW method, etc., the processing temperature is usually
The temperature is as high as 90 to 100°C, and the processing time is usually long, 3 minutes or more. Therefore, like the boehmite method described above, it is unsuitable for processing precoated materials. In addition, a chemical conversion treatment method (Special Publications Showa) in which an aluminum alloy is treated with an aqueous solution of sodium hypochlorite or potassium hypochlorite to form an oxide film on the surface.
53-32772) has also been proposed, but the corrosion resistance of the oxide film produced by this chemical conversion treatment method depends on the material quality and tempering, the oxidizing agent concentration in the treatment bath, the amount of basic substance added, and the pH based on dissolved Al. In other words, when generating a hydrated oxide film at a treatment temperature of 70°C or higher in a basic bath where the effect of adding an oxidizing agent is recognized, if the pH of the treatment bath is too high, for example, the PH
When it is 11.5 or higher, dissolution is promoted more than oxidation,
Especially Al-Fe compounds, Al-Fe-Si compounds, Al-
Mn compound, Al-Fe-Mn compound, Al-Fe-Mn
−Al around Si compounds and intermetallic compounds
Local dissolution of the substrate is promoted, intermetallic compounds fall off, and bits with a diameter of approximately 2 to 10 μm and a depth of approximately 1 μm or more calculated from the difference in surface roughness before and after treatment are frequently generated. There were many defective parts where no oxide film was formed, and the corrosion resistance was significantly deteriorated. As a result of extensive research into a chemical conversion treatment method that produces a film with good corrosion resistance, hydrophilicity, and paint film adhesion without causing pollution problems such as drainage treatment, the inventor discovered that aluminum alloys can be treated with chlorite. , bromite, iodate, chlorate, bromate,
When treated with a basic aqueous solution containing at least one compound selected from iodates (for example, by dipping or spraying), the hydrated oxide film obtained by this surface treatment exhibits corrosion resistance, hydrophilicity, and coating adhesion. They have discovered that they are excellent in all respects, and have accomplished the present invention. Next, a method for surface treatment of aluminum or aluminum alloy according to the present invention, which produces a hydrated oxide film having excellent corrosion resistance, hydrophilicity, and coating adhesion, will be described. The concentration of the oxidizing agent such as chlorite or chlorate used in the present invention is preferably about 0.0001 to 3.5 g/, more preferably about 0.05 to 3.5 g/
The amount is 3.5 g/, particularly preferably 0.5 to 1 g/. In other words, if the concentration is too low, the oxidizing power is weak,
Also, if the concentration is too high, it will be difficult to obtain a uniform film,
Also, more oxidizing agents are taken out during processing,
It becomes uneconomical. To make the treatment liquid basic, caustic soda is usually used, but caustic potash, calcium hydroxide, sodium carbonate, boric acid, and basic amines (triethanolamine, ammonia, etc.) may also be used. However, it is important to keep the pH of the basic bath at about 11.5 or less, preferably about 10-10.
It is best to leave it at 11. In other words, if the pH becomes too high, exceeding 11.5, the base aluminum around the intermetallic compound will dissolve, resulting in the formation of many pits and a decrease in corrosion resistance.
If the PH is too small (less than 10), the amount of aluminum dissolved decreases and the rate of film formation slows, that is, the amount of film formed is small, so corrosion resistance tends to decrease. Therefore, the pH of the processing solution should be adjusted to 10 to 11.
If this is done, a balance between aluminum dissolution and oxidation will be obtained, the number of pits due to shedding of intermetallic compounds will be greatly reduced, and a dense hydrated oxide film will be produced. Regarding the processing time, longer is not better; for example, it is about 60 to 180 seconds. In other words, there is an intermetallic compound on the surface layer of the aluminum alloy, and there are also intermetallic compounds below this intermetallic compound, so even if the hydrated oxide film becomes thicker during treatment, the intermetallic compound will This is because they fall off and cause film defects in the hydrated oxide film. Therefore, if the treatment time is set to about 60 to 180 seconds and the amount of hydrated oxide film generated is about 3 to 6 mg/ dm2 , not only will there be fewer film defects and excellent corrosion resistance, but also productivity will be improved. will also improve. When treated in this manner, the surface condition of the hydrated oxide film is approximately 2 to 10 μm in diameter due to the shedding of intermetallic compounds, and approximately 1 μm in depth calculated from the difference in surface roughness profile before and after treatment. The number of pits generated is approximately 120/mm 2 or less, and the corrosion resistance is excellent. Furthermore, as the purity of aluminum increases, the number of intermetallic compounds that exist decreases.
Furthermore, since the size is reduced, the corrosion resistance is further improved. Further, after treatment with a basic aqueous solution containing chlorite or the like, the hydrophilicity can be further improved by performing a post-treatment such as sodium silicate treatment. Next, specific examples of the present invention will be described. Examples 1 to 10 JIS1200O material (75mm x 150mm x 0.12mm) aluminum alloy was treated with sodium chlorite (Example 1),
Sodium bromate (Example 2), sodium bromite (Example 3), ammonium iodate (Example 4), ammonium iodate (Example 5), sodium baseite and sodium chloride (equal weight, Example 6), sodium chlorate (Example 7), sodium chlorite (Example 8), calcium chlorite (Example 9), magnesium iodate (Example
10) is immersed in a basic aqueous solution containing each of the above to form a hydrated oxide film on the surface. Comparative Examples 1 to 5 The same material as in Example 1 was subjected to conventional boehmite treatment (desalinated water, Comparative Example 1), chromate treatment (Alodine #1200, Comparative Example 2), and basic aqueous solution treatment without oxidizing agent ( Comparative Examples 3 and 4) and sodium hypochlorite aqueous solution (Comparative Example 5). The properties of the films obtained in Examples 1 to 10 and Comparative Examples 1 to 5 were measured as shown in the table. The condition of the formed film was determined by visual observation, the amount of film formed was determined by the film weight measurement method according to JIS H8680, and the corrosion resistance was determined by JIS H8680.
It is shown by the rating number display method after 336 hours of salt spray test with Z2371 (a number of 10 is the best, and the smaller the number, the worse it is). It shows the contact angle with water droplets (the smaller the contact angle, the better the hydrophilicity).Also, the adhesion of the paint film is determined by spray painting with polyurethane paint and then applying JIS H8681.
This shows the paint film adhesion of a sample subjected to a 48-hour CASS test (100/100 is the best, and the paint film adhesion worsens as the molecules get smaller). The number of pits generated due to the falling off of intermediate compounds is approximately 2 to 10 μm in diameter.
The number of pits with a depth of about 1 μm or more is calculated by averaging over 10 sheets of material and expressed as the number per mm 2 .

【表】【table】

【表】 上述の如く、本発明に係るアルミニウム又はア
ルミニウム合金の表面処理法は、アルミニウム又
はアルミニウム合金を、亜塩素酸塩、亜臭素酸
塩、亜ヨウ素酸塩、臭素酸塩、ヨウ素酸塩の中か
ら選ばれる少なくとも一種の化合物を含む塩基性
水溶液で処理して、アルミニウム又はアルミニウ
ム合金表面に水和酸化皮膜を生成するので、耐食
性、親水性及び塗膜密着性いずれについても優れ
たものとなり、しかも短時間のうちに処理できる
ので生産性も高く、低コストでできる等の特長を
有する。
[Table] As described above, the method for surface treatment of aluminum or aluminum alloy according to the present invention is to treat aluminum or aluminum alloy with chlorite, bromite, iodate, bromate, or iodate. By treating with a basic aqueous solution containing at least one compound selected from among these, a hydrated oxide film is generated on the surface of aluminum or aluminum alloy, resulting in excellent corrosion resistance, hydrophilicity, and coating adhesion. In addition, it has the advantage of being highly productive as it can be processed in a short time and can be done at low cost.

Claims (1)

【特許請求の範囲】[Claims] 1 アルミニウム又はアルミニウム合金を、亜塩
素酸塩、亜臭素酸塩、亜ヨウ素酸塩、塩素酸塩、
臭素酸塩、ヨウ素酸塩の中から選ばれる少なくと
も一種の化合物を含む塩基性水溶液で処理して、
アルミニウム又はアルミニウム合金表面に水和酸
化皮膜を生成することを特徴とするアルミニウム
又はアルミニウム合金の表面処理法。
1 Aluminum or aluminum alloy is treated with chlorite, bromite, iodate, chlorate,
treated with a basic aqueous solution containing at least one compound selected from bromates and iodates,
A method for surface treatment of aluminum or aluminum alloy, characterized by forming a hydrated oxide film on the surface of aluminum or aluminum alloy.
JP5990183A 1983-04-08 1983-04-08 Surface treatment of aluminum or aluminum alloy Granted JPS59185782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5990183A JPS59185782A (en) 1983-04-08 1983-04-08 Surface treatment of aluminum or aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5990183A JPS59185782A (en) 1983-04-08 1983-04-08 Surface treatment of aluminum or aluminum alloy

Publications (2)

Publication Number Publication Date
JPS59185782A JPS59185782A (en) 1984-10-22
JPH0335378B2 true JPH0335378B2 (en) 1991-05-28

Family

ID=13126481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5990183A Granted JPS59185782A (en) 1983-04-08 1983-04-08 Surface treatment of aluminum or aluminum alloy

Country Status (1)

Country Link
JP (1) JPS59185782A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5332772A (en) * 1976-09-08 1978-03-28 Seiko Epson Corp Electronic watch

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5332772A (en) * 1976-09-08 1978-03-28 Seiko Epson Corp Electronic watch

Also Published As

Publication number Publication date
JPS59185782A (en) 1984-10-22

Similar Documents

Publication Publication Date Title
US6197126B1 (en) Nickel-free phosphating process
JPH04293789A (en) Method of coating steel with innoxious, inorganic and corrosion-resistant coating
BRPI0708467A2 (en) metal surface treatment composition, metal surface treatment method, and metal material
JPS59166677A (en) Improvement for producing phosphate salt film
JPS6038480B2 (en) Method for manufacturing corrosion-resistant electrolytic zinc composite plated steel materials
JP2604387B2 (en) Method of forming phosphate film on metal surface
US4637838A (en) Process for phosphating metals
JPH10510322A (en) Method of applying phosphoric acid coating on metal surface
JPS6247489A (en) Improved method for surface coating of zinc
US5601663A (en) Process for forming a black oxide on aluminum alloys and a solution therefor
JPH02190478A (en) Formation of phosphate film
US4018628A (en) Process for coloring aluminium
AU639843B2 (en) Flux suitable for coating molten zinc, molten alloy of aluminum and zinc, and molten aluminum
JPS59205467A (en) Method for forming zinc precipitated layer suitable for zinc diffusion treatment to surface of aluminum material
JPH0335378B2 (en)
KR102365280B1 (en) Molten salt flux for molten aluminium plating and flux bath comprising the same
JPH0335379B2 (en)
US3620939A (en) Coating for magnesium and its alloys and method of applying
JPH03240972A (en) Treatment of metal surface with zinc phosphate
WO2021079873A1 (en) Treatment agent for metal materials, and metal material having coating film
JPS5928638B2 (en) Method of forming a colored protective film on the surface of magnesium material
US2269435A (en) Treatment for coated magnesium and its alloys
US2314341A (en) Method of and bath for coating magnesium
JPH04505479A (en) Method for forming a manganese-containing phosphate film on metal surfaces
JPS5834178A (en) Chromate treatment for plated steel plate